优秀作文应该具备深入思考的内涵,富有感染力的情感,以及富有创新的表达方式。如果你对如何写一篇优秀作文还有疑问,不妨看看以下小编为大家准备的范文,或许能给你一些启示。
三角形初中(实用19篇)篇一
二、角。
1、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角。
另一种是一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
2.角的平分线。
3、角的度量:度量角的大小,可用“度”作为度量单位。把一个圆周分成360等份,每一份叫做一度的角。1度=60分;1分=60秒。
4.角的分类:(1)锐角(2)直角(3)钝角(4)平角(5)周角。
5.相关的角:
(1)对顶角(2)互为补角(3)互为余角。
6、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。
注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。
7、角的性质。
(1)对顶角相等(2)同角或等角的余角相等(3)同角或等角的补角相等。
三、相交线。
1、斜线2、两条直线互相垂直3、垂线,垂足。
4、垂线的性质。
(l)过一点有且只有一条直线与己知直线垂直。
(2)垂线段最短。
四、距离。
1、两点的距。
2、从直线外一点到这条直线的垂线段的长度叫做点到直线的距离。
3、两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线,垂线段的长度,叫做两条平行线的距离。
五、平行线。
1、定义:在同一平面内,不相交的两条直线叫做平行线。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
2、平行线的判定:
(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补两直线平行。
3、平行线的性质。
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
4、如果一个角的两边分别平行于另一个角的两边,那么这两个角_________________.
5、如果一个角的两边分别垂直于另一个角的两边,那么这两个角_________________.
三角形初中(实用19篇)篇二
本微课选自北京师范大学出版社初中数学七年级下册第四章《三角形》的第一节《认识三角形》的内容,学生在学习了“三角形的概念”之后,自然要想到“三角形的内角和”,因此本节微课起着承上启下的作用。教学内容是《三角形内角和》。
我在设计这一堂微课时,主要从七年级学生以形象思维为主,对新事物容易产生兴趣的特点出发,创设问题情景“在以前小学学习三角形的内角和的结论时,是通过撕、拼的方法直观得到的,你知道其中的依据吗?”来激发学生探究的欲望。然后通过老师借助z+z超级画板展示“三角形的内角和等于180°”的动画以及通过旋转和平移三角形的两个角到第三个角的方法,一方面让学生去发现问题,另一方面使学生通过多角度思考、分析、说理、操作加深学生对三角形内角和为180°的理解,从而突出和解决了本节课的重点,同时在教学中注重在直观操作的基础上进行简单的推理,使学生学会用一定的方式有条理地表达推理过程。在学生探究得出三角形的内角和等于180°之后,教师通过借助z+z超级画板拖动三角形的任意一个点,改变三角形的形状,动态显示了“三角形的内角和”始终等于180°的数据。加深对“三角形的内角和“的理解。最后同过练习,检测学生对“三角形的内角和”的应用掌握程度,拓展学生视野,提高学生认识水平。
设计特色是力求通过z+z超级画板动画等多媒体教学手段,使抽象知识动态化,降低学生认知难度。以问题为导向,引导学生推断分析,锻炼学生逻辑思维。教学过程充分体现出以学生为主体,教师为主导的特点,启发引导学生通过多角度思考、分析、说理、操作的过程中主动地去获取知识,体验过程、感悟方法,以提高学生学习的有效性。
七年级的学生形象思维比较好,但空间思维比较差,注意力容易转移,需要教师结运用多媒体技术展示三角形内角和,因此本节课我展示“三角形的内角和”的动画给学生看,将思维的可视化展示给学生,使学生能保持较大的学习兴趣,从而努力培养学生的发现问题的能力、推理能力、有条理的表达能力、发展空间观念。
知识与技能:通过观察、操作、想象、推理“三角形内角和等于180°”的活动过程,发展空间观念,推理能力和有条理地表达能力。
过程与方法:通过自主探究,结合具体实例,掌握三角形三个角和等于180°。
情感、态度价值观:在探究学习中体会数学的现实意义,培养学习数学的信心,体验解决问题方法的多样性。
教学环节。
教学内容。
教学活动。
设计意图。
教师的组织和引导。
学生活动。
提出问题,自主探究。
展示书本p81页的做一做,提出问题:
1、在小学通过撕、拼方法得到三角形内角和等于180°,依据是什么?
