教学难点是指在本节课中学生可能会遇到的较为困难的知识或技能,需要我们特别注意和支持。请大家关注下面小编为大家整理的几篇六年级教案实例,希望对大家有所帮助。
六年级数学圆柱教案(汇总13篇)篇一
教学要求:
l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。
2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。
3.培养学生初步的空间观念和发展学生的思维能力。
教具准备:长方体、正方体、圆柱体等,根据教材第14页“练一练”第1题自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。
教学重点:掌握圆锥的特征。
教学难点:理解和掌握圆锥体积的计算公式。
教学过程:
一、复习引新。
1.说出圆柱的体积计算公式。
2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第13页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)。
二、教学新课。
1.认识圆锥。
我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?
2.根据教材第13页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。
3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。
(1)圆锥的底面是个圆,圆锥的侧面是一个曲面。
4.学生练习。
口答练习八第1题。
5.教学圆锥高的测量方法。(见课本第13页有关内容)。
6.让学生根据上述方法测量自制圆锥的高。
7.实验操作、推导圆锥体积计算公式。
(1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第14页上面的图)。
(3)实验操作,发现规律。
在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。
(4)是不是所有的.圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的。
(5)启发引导推导出计算公式并用字母表示。
圆锥的体积=等底等高的圆柱的体积×。
=底面积×高×。
用字母表示:v=sh。
8.教学例l。
(1)出示例1。
(2)审题后可让学生根据圆锥体积计算公式自己试做。
(3)批改讲评。注意些什么问题。
三、巩固练习。
1.做“练一练”第2题。
指名一人板演,其余学生做在练习本上。集体订正,强调要乘以。
2.做练习三第2题。
学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。
3.做练习三第3题。
让学生做在课本上。小黑板出示、指名口答,老师板书。第(3)、(4)题让学生说说是怎样想的。
四、课堂小结。
这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?
五、课堂作业。
练习三第4、5题。
六年级数学圆柱教案(汇总13篇)篇二
2.掌握圆柱侧面积和表面积的计算方法。
(二)能力目标。
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点。
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点。
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备。
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学过程:
生:我想对老师们说,我们一定会好好表现的,不会让你们失望。
生:我们的课堂将比赛场更精彩……。
师:我坚信你们一定不会让老师失望的。
一、引入新课:
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……。
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
课件演示这一过程。
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)。
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
二、探究新知。
指名学生摸其表面积,并追问:怎样求它的表面积?
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)。
师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)。
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
课件展示其变化过程。
师生小结:(教师板书)侧面积=底面周长×高。
(评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)。
师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)。
投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。
(1)学生独立解答。
(2)投影呈现学生的解答,并让其讲清自己的解题思路。
师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?
生:底面周长和高。
师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。
师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)。
教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)。
指名学生说解题思路,
师:这说明要计算圆柱的表面积需要抓出哪两个量?
生:底面积和侧面积。
3、反馈练习:(略)。
师:想一想,应该先求什么?再求什么?请大家动手试一试。
4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)。
三、全课小结:这节课你有什么收获?
你有没有想提醒同学们注意的地方?
生:要注意单位,还要注意所要求得圆柱有几个底面……。
最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)。
六年级数学圆柱教案(汇总13篇)篇三
人教义教版教材第10~12页的内容,及相关练习题。
(1)知识与技能:初步认识圆柱,了解圆柱的各部分名称,掌握圆柱的特征,能看懂圆柱的平面图,认识圆柱侧面的展开图。
(2)过程与方法:通过操作、观察、比较、探索,培养学生的分析、推理、判断能力,培养学生的空间观念和动手能力。
(3)情感与态度:体验圆柱与日常生活密切联系,通过同学间合作交流、动手操作等活动,让学生在合作中共同进步,体验成功。
理解并掌握圆柱的特征。
弄清圆柱侧面沿高展开得到一个长方形,明确这个长方形的长和宽与圆柱的关系。 。
教具准备:圆柱体的实物模型。
学具准备:用硬纸做的圆柱、剪刀、小刀、圆柱实物等。
(请学生拿出纸试验,并到前面展示。)。
1、引出课题:教师指出:像这样(指卷成筒形的)形状的物体在数学上称为圆柱。圆柱有什么特征呢?这节课我们一起来研究这个问题。板书:圆柱的认识。
2、展示课堂学习目标。
(一)整体感知圆柱。
(二)认识圆柱各部分的名称。
(三)认识并掌握圆柱的特征。
(四)认识圆柱的侧面展开图。
(五)巩固圆柱的特征。
(一)、说一说,建立圆柱表象。(自学课本10页)。
师:请同学们想一想,在我们生活中那些物体的形状是圆柱形的?
在日常生活中,人们把许多建筑或物体设计成圆柱形,增加立体感、美感。如……这些物体的外形都是圆柱形。
(二)、摸一摸,看一看,认识圆柱的各部分的名称。
1、小组合作,解决问题。
师:请各组组长拿出准备好的圆柱,摸一摸,看一看,共同讨论完成以下问题。
(1)圆柱上下两个面是什么形状的?