3、利用“三角形内角和”的动画,拖动三角形的任意点,用数据显示三角形的内角和等于180°。
阅读课本p81页,回忆小学通过撕、拼方法得到三角形内角和等于180°。
探究、想象、推理、得出结论。
根据做一做,激发学生的探究欲望。
动画形象地呈现在学生眼前,直观操作与说理结合起来。
培养学生的推理能力和有条理地表达能力,发展空间观念。
效果检测,引领提升。
练习。
展示有梯度的课堂练习。
做练习。
对所学知识加以运用和深化归纳总结,深化认知。
总结拓展。
总结本节知识点。
归纳知识点。
学会总结。
板书设计。
该微课针对我校生源不是很好的实际情况和“三角形内角和”很难理解的特点,面向学生,聚焦学习过程,关注个性差异,采用问题导学、自主探究模式,聚焦知识点讲解,呈现教师如何用z+z超级画板软件引导学生学习,学生如何在教师的引导下自主学习的过程,充分体现教师的主导作用和学生的主体作用;针对七年级学生以形象思维为主、好奇心强的特点,充分发挥多媒体在学科中的运用,教师展示“三角形内角和”动画,让学生根据“平行线的判定和性质”获得“三角形内角和等于180°”的结论,体现思维过程。培养学生的推理能力和有条理地表达能力,发展空间观念。符合新课标倡导的探究性学习的理念。事实证明,符合学生的认知心理,达到了很好的效果。
三角形初中(实用19篇)篇三
(一)教材的地位和作用《三角形的内角》内容选自人教实验版九年义务教育七年级下册第七章第二节第一课时。“三角形的内角和等于180°”是三角形的一个重要性质,它揭示了组成三角形的三个角的数量关系,学好它有助于学生理解三角形内角之间的关系,也是进一步学习《多边形内角和》及其它几何知识的基础。此外,“三角形的内角和等于180°”在前两个学段已经知道了,但这个结论在当时是通过实验得出的,本节要用平行线的性质来说明它,说理中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。
(二)教学目标。
基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:
1、知识技能:发现“三角形内角和等于180°”,并能进行简单应用;体会方程的思想;寻求解决问题的方法,获得解决问题的经验。
2、数学思考:通过拼图实践、合作探索、交流,培养学生的逻辑推理、大胆猜想、动手实践等能力。
4、情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。通过添置辅助线教学,渗透美的思想和方法教育。
(三)重难点的确立:
1、重点:“三角形的内角和等于180°”结论的探究与应用。
处于这个年龄阶段的学生有能力自己动手,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。
基于以上的情况,我确立了本节课的教法和学法:
(一)教法。
基于本节课内容的特点和七年级学生的心理特征,我采用了“问题情境—建立模型—解释、应用与拓展”的模式展开教学。本节课采用多媒体辅助教学,旨在呈现更直观的形象,提高学生的积极性和主动性,并提高课堂效率。
(二)学法。
通过学生分组拼图得出结论,小组分析寻求说理思路,从不同角度去分析、解决新问题,通过基础练习、提高练习和拓展练习发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
我是以6个活动的形式展开教学的,活动1是为了创设情境引入课题,激发学生的学习兴趣,活动2是探讨三角形内角和定理的证明,证明的思路与方法是本节的难点,活动3到5是新知识的应用,活动6是整节课的小结提高。
具体过程如下:活动1:首先用多媒体展示情境提出问题1,设计意图是:创设情境,引起学生注意,调动学生学习的积极性,激发学生的学习兴趣,导入新课。在此基础上由学生分组,用事先准备好的三角形拼图发现三角形的内角和等于180°。设计意图是:从丰富的拼图活动中发展学生思维的灵活性,创造性,从活动中获得成功的体验,增强自信心,通过小组合作培养学生合作、交流能力。在合作学习中增强集体责任感。再用多媒体演示两个动画拼图的过程。设计意图:让学生更加形象直观的理解拼图实际上只有两种,一种是折叠,一种是角的拼合,这为下一环节说理中添加辅助线打好基础,从而达到突破难点的目的。
前面通过动手大家都知道了三角形的内角和等于180°这个结论,那么你们是否能利用我们前面所学的有关知识来说明一下道理呢?请看问题2,请各小组互相讨论一下,讨论完后请派一个代表上来说明你们小组的思路[学生的说理方法可能有四种(板书添辅助线的四种可能并用多媒体演示证明方法)]设计的目的:通过添置辅助线教学,渗透美的思想和方法教育,突破本节的难点,了解辅助线也为后继学习打下基础。在说理过程中,更加深刻地理解多种拼图方法。同时让学生上板分析说理过程是为了培养学生的语言表达能力,逻辑思维能力,多种思路的分析是为了培养学生的发散性思维。
通过活动3中问题的解决加深学生对三角形内角和的理解,初步应用新知识,解决一些简单的问题,培养学生运用方程思想解几何问题的能力。
活动4向学生展示分析问题的基本方法,培养学生思维的广阔性、数学语言的表达能力。把问题中的条件进一步简化为学生用辅助线解决问题作好铺垫。同时培养学生建模能力。
活动5通过两上实际问题的解决加深学生对所学知识的理解、应用。培养学生建模的思想及能力。
活动6的设计目的发挥学生主体意识,培养学生语言概括能力。
3、结合评价表,对学生的课堂表现进行激励性的评价,一方面有利于调动学生的积极性,另一方面有利于学生进行自我反思。
三角形初中(实用19篇)篇四
1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。
2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
对不同探究方法的指导和学生对规律的灵活应用。
课件、表格、学生准备不同类型的三角形各一个,量角器。
一、激趣引入。
1、猜谜语。
师:同学们喜欢猜谜语吗?
生:喜欢。
师:那么,下面老师给大家出个谜语。请听谜面:
形状似座山,稳定性能坚,三竿首尾连,学问不简单。(打一图形)大家一起说是什么?
生:三角形。
师分别出示卡片贴于黑板。
3、激发学生探知心里。
师:大家会不会画三角形啊?
生:会。
师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。试一试吧!
生:试着画。
师:画出来没有?
生:没有。
师:画不出来了,是吗?
生:是。
师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”
二、探究新知。
看看这三个字,说说看,什么是三角形的内角?
生:就是三角形里面的角。
生:3个。
师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)。
生:三角形里面的角加起来的度数。
生:算一算:90°+60°+30°=180°90°+45°+45°=180°。
师:180°也是我们学习过的什么角?
生:平角。
生:
4、操作、验证。
师:同学们猜的结果各不相同,那怎么办呀?你能想个办法验证一下吗?
要求:
(1)每4人为一个小组。
(3)验证的方法不只一种,同学们要多动动脑子。
师:好,开始活动!
师:巡视指导。
师:好!请一组汇报测量结果。
生:通过测量我们发现每个三角形的三个内角和都在180度左右。
师:其实三角形的内角和就是180度,只是因为我们在测量时存在了一些误差,所以测量出的结果不准确。
生:我是用撕的方法,把直角三角形三个内角撕下来,拼在一起,拼成一个平角,是180度。
师:好!非常好!
师:有其它同学操作锐角三角形和钝角三角形的吗?谁愿意到前面来展示一下?生:展示锐角三角形(撕拼)。
生:展示折一折我是用折的方法把锐角三角形三个角折在一起,组成一个平角,是180°。
师:老师也做了一个实验看一看是不是和大家得到结果一样呢?(多媒体展示)。
生:180度。
师:通过验证:我们知道了无论是锐角三角形,直角三角形还是钝角三角形,它们的内角和都是180°。
三、解决疑问。
师:好!请同学们回忆一下,刚才课前老师让同学们画出有两个直角的三角形画出来了吗?
生:没有。
师:那你能用这节课的知识解释一下为什么画不出来吗?
生:两个直角是180度,没有第三个角了。
师:如果想画出有两个角是钝角的三角形你能画出来吗?
生:大于180度,也画不出第三个角。师:所以,生活中不存在这样的三角形。
师:学会了知识,我们就要懂得去运用。
三角形初中(实用19篇)篇五
教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.
(1)三角形的定义?三角形的相关元素的概念(边、顶点、角)?三角形的表示方法.
(2)三角形按边的分类.
(3)三角形三边之间的关系.
师生活动:教师引导,学生小结.
设计意图:学生共同总结,互相取长补短,再一次突出本节课的学习重难点.