(3)圆柱一共有几个面?分别是那几个面?
(4)圆柱有高有低。圆柱的高矮与什么有关?我们把它叫做什么?
2、小组内交流学习,小组长整理准备汇报。
3、反馈小组合作学习成果。
4小结:圆柱各部分的名称。底面、侧面和高。
预设答案:
生1:圆柱上下两个面是平面,分别是圆。
师:将上下两个面叫做圆柱的底面。(板书:底面)。
生2:圆柱周围的面是一个曲面。
师:圆柱周围的曲面叫做侧面。(板书:侧面)。
生3:圆柱共有3个面,分别是底面、底面、侧面。
师:各小组在圆柱模型中标出底面和侧面。
预设答案:
生1:圆柱两底面之间的距离。
生2:圆柱的高。(板书:高)。
师:圆柱两底面之间的距离叫做圆柱的高。高有时也称长、厚、深。
(三)认识并掌握圆柱的特征。
1、小组合作学习,感知圆柱上、下两个底面的关系。
师:请同学们想一想,圆柱3个面中那两个面大小相等?用什么方法可以证明?学生可以先观察、猜测、议论,并说出自己的做法。
预设答案:
生1:量出两个底面的直径或半径比较大小。
生2:用一个底面画出圆,用另一个底面按上去进行比较。
生3:……。
师:同学们的办法真好。圆柱的底面的确是两个完全相同的圆。(板书:两个完全相同的圆)不仅如此,今天我们研究的圆柱都是从上到下粗细均匀的直圆柱。
2、标指圆柱的高。
圆柱的高在哪里?有几条?(小组合作学习)(板书:高无数条)。
3、小结:圆柱的特征:(1)圆柱的底面都是圆,并且大小一样。(2)圆柱的侧面是一个曲面;(3)圆柱的高有无数条。
《练一练》。
同步练习:p4第一、二题。
(四)、剪一剪,认识圆柱的侧面展开图。
1、讨论研究圆柱侧面展开图。
师:猜一猜:如果把圆柱侧面剪开再展开,它会是什么形状?
(1)、小组合作学习并完成学习记录单。(表一)。
如何剪。
展开后是什么图形。
(2)、反馈学习成果。
2、讨论研究侧面展开图—长方形与原圆柱的关系。
长方形。
长
宽
圆柱。
小结得出:长方形的长等于圆柱的底面周长,宽等于圆柱的高。
3、讨论研究侧面展开图—正方形与原圆柱的关系。
师:当长方形的长和宽相等时,会是什么图形?
所以当圆柱的底面周长与高相等时,侧面展开图是什么形状?
4、小结:通过刚才的研究和讨论,我们知道了圆柱侧面展开图可以是一个长方形或者正方形,还可以是平行四边形,或者是一个不规则图形。
(五)、画一画,巩固圆柱的特征。
(1)、观察圆柱。
师:圆柱的底面是圆形的,但我们逐渐移动底面,看到了什么形状?
预设答案:
生:扁圆形。
师:这主要是因为我们视线的关系,根据美术上的透视原理,圆柱的两个底面画在平面上,都画成扁圆形,我们一起来画圆柱。
(2)、画圆柱并标出圆柱各部分的名称。。
教师示范(板书),学生练习画圆柱。画好以后,标出圆柱各部分的名称。
同步p41、2、3。
师:这节课我们学习什么?知道了什么?了解了什么?
底面 是完全相同的两个圆。
侧面 是一个曲面。
高 无数条。
长方形(正方形)。
侧面展开:平行四边形。
不规则图形。
六年级数学圆柱教案(汇总13篇)篇四
1、使学生认识圆柱和圆锥,掌握它们的特征,知道圆柱是由两个完全一样的圆和一个曲面围成的,圆锥是由一个圆和一个曲面围成的;认识圆柱的底面、侧面和高;认识圆锥的底面和高。进一步培养学生的空间观念,使学生能举例说明。圆柱和圆锥,能判断一个立体图形或物体是不是圆柱或圆锥。
2.使学生知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积,能根据实际情况灵活应用计算方法,并认识取近似数的进一法。
3.使学生理解求圆柱、圆锥体积的计算公式,能说明体积公式的推导过程,会运用公式计算体积、容积,解决有关的简单实际问题。
单元教学重点:圆柱体积计算公式的推导和应用。
单元教学难点:灵活运用知识,解决实际问题。
(一)圆柱的认识。
教学内容:教材第3~4页圆柱和圆柱的侧面积、“练一练”,练习一第1—3题。
1.使学生认识圆柱的特征,能正确判断圆柱体,培养学生观察、比较和判断等思维能力。
2.使学生认识圆柱的侧面,理解和掌握圆柱侧面积的计算方法。进一步培养学生的空间观念。
教具学具准备:教师准备一个长方体模型,大小不同的圆柱实物(如铅笔、饮料罐、茶叶筒等)若干,圆柱模型;学生准备圆柱实物(要有一个侧面贴有商标纸或纸的圆柱体),剪下教材第127页图形、糨糊。
:认识圆柱的特征,掌握圆柱侧面积的计算方法。
认识圆柱的侧面。
一、复习旧知。
1.提问:我们学习过哪些立体图形?(板书:立体图形)长方体和正方体有什么特征?
2.引入新课。
出示事先准备的圆柱形的一些物体。提问学生:这些形体是长方体或正方体吗?说明:这些形体就是我们今天要学习的新的立体图形圆柱体。通过学习要认识它的特征。(板书课题)。
二、教学新课。
1.认识圆柱的特征。
2.认识圆柱各部分名称。
(1)认识底面。
出示圆柱,让学生观察上下两个面。说明圆柱上下两个面叫做圆柱的底面。(板书:——底面)你认为这两个底面的大小怎样?老师取下两个底面比较,得出是完全相同或者大小相等的两个圆。(把上面板书补充成:上下两个面是完全相同的圆)。
(2)认识侧面。
请大家把圆柱竖放,用手摸一摸周围的面,(用手示意侧面)你对这个面有什么感觉?说明:围成圆柱除上下两个底面外,还有一个曲面,叫做圆柱的侧面。追问:侧面是怎样的一个面?(接前第二行板书:侧面是一个曲面)。
(3)认识圆柱图形。
请同学们自己再摸一摸自己圆柱的两个底面和侧面,并且同桌相互说一说哪是底面,哪是侧面,各有什么特点。
说明:圆柱是由两个底面和侧面围成的。底面是完全相同的'两个圆,侧面是一个曲面。
在说明的基础上画出下面的立体图形:
(4)认识高。
长方体有高,圆柱体也有高。请看一下自己的圆柱,想一想,圆柱体的高在哪里?试着量一量你的圆柱高是多少。(板书:高)谁来说说圆柱的高在哪里?说明:两个底面之间的距离叫做高。(在图上表示出高,并板书:两个底面之间的距离)让学生说一说自己圆柱的高是多少,怎样量出来的。提问:想一想,一个圆柱的高有多少条?它们之间有什么关系?(板书:高有无数条,高都相等)。
3.巩固特征的认识。
(1)提问:你见过哪些物体是圆柱形的?
(2)做练习一第1题。
指名学生口答,不是圆柱的要求说明理由。
(3)老师说一些物体,学生判断是不是圆柱:汽油桶、钢管、电线杆、腰鼓……。
4.教学侧面积计算。
(1)认识侧面的形状。
六年级数学圆柱教案(汇总13篇)篇五
生1:圆柱有两个底面。
生2:圆柱的底面是圆形。
〔学生举手的人不多,有点冷场〕。
师:看来大家对圆柱有了一些了解,下面我们来进一步探索圆柱的特征。
(接着,教师出示小组学习要求,让学生通过观察圆柱实物,围绕3个问题,探索圆柱的特征)。
师:通过观察你有什么发现?
生1:我发现圆柱的两个底面是圆形。
生2:我觉得圆柱的两个底面面积相等。
师:你们有办法证明圆柱的两个底面相等吗?
生3:〔该生是学困生,但在公开课中回答问题一向很积极〕如果圆柱的两个底面不相等,那么圆柱就会一头大,一头小。
师:恩(停顿),你能再说说吗?〔这时我听得不太清楚〕。
生3:两个底面不相等,一头大,一头小,会东倒西歪。
师:(没有做出评价)还有别的方法吗?
生4:我是通过把上面的盖子取下和底面相比,得出两个底面大小相等的。
师:说得太好了。(露出满意的神情)。
(之后,老师拿出一个有盖的茶叶罐,按生4的方面演示了一遍)。
板书:面积相等的两个圆。
师:圆柱的面还有什么特征?
生5:我发现圆柱的表面摸起来很光滑,永远也“摸不到头”。
师:为什么“摸不到头”?你觉得圆柱的这个面和底面有什么不同?