三角形初中(实用19篇)篇六
今天我讲了《三角形的内角和》一课,课前我分析:学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、用量角器量三角板三个角的度数以及三角形的分类的基础,学生也有提前预习的习惯,很多孩子都能回答出三角形的内角和是180度,但是他们却不知道怎样才能得出三角形的内角和是180度。另外,经过三年多的学习,学生们已具备了初步的动手操作能力、主动探究能力以及小组合作的能力。
根据学情我设置了以下教学目标:
1、结合具体图形能描述出三角形的内角、内角和的含义。
2、在教师的引导下,通过猜测和计算能说出三角形的内角和是180°。
3、在小组合作交流中,通过动手操作,实验、验证、总结三角形的内角和是180°,同时发展动手动脑及分析推理能力。
4、能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
本节课的教学重点是:探索和发现三角形的内角和是180°。教学难点是充分发挥学生的主体作用,自主探索和发现三角形的内角和是180°。为突破重难点,我在教学过程中设计了创设情境,生成问题,认识三角形的内角及内角和,引导学生猜测三角形的内角和是180度,让学生通过“量——拼——折”的方法分类验证了三角形的内角和是180度,最后利用三角形内角和是180解决问题。
自己上完课后感觉本节课导入环节比较成功,学生很感兴趣。随后的小组合作秩序也比较好,能够通过自己制作的三角形学具动手操作探究出总结三角形的内角和是180°。而在后面的练习中也能运用三角形的内角和是180°这一规律,求三角形中未知角的度数。
而学生在本节课中的交流环节中不够积极,语言表达也有所欠缺。我要在以后的课堂中采用良好的激励手段,同时多加肯定与鼓励;也要继续引导学生说规范的数学语言。
三角形初中(实用19篇)篇七
1、定义:在同一平面内,不相交的两条直线叫做平行线。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
2、平行线的判定:
(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补两直线平行。
3、平行线的性质。
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
4、如果一个角的两边分别平行于另一个角的两边,那么这两个角_________________.
5、如果一个角的两边分别垂直于另一个角的两边,那么这两个角_________________.
三角形初中(实用19篇)篇八
(1)任意两个正数的和的平方,等于这两个数的平方和。
(2)任意两个正数的差的平方,等于这两个数的平方和,再减去这两个数乘积的2倍。
3、平方根。
1正数有两个平方根,这两个平方根互为相反数;。
2零只有一个平方根,它就是零本身;。
3负数没有平方根。
4、实数。
无限不循环小数叫做无理数。
有理数和无理数统称为实数。
5、平方根的运算。
6、算术平方根的性质。
性质1一个非负数的算术平方根的平方等于这个数本身。
性质2一个数的平方的算术平方根等于这个数的绝对值。
7、算术平方根的乘、除运算。
1)算术平方根的乘法。
sqrt(a)?sqrt(b)=sqrt(ab)(a=0,b=0)。
2算)术平方根的除法。
sqrt(a)/sqrt(b)=sqrt(a/b)(a=0,b0)。
8‘算术平方根的加、减运算。
如果几个平方根化成最简平方根以后,被开方数相同,那么这几个平方根就叫做同类平方根。
9、一元二次方程及其解法。
1)一元二次方程。
只含有一个未知数,且未知数的最高次数是2的方程,叫做一元二次方程。
2)特殊的一元二次方程的解法。
3)一般的一元二次方程的解法——配方法。
用配方法解一元二次方程的一般步骤是:
2、移项把常数项移至方程右边,将方程化为x^2+px=-q的形式。
4、有平方根的定义,可知。
(1)当p^2/4-q0时,原方程有两个实数根;。
(2)当p^2/4-q=0,原方程有两个相等的实数根(二重根);。
(3)当p^2/4-q0,原方程无实根。
三角形初中(实用19篇)篇九
1.经历析纸,画图等实践过程,认识三角形的高、中线与角平分线.
2.会用工具准确画出三角形的高、中线与角平分线,通过画图了解三角形的三条高(及所在直线)交于一点,三角形的三条中线,三条角平分线等都交于一点.
重点、难点。
重点:。
1.了解三角形的高、中线与角平分线的概念,会用工具准确画出三角形的高、中线与角平分线.
2.了解三角形的三条高、三条中线与三条角平分线分别交于一点.
难点:。
1.三角形平分线与角平分线的区别,三角形的高与垂线的区别.
2.钝角三角形高的画法.
3.不同的三角形三条高的位置关系.
教学过程。
一、看一看。
把下面图表投影出来:。
2.仔细观察投影表中的内容,并回答下面问题.
(1)什么叫三角形的高?三角形的高与垂线有何区别和联系?三角形的高是从三角形的一个顶点向它对边所在的直线作垂线,顶点和垂足之间的线段,而从三角形一个顶点向它对边所在的直线作垂线这条垂线是直线.