生6:底面是个平面,而这个面不是平面。
师:我们就说这个面是曲面。(板书:曲面)。
〔反思〕。
一、学生不是一张白纸。
“学生不是空着脑袋走进课堂的”,他们的数学学习不仅仅在数学课堂上,在生活中他们也在不断地积累数学的知识和经验。因此“要从学生已有的生活经验出发”,把“数学教学活动建立在学生的认知发展水平和已有的知识经验的基础之上”。圆柱形的物体在生活中可谓太常见了,对于六年级的学生来说,他们一定在生活中或多或少积累了一些有关圆柱的知识和经验。基于“尊重学生的已知,引导学生的未知,促进学生的发展”的思想,我提出了“你对圆柱有哪些了解?”的问题,试图通过这个问题,找到学生学习新知的生长点和联结点,达到“立足旧知,激起学生灵动思维”的目标。从学生的回答不难看出,学生对于圆柱的整体把握显然不感兴趣,他们更多的关心是某个局部,如两个底面,底面的形状等。不过令人遗憾的是,对于我的这个安排学生并没有领情,举手回答的学生不多,我所想要看到的“各抒己见”、“百花齐放”的情景并没有出现。是什么原因,造成了学生的冷场?除了学生进入高年级,由于生理、心理的诸多问题导致不爱回答问题,羞于表达,或懒于表现的原因以外,其中很重要的一个原因是我们平时的课堂上,为了追求所谓的“教学质量”,所谓的“高效”,牺牲了给学生说话的机会。渐渐的,学生也就习惯沉默了。
二、给学生发现的机会。
弗赖登塔尔说:学习数学的最好方法,就是学生亲自把知识发现出来。在本环节的教学中,老师并没有把圆柱的特征“教”给学生,而是引导学生通过观察、触摸圆柱体实物,用他们自己的眼睛和双手去发现,去感悟圆柱的特征。特别是在有一位学生发现了圆柱的两个底面大小相等后我并没有就此作罢,而是让全体学生想办法证明这个发现。通过汇报我们不然看出,由于老师给了学生这个机会,其结果是“横看成岭侧成峰,远近高低各不同”,学生从各自的视角出发,证明了圆柱的两个底面相等,展示了学生有个性的学习方式。
三、生成需要互动。
证明“圆柱的两个底面大小相等”这个环节,在备课时预想学生可能会有以下几种证明方法:1、将圆柱形容器的盖子取下与底面相比较;2、用圆柱形实物的底面在纸上画一个圆,然后将另一底面和画好的圆作比较;3、用尺子量出两个底面的直径或半径作比较。然而在课堂教学中,有许许多多的意想不到,生3的说法就没有在我的预设之中。如何应对突如其来的想法?如何把握生成?是对教师把握课堂水平的一次考验。在这个过程中,令自己感到惋惜的是在生3回答之后,我竟然没有做出任何评价。我用沉默这盆冷水,浇灭了该生创新的火花;我的无动于衷,击退了该生答题的热情。这样一来,创设一个敢于质疑,乐于表达的课堂学习气氛的想法也就成了一句空话。在后来的评课中,教研组长陈老师评价说:“生3的回答,从反面论证了圆柱的底面积相等,应该得到鼓励和表扬。”学困生这样一次精彩的回答,独辟溪径的思路,我却视而不见,至今我还后悔不已。究其原因,一方面是我当时没有听懂该生的意思,没有马上反应过来;另一方面,暴露出在我的思想深处,关注课堂的进程比关注学生多一些。因为学生的回答在我的预设之外,便敷衍了事,心里更想听到的是预设中的答案。后来这位学生的回答,我之所以满意,我想也是这种心理在作怪吧。以学生为主体,具体落实到课堂上,教师应该关注每一位学生表现,重视教师评价对学生所起到的激励作用。课堂因生成而精彩,而生成离不开师生之间的互动,只有互动才能更好的促进学生的生成,课堂才能焕发出生命的活力。
六年级数学圆柱教案(汇总13篇)篇六
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点。
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点。
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程。
一复习旧知。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的.计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)。
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)。
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)。
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)。
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)。
(2)底面积:3.14×2×2=12.56(平方分米)。
(3)表面积:56.52+12.56=81.64(平方分米)。
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)。
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习。
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)。
六年级数学圆柱教案(汇总13篇)篇七
一、填空。
1、圆柱的上、下两个面叫做________,它们是________的两个面;圆柱有一个曲面,叫做________;圆柱两个底面之间的距离叫做________。
2、把圆柱的侧面展开,得到一个长方形。这个长方形的长等于________;宽等于________。
3、填写下图各部分的名称。
4、(1)已知圆柱的半径和高,侧面积公式________;表面积公式________;体积公式________。
(2)已知圆柱的直径和高,侧面积公式________;表面积公式________;体积公式________。
(3)已知圆柱的周长和高,侧面积公式________;表面积公式________;体积公式________。
二、应用题。
1.求下面各圆柱的侧面积。
(1)底面周长1.6米,高0.7米。(2)底面半径3.2分米,高是5分米。
4、(1)两个底面积相等的圆柱,高和体积成()比例。
5、求下列图形的表面积和体积。(图中单位:厘米。)。
六年级数学圆柱教案(汇总13篇)篇八
1、通过对圆柱和圆锥知识的复习,进一步熟练解答基本的数学问题。
2、通过猜想、估算、验证等数学活动,应用圆柱圆锥之间的内在联系解决生活中的问题,同时培养学生的估算能力。
教学重、难点:灵活计算圆柱体的表面积,圆柱体和圆锥的体积,解决实际问题。
师:还记得哪些与圆柱圆锥有联系的计算公式?
生:回答相联系的数学公式。
师:到底同学们的掌握情况怎样呢?我们一起来做个抢答练习好吗?