(2)什么叫三角形的中线?连结两点的线段与过两点的直线有何区别和联系?
三角形的中线是连结一个顶点和它对边的中点的线段,而过两点的直线有着本质的不同,一个代表的是线段,另一个却是直线.
(3)什么叫三角形的角平分线?三角形的角平分线与角平分线有何区别和联系?
三角形的角平分线是三角形的一个内角平分线与它的对边相交,这个角顶点与交点之间的线段,而角平分线指的是一条射线.
3.三角形的高、中线和角平分线是代表线段还是代表射线或直线?
三角形的高、中线和角平分线都代表线段,这些线段的一个端点是三角形的一个顶点,另一个端点在这个顶点的对边上.
二、做一做。
三角形的三条高交于一点,锐角三角形三条高交点在直角三角形内,直角三角形三条高线交点在直角三角形顶点,而钝角三角形的三条高的交点在三角形的外部.
三角形的三条中线都在三角形内部,它们交于一点,这个交点在三角形内.
无论是锐角三角形还是直角三角形或钝角三角形,它们的三条角平分线都在三角形内,并且交于一点.
三、议一议。
通过以上观察和操作你发现了哪些规律,并加以总结且与同伴交流.
四、练习。
1.课本p5,练习1.2.
2.画钝角三角形的三条高.
五、作业。
1.p8-p9习题11.1第3.4.8。
三角形初中(实用19篇)篇十
师:既然生活中有这么多三角形。那我们就一起来研究有趣的三角形。(板书课题:认识三角形)。
1、感知生活中的三角形并找出三角形的特征。
师:请在练习本上画一个你喜欢的三角形,画好后,和你的同桌说说三角形各部分的名称。
3、辨一辨并得出判断三角形的条件。
师:我们来看看这些小朋友画的三角形,画得怎样?
师小结:判断一个图形是不是三角形首先要看是不是有三条线段,其次看这三条线段是不是围拢了。
(2)操作:第53页课堂活动第1,2题,按要求在本子上画出三角形,并相互检查。
(3)判断哪些图形是三角形?练习十第1题。
请大家猜一猜三角形到底有什么特性呢?我们来做个实验吧。
生:四边形轻轻一拉,形状和大小都变了,而三角形用力拉后,发现形状和大小都不变。
(3)师小结:说明三角形比较牢固,具有较好的稳定性。
(4)举出生活中哪些物品用到三角形的这个特性吗?
1.练习第54页第4题。
教师:通过这节课的学习,你对三角形有哪些新的认识?
三角形初中(实用19篇)篇十一
4、做一做。
5、练习。
6、小结。
四、课后反思。
本节课以“如何将一个任意三角形分为四个全等的三角形”这一问题为出发点,以平行四边形的性质定理和判定定理为桥梁,探究了三角形中位线的基本性质和应用。在本节课中,学生亲身经历了“探索―发现―猜想―证明”的探究过程,体会了证明的必要性和证明方法的多样性。在此过程中,笔者注重新旧知识的联系,同时强调转化、类比、归纳等数学思想方法的恰当应用,达到了预期的目的。
三角形初中(实用19篇)篇十二
1、引导幼儿用三角形拼出长方形、正方形、大三角形、梯形。
2、在探索活动中,发展幼儿的动手能力和思维能力,体验活动中的成就感。
3、让幼儿体验数学活动的乐趣。
4、发展幼儿逻辑思维能力。
1、教具:磁性三角形12个。
2、学具:同样大小的三角形若干(每位幼儿4块)。
1、集体活动。
师:小兔最喜欢三角形了,它觉得三角形的本领很大,能拼出各种图形来。老师给小朋友准备了许多三角形,想请小朋友也来摆一摆、拼一拼,看看小兔说的是不是真的。
师:谁来告诉我你是怎样拼的?(个别幼儿尝试)师:老师有一个要求,每位小朋友拿4块三角形,用这4块三角形拼一个大的长方形。
2、操作活动。
(幼儿再次尝试)师:你拼的是什么图形?谁来拼给大家看一看?(请三位幼儿分别拼三种不同的图形)师:请小朋友去拼一拼你没拼过的图形。
3、小结。
师:小朋友的小手真能干,用三角形拼出了长方形、正方形、大三角形、梯形,下次,老师还要请小朋友用各种图形来玩拼图游戏。
根据小班幼儿的思维特点和活泼好动的性格,我将三角形的图形特征编成简短的故事,再结合图形拼摆,让孩子在玩中学、学中乐、乐中做。使幼儿养成动手、动口、动脑的好习惯,培养幼儿的创新意识。
三角形初中(实用19篇)篇十三
三角形的特点在我们生活中起着非常重要的作用。
现在的房子虽然很高,但是它十分稳定。这功劳虽然建筑工人有份,屋顶上那砖瓦有份,但是更重要功劳要属于三角形的。三角形有坚固作用,所以房子在侧面“人字架”部分你会发现一个三角形、房子的板带基础横剖面有两个三角形,这样就使房子更稳固,不易变形,不易倒塌。三角形不仅能使房子固定,还有别的'作用,例如,聪明法的人们利用三角形的两条边向下延伸的原理,将房顶设计成高处屋脊、低处屋檐,盖上瓦片,这样就起到排水的功能,使屋子更安全,整洁,干净。
开窗也是这样,运用了三角形固定的原理,两个支点固定在墙壁或窗架上成为轴,一个点在另一侧安装把手或扣子,使它收开自如,安全美观,为我们生活带来了方便与轻松。
柜子是现在我们家中不可缺少的家具之一。它用起来方便,安全,省力,还可以放进许多东西。这也有三角形的功劳。灵工巧匠们在柜架的榫头处打进三角形的楔子,使柜子像磐石一样稳稳当当地站立着。现代生活馆里有些柜子上的三角形的边还能自由缩短或延长,可以使柜子分为好几层,更快捷轻松。
是啊。不仅三角形在屋子里外、窗户、柜子、电脑、书面上出现过,还在许许多多的地方出现过。比如:大门上,桌子上,自行车上,箱子上等等等等。不但这样,三角形还在生活的每个角落发挥了自己最大的本领——固定性。
三角形的固定性在生活中有着许多而又不可磨灭的作用,使我们更加方便,轻松,安全……。
三角形初中(实用19篇)篇十四
学生的知识技能基础:
在七年级的学习中,学生通过观察、测量、画图、拼摆等数学活动,体会了全等三角形中“对应关系”的重要作用。上一节课“相似多边形”的学习,使学生在探索相似形本质特征的过程中,发展了有条理地思考与表达,归纳,反思,交流等能力。
学生活动经验基础:
上述学习经历为学生继续探究“相似三角形”积累了丰富的活动经验和知识基础。
(一)教材的地位和作用分析:
《相似三角形》在本章中承上启下,体现了从一般到特殊的数学思想;
是学生今后学习的基础;
是解决生活中许多实际问题的常用数学模型。
即相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习探索三角形相似的条件、三角函数及与此有关的比例线段等知识打下良好的基础。
(二)教学重点:
相似三角形定义的理解和认识。
(三)教学难点:
1、相似三角形的定义所揭示的本质属性的理解和应用;
2、例2后想一想中“渗透三角形相似与平行的内在联系”是本节课的第二个难点。
(四)教法与学法分析:
本节课将借助生活实际和图形变换创设宽松的学习环境;并利用多媒体手段辅助教学,直观、形象,体现数学的趣味性。
学生则通过观察类比、动手实践、自主探索、合作交流的学习方式完成本节课的学习。
(五)教法建议。
(六)教学目标分析:
通过一些具体问题的情境设置、观察类比、动手操作;让学生积极思考、充分参与、合作探究;深化对相似三角形定义的理解和认识。发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。
1、知识与技能。
(1)、掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似。
(2)、能根据相似比进行计算,训练学生判断能力及对数学定义的运用能力。
2过程与方法。
(1)领会教学活动中的类比思想,提高学生学习数学的积极性。
(2)经过本节的学习,培养学生通过类比得到新知识的能力,掌握相似三角形的定义及表示法,会运用相似比解决相似三角形的边长问题。
3情感态度与价值观。
(1)、经历相似多边形有关概念的类比,渗透类比的数学思想,并领会特殊与。
一般的关系。
(2)、深化对相似三角形定义的理解和认识。发展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。
本节课共设计了五个环节:
1、情景引入归纳定义。
2、运用定义解决问题。
3、加深理解探索规律。
4、回顾反思课堂小结。
5、布置作业。
三角形初中(实用19篇)篇十五
2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.。
3.进一步培养学生类比的教学思想.。
4.通过相似性质的学习,感受图形和语言的和谐美。
先学后教,达标导学。
1.教学重点:是性质定理1的应用.。
2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.。
1课时。
投影仪、胶片、常用画图工具.。
[复习提问]。
1.三角形中三种主要线段是什么?