生:回忆基本知识。
1、抢答练习,请说出你的思考过程。
(1)一个圆柱体底面周长12.56米,求它的底面积是多少平方米?
学生抢答,并说出自己的思考过程,教师板书。
2、解决数学问题:
(1) 出示一圆柱图
师:看到这个圆柱体,你能提出哪些有关圆柱、圆锥的数学问题?怎样解答?
竞赛的形式来解决,竞赛要求:
1、时间3分钟。
2、请把问题、列式和结果写下来。比一比看谁的问题最多、列式和结果最正确。
(1) 学生独立完成;
(2) 同桌互查;
(3) 学生汇报;
(半径是多少?周长是多少?圆柱体的侧面积是多少?底面积是多少?圆柱体的体积是多少?等底等高的圆锥的体积是多少?剩余的部分是多少?)
(4)如果出现问题下面改正。
最佳设计方案。
有一张长方形的铁板长9.42米,宽6.28米。请你设计出一种就地围装粮食最多的方案。(接口忽略不计)
学生活动,老师巡视。小组成员汇报方案。
师:如果每立方米可装粮食400千克,能算出最佳方案中大约可装多少粮食吗?
师:刚才同学们都能全身心地投入到猜想、验证、合作、估算中,老师很高兴。哪些同学可以得到仓库保管员的应聘书呢?请来谈一谈你现在的.心情及感受。
课前思考:
潘老师设计的本课时教案在教学组织形式上与以往的复习课有所不同,重在将所学知识以竞赛的形式进行系统复习,估计这样的形式会让学生对复习产生一些兴趣。
因为这一单元涉及到的知识较多,而且相关的一些实际问题也都比较复杂,所以我们在复习时还要结合班级实际情况,有针对性地开展复习。
下面补充这样几题:
市民广场砌了一个圆柱形的喷水池,从里面量水池的底面半径是5米,深1.2米。
1.
(1)这个水池占地多少平方米?
(2)要在这个水池的四周和底面抹上水泥,抹水泥部分的面积是多少?
(3)这个水池装满水,最多能装多少立方米?
(4)在池口围一圈栏杆,栏杆长多少米?
六年级数学圆柱教案(汇总13篇)篇九
本单元观察物体,动手操作,掌握圆柱和圆锥的特征及它们的组成;在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,归纳出圆柱的表面积、体积和圆锥的体积计算公式,并能正确计算;培养学生运用所学知识解决简单的实际问题的能力;初步参透数学的“转化”思想;初步养成乐于思考、勇于质疑、实事求是等良好品质。
本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。
本单元包括圆柱与圆锥的特征、圆柱的表面积、圆柱的体积、圆锥的体积等内容。
1、使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。
2、使学生理解求圆柱的侧面积和表面积的计算方法,并会正确计算。
3、使学生理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。
掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。
圆柱、圆锥体积的计算公式的推导。
7课时。
六年级数学圆柱教案(汇总13篇)篇十
1、重视先猜想、再验证的思路来引入教学。
新课伊始,课件出示三个几何体的底面和高,引导学生来观察这三个几何体,发现它们的底面积都相等,高也都相等。进一步引导思考:想一想,长方体和正方体的体积相等吗?为什么?猜一猜,圆柱的体积与长方体和正方体的体积相等吗?学生认同,并提出等于底面积乘高。教师再次抛出问题:这仅仅是猜想,那用什么办法验证呢?今天这节课就来研究这个问题。
2、重视利用知识、方法的迁移来展开教学。
本课的例题探索,有一个目标就是使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。因此,笔者在执教时,根据陈星月的回答顺势复习了圆面积的推导:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。接着提问:那么,受这个启发,那我们能不能将圆柱转化成长方体来计算体积呢?首先实物演示圆柱切拼的过程。把圆柱的底面平均分成16份,切开后可以拼成一个近似的长方体。然后进行课件演示,发现:把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。这样有利于激活学生已有的知识和经验,使学生充分体会圆柱体积公式推导过程的合理性,并不断丰富对图形转化方法的感受。
3、重视通过核心问题的讨论和板书的精当设计来突出重点、突破难点。
核心问题即指中心问题,是诸多问题中相对最具思维价值、最利于学生思考及最能揭示事物本质的问题。它是在教学过程中,为学生更好地理解和掌握新知、更好地积累学习经验和方法,针对具体教学内容,提炼而成的教学中心问题。就如圆柱体积的计算而言,在这节课的教学过程中,教师抓住“圆柱的体积可能跟圆柱的哪些条件有关呢?”“拼成的长方体与原来的圆柱有什么关系?”“要计算圆柱的体积一般要知道哪些条件?”这三个问题,使学生在获取圆柱体积公式的同时又了解了体积公式的由来,并及时总结了思考问题的方法。核心问题也可以指为了探究知识的来龙去脉而在关键环节提出的指向性问题。
当然,需要注意和改进的地方是:书写格式的规范。
六年级数学圆柱教案(汇总13篇)篇十一
(一)教材简析。
我执教的内容是义务教育课程规范实验教科书小学数学第二单元《圆柱》的第二课时。
本单元教学内容要求同学在认识圆柱的基础上,会求圆柱的侧面积和外表积,会应用圆柱的侧面积和外表积公式解决实际问题。本节课的重点是要求同学掌握圆柱体的侧面积、外表积的计算方法。学好这局部内容,可以进一步发展同学的空间观念,培养同学的空间想象能力、概括思维能力、分析综合等数学能力,为以后学习其它几何形体打下坚实的基础。
(二)学情简析。
这局部内容是在同学掌握长方形面积、圆的面积计算方法的基础上布置的,因而要以这些知识为基础,运用迁移规律使圆柱体的侧面积、外表积的计算方法这一新知识纳入同学原有的认知结构之中。而且六年级的同学,已经具备一定的独立思维、探究能力。针对这一现状,我遵循“同学是学习的主人”这一原则,努力创设情境,让同学动手操作、观察发现,鼓励同学积极、主动地获取新知,促进知识的迁移,通过同学自身的“再发明”,轻松地获取圆柱侧面积的计算方法,从而突破教学重点,充沛体现“同学是知识的发现者”这一理念。
二、说理念。
新课程倡议让同学动手实践、自主探索与合作交流的学习方式,把操作看成是培养同学创新思维的源头活水,是实现课程理念的'重要途径。在本节课中,我创设利于同学探究的活动,充沛调动同学的手、眼、口、脑,放开同学的思维,让同学亲自去实践,动脑去想,发现问题,解决问题。在探究活动中,完成探究、发现和应用的过程。
三、说教学目标。
1、知识目标:在探究活动中,使同学理解和掌握圆柱体侧面积和外表积的计算方法,能正确计算圆柱的侧面积和外表积。
2、能力目标:培养同学观察、操作、概括的能力,以和利用知识合理灵活地分析、解决实际问题的能力。
3、情感目标:培养同学初步的逻辑思维能力和空间观念,向同学渗透事物间的相互联系和相互转化的观点。
4、教学重点:能应用圆柱体侧面积、外表积的计算方法解决实际问题。
5、教学难点:探究圆柱体侧面积、外表积的计算方法。
四、说教法与学法。
根据本节课知识特点以和同学的认知规律,我采用直观演示、动手操作、引导发现等方法,充沛发挥同学的主体作用,引导同学在操作中观察、发现、概括,尝试总结出圆柱体的侧面积、外表积的计算方法。
练习设计遵循了由易到难、循序渐进的原则,采用了填空、选择、解决问题等形式,使同学在交流、合作中,内化知识、训练思维、培养能力、形成技能,感受数学的魅力。
五、教学程序设计。
为了充沛体现教师的主导和同学的主体作用,能让同学积极主动、生动活泼地参与到教学过程中来,我以遵循同学的认知规律,组织合理有效的教学程序为原则,以动手操作为切入点设计了以下四个教学环节。
(一)变魔术,激趣导入。
平面的面积同学已经会求了,而圆柱的侧面是个“曲面”,怎么样才干求出这个“曲面”的面积就成了圆柱外表积教学过程中的难点。于是让圆柱的侧面“由曲变直”,使新知识在一定的条件下统一起来就成了一个关键性的问题。
上课伊始,我发给每个同学一张完全一样的长方形的纸和两个完全一样的圆形(这两个圆形与用长方形纸卷成的圆柱体的侧面正好可以组成一个圆柱体)。让同学采用实验法,随意卷一卷、分一分,把一张长方形的纸变成一个圆柱形的纸筒。同学带着兴趣,开始尝试,兴趣有了,自主探究的欲望自然也就强烈了。
(二)动手操作,探求新知。
1、动手操作,自主发现。
然后,我直接抛出问题:那么,这个圆柱的侧面的面积你能求吗?