2.到目前为止,我们学习了相似三角形的'哪些性质?
3.什么叫相似比?
根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.。
下面我们研究相似三角形的其他性质(见图).。
性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比。
三角形初中(实用19篇)篇十六
相似形:形状相同、大小不一定相同的图形。特例:全等形。
相似形的识别:对应边成比例,对应角相等。
成比例线段(简称比例线段):对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线段。
黄金分割:将一条线段分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618...。这种分割称为黄金分割,点p叫做线段ab的黄金分割点,较长线段叫做较短线段与全线段的比例中项。
例1:(1)放大镜下的图形和原来的图形相似吗?
(2)哈哈镜中的形象与你本人相似吗?
(3)你能举出生活中的一些相似形的例子吗/。
例2:判断下列各组长度的线段是否成比例:
(1)2厘米,3厘米,4厘米,1厘米。
(2)1·5厘米,2·5厘米,4·5厘米,6·5厘米。
(3)1·1厘米,2·2厘米,3·3厘米,4·4厘米。
(4)1厘米,2厘米,2厘米,4厘米。
矩形都相似吗?
正方形都相似吗?
a两角对应相等。
b两边对应成比例且夹角相等。
c三边对应成比例。
a对应角相等。
b对应边成比例。
c对应线段之比等于相似比。
d周长之比等于相似比。
三角形初中(实用19篇)篇十七
通过一些带有圆形,三角形,正方形,长方形组成的小房子图片作为启发点,让孩子学习认识这些形状。
数学教研张老师。
沭阳县青少年广场幼儿园。
1、认识圆形、三角形、正方形、长方形。
2、体验成功的快乐。
1、小鸡圆形房子、小鸭三角形房子、小猫正方形房子、小狗长方形房子若干。
2、圆形、三角形、正方形、长方形饼干若干。
1、幼儿参观各种形状的饼干,请他们说一说饼干的形状。教师小结饼干的外形特征。
2、教师简单讲述饼干的制作过程。
3、幼儿品尝饼干说一说饼干形状和味道。
4、出示小鸡、小鸭、小猫、小狗木偶出来玩闻到了香味说:“我聞到饼干的香味了,我的肚子饿得咕咕叫了,饼干在哪呢?”
5、小动物们寻找饼干:“哇,原来在这呢,有这么多漂亮的饼干呀。”小鸡说:“我最喜欢吃和我房子一样形状的饼干。”小鸭、小猫、小狗同上。
6、教师:“小动物们都想吃和他们房子形状相同的饼干,请宝宝们为它们把饼干送到家里去吧。
7、幼儿操作:给小动物送饼干,要求每一种饼干都要送到形状相同的小动物家里去。教师巡回指导。
【活动结束】。
带着小动物到草地上去玩。
三角形初中(实用19篇)篇十八
对应角相等、对应边成比例的两个三角形叫做相似三角形。
如果三边分别对应a,b,c和a,b,c:那么:a/a=b/b=c/c。
即三边边长对应比例相同。
2.相似三角形判定。
对应角相等,对应边成比例的两个三角形叫做相似三角形。
判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(aa)。
判定定理2:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似(sas)。
判定定理3:如果两个三角形的三组对应边成比例,那么这两个三角形相似(sss)。
判定定理4:两三角形三边对应平行,则两三角形相似。
判定定理5:两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。
其他判定:由角度比转化为线段比:h1/h2=sabc。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
三角形初中(实用19篇)篇十九
(1)观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。
(2)实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。
2.比较与分类。
(1)比较法。
是确定事物共同点和不同点的思维方法。在数学上两类数学对象必须有一定的关系才好比较。我们常比较两类数学对象的相同点、相异点或者是同异综合比较。
(2)分类的方法。
分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。如上图中一次函数的k在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。
3.特殊与一般。
(1)特殊化的方法。
特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。
(2)一般化的方法。
4.联想与猜想。
(1)类比联想。
类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。
通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:
(2)归纳猜想。
牛顿说过:没有大胆的猜想就没有伟大的发明。猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。初中数学主要是对命题的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。
归纳是对同类事物中的所蕴含的同类性或相似性而得出的一般性结论的思维过程。归纳有完全归纳和不完全归纳。完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。关键是猜之有理、猜之有据。