在同学自主探究以后,我点拨同学发现长方形纸的长和宽与用它卷成的圆柱形纸筒的底面周长和高的关系。
这样抓住新旧知识内在联系,布置同学动手操作,引导同学在发现问题后和时动脑考虑,不只激发同学兴趣,同时也促进了同学思维能力的发展。
2、尝试探究,引导发现。
然后小结:他摸过的所有这些面的面积的和就是这个圆柱体的外表积。
接下来我请同学以同桌为单位,想方法求出这个圆柱体的外表积。
在同学活动的过程中,我巡视、指导,协助有困难的同学。
在本环节中,在同学的眼、手、脑等多种感官参与感知活动中,探究的精神得到了张扬,自主学习的能力得到了实在的体现与培养。教学的重点、难点在同学的亲历探究实践中得到了突破。
3、和时巩固,内化知识。
在教学重点基本突破后,我联系生活实际投影出示例4的厨师帽,让同学认真审题,并说厨师帽有几个面,再计算出用了多少面料,同学计算完后,要求得数保存整十平方厘米。启发同学看书发现新问题,讨论计算使用资料取近似值时,要用“四舍五入”法还是用“进一法”。从而使同学理解“进一法”的意义。这样充沛发挥了同学的主体作用,也培养了同学独立考虑能力和初步的逻辑思维能力。
(三)尝试应用,解决问题。
这一环节是内化知识、训练思维、培养能力、形成技能的重要环节,因而我设计了多样的练习题。这些练习题注重了基本训练,又注重了能力训练,在形式上注意新颖、多样,在内容上注意采取循序渐进的原则,由易到难,这样既符合儿童的认知特点,又能兼顾大多数同学。
(四)总结提升,思维延伸。
在课堂小结后,我提出“大家想一想,还有什么方法能求出计算圆柱体的外表积?”让同学充沛考虑、继续动手操作,将同学的思维向广度、深度延伸。例如,可以把圆柱切开,拼成近似的长方体,由长方体的外表积计算公式推导出圆柱的外表积计算公式;还有的同学可能会联系圆的面积公式推导过程,把圆柱的两个底面分成若干个小扇形后拼成一个与侧面同长的长方形,然后与侧面再拼成一个大长方形,那么整个圆柱的外表积=底面周长×(圆柱的高+底面半径),用字母表示即s=2лr×(h+r)。
这不只让同学知道了解决问题的方法是多种的,还使同学亲自参与了对新知的探索,使知识掌握得更加牢固,并对旧知进行再发明并萌发了创新意识,培养了同学的创新思维和创新能力。也有利于挖掘优生的潜能,还能为求圆柱的体积埋下伏笔。将课堂的尾声又推向一个新的高潮。
六、说教学手段。
本节课,我充沛运用动手操作、观察、比较等手段,使同学明确圆柱侧面积与长方形面积之间的关系。自身探究出求圆柱侧面积、外表积的方法。
七、说板书、板绘的设计。
板书采用了图示式的设计,直观展示本节课的知识点,与旧知的关系也表示得清晰、明了。有利于同学系统、清晰地掌握本节课的知识体系。同时圆柱的侧面积和外表积的计算方法都用红色显示,更加突出了本课重点,体现了板书的记忆理解功能。
八、说预设效果:
概括的说,本节课的教学过程设计,我力求体现以下几点:
一是注重数学学习与实际生活的联系,本节课的教学从引入到过程的操作,我都注意引导同学用数学的眼光去观察认识身边的各种事物,体验到数学来源于生活,对研究数学发生比较浓厚的兴趣。
二是强调数学学习的探索性、实践性。教学的引入,到教学过程的实践,乃至本节课的结尾始终都是同学在探究的过程。我力求在探究活动中增强数学内容的开放性,注重同学的情感体验和个性发展,强调同学学习数学的过程。
三是注重师生交流、生生交流。做到让同学多考虑、多动手、多实践,自主探究、合作学习、师生一起活动相结合,尽可能提高同学思维的参与程度,最大限度地拓宽同学的思维,使课堂充溢生机与活力。
六年级数学圆柱教案(汇总13篇)篇十二
使学生认识圆柱的底面、侧面和高,掌握圆柱的基本特征。
(二)过程与方法。
1.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析和概括的能力。
2.通过学生自主研究,使学生掌握研究立体几何的一般方法,提高学生学习数学的积极性。
(三)情感态度和价值观。
进一步培养学生主动探索精神,发展学生的空间观念,提高学生的学习兴趣。
二、教学重难点。
教学重点:掌握圆柱的基本特征。
教学难点:高的认识。
三、教学准备。
教师:课件,长方体模型,圆柱模型,卡纸做的长方形(长10cm,宽5cm),小棒(可用筷子代替),备用剪刀若干。
学生:每生自带一个圆柱形物体,草稿纸。
六年级数学圆柱教案(汇总13篇)篇十三
圆柱的认识是人教版九年义务教育六年制教材《数学》第十二册的教学内容。圆柱是人们在生产、生活中经常遇到的几何形体,认识圆柱有利于进一步发展学生的空间观念,为进一步学习和解决实际问题打下基础。在学习本节内容之前,学生对于认识立体图形已经有了方法上的基础。基于此,我以实物为探究素材,通过三个层面的活动来组织教学。
一、利用实物初步认识感知圆柱特征。
师:让学生说说生活中哪些物体的形状是圆柱体?
生1:水管、日光灯。
生2:茶叶罐。
生3:铅笔。
生4:应该是没有削过的铅笔。
……。
请大家拿起圆柱形的物品,先仔细看一看、摸一摸、滚一滚,然后告诉大家,你发现了什么?(学生操作,并把自己发现的在小组里交流。)。
学生回答:1、上、下两个面都是圆形的。
2、它的侧面是一个曲面。
3、从上到下都一样粗。
圆柱在生活中是比较常见的物体,因此学生很容易找到圆柱形的实物,我组织学生通过观察手中的圆柱形状的实物,初步感知圆柱的特征。学生活动的方式主要是观察和触摸,其活动是浅层次的,通过看一看、摸一摸、滚一滚、画一画等方法让学生对圆柱形物品的特征产生感性认识,建立初步的表象,同时也激发了学生的学习兴趣。
二、制作圆柱,深入了解圆柱特征。
为了让学生更深入地了解圆柱的特征,在学生初步感知之后,让学生仿照手中的实物制作圆柱。
师:请同学们仿照所带实物的形状,分小组制作出一个圆柱体。
学生操作,师课间巡视,参与合作。
生展示自己的合作成果,并汇报制作过程。
生1:我们组拿一张长方形硬纸围着茶叶罐绕一圈,像是给它“穿衣服”似的,剪去多余的,粘好做成侧面。再将茶叶罐的底面画下并剪下来,做成圆柱的底面。
生2:我们组是先用一张长方形纸做圆柱的侧面,再将这个卷好的直筒竖在硬纸上,沿着圆曲线画圆,剪下来粘上就可以了。
生3:可以量一量长方形的长,计算出圆柱的底面半径。(该组学生事先预习发现的)。
《数学课程标准》认为:“有效的数学学习活动不能单独地依赖模仿与记忆,应通过学生亲自动手实践,自主探索与合作交流是学习数学的重要方式。在这一步骤中,充分给予学生一定的空间,让学生主动探索。由于学生向来喜欢手工制作,因而这一环节大家都兴趣盎然,在组长的带领下分工合作,体验到操作的乐趣。并且在活动中积极动脑思考,找寻合适的方法。
生1:圆柱的上下两个底面大小一样。
生2:圆柱的底面是完全相同的两个圆。
生3:圆柱的侧面展开后是长方形。
生4:长方形的长就是圆的的周长。
生5:长方形的宽就是圆柱的高。
师:圆柱的侧面展开后除了可以是长方形之外,还可以是什么图形?
生:还可以是平行四边形,不信你斜着剪试试。
生:还可以是正方形。
教师鼓励学生自己试着剪。
这些较难解决的重点和难点在学生自己探索的过程中迎刃而解了,“我看见了,但可能忘掉;我听到了,就可能记住了;我做过了,便真正理解了。”让学生亲自动手做圆柱体,议一议,说一说,让他们用自己的眼睛去观察,用自己的耳朵去倾听,用自己的双手去操作,用自己的头脑去思考,实现知识的“再创造”。在本环节中以“活动”为基础,组织学生“经历”了一个探索圆柱特征的过程,是在一个让学生“经历”、让学生“体验”、让学生“探索”的思想指导下完成的。从整个学习过程来看,使学生对圆柱的特征从不完整、表面的认识向较深层次的理解、整体上的把握发展,达到了事半功倍的教学效果。
三、解决实例巩固应用圆柱特征。
让学生运用己有知识去解决“水桶、水杯、油桶”为什么要制成圆柱形?
生1:我明白了,油桶是圆柱形,移动时不会破裂。
生2:水杯如果不是圆柱,喝水时它的棱角会弄伤口腔,而且水还会往两边流。
生3:油桶制成圆柱体,是因为圆柱的侧面是曲面利于滚动,底面盖子是圆的,易于拧紧。
师:有一张长方形的硬纸,长6.28分米宽3.14分米,将它做成一个圆柱的侧面,这个圆柱的底面半径可能是多少?请你帮忙算一算。
生1:可以将长作为底面周长,6.28÷3.14÷2=1(分米)。
生2:可以将宽作为底面周长,3.14÷3.14÷2=0.5(分米)。
这一环节体现了数学只有回归生活,才会显示其实用价值的原则,通过具体实例让学生把学到的知识灵活运用于实践之中。
本节课中课堂始终以“做数学”作为师生互动的基础和纽带。数学学习应成为学生经历一个真正的“再发现”和“再创造”的过程,体验“做数学”。在这节课认识圆柱特征安排三个层次:第一层次是认识生活中常见的圆柱体实物,通过观察、触摸得出圆柱的初步特征及了解圆柱的几个面。第二层次在初步认识圆柱的特征之后,自己尝试制作圆柱。因为学生对制作非常感兴趣,这一过程深受学生喜爱,在初尝成果的同时不知不觉地掌握了圆柱的特征。这比单纯地直接由教师讲解示范,学生的体验深刻得多。第三层次是让学生利用刚刚所学知识解决实际问题。在教学中先让学生动手尝试,学生有了成功制作圆柱的情感体验,使课堂变得富有生机和充满活力,使得接下来的学习充满了挑战性。学生在亲自参与的思维和操作活动中,经历了一个实践和创新的过程,枯燥的学习变得生动有趣。
以活动为学习主线,以操作为本节课主要形式,以学生亲身体会知识,自主实践获得经验是本堂课的特点,教师努力营造了一个让学生自己发现问题、分析问题、解决问题的良好氛围,学生始终成了学习的主人,而教师真正把学习的时间、空间还给学生,让学生拥有自己探索的机会。