教学工作总结是提高教学质量的有效途径,可以促进学生的学习兴趣和提高他们的学习成绩。如何写一篇出色的教学工作总结?以下是一些范文,希望能帮到大家。
线性代数教学总结(专业15篇)篇一
》考研复习的强化阶段已经结束,在这段时间,大家应该把所学的知识系统化综合化。数学题目千变万化,有各种延伸和变形,考生如果想在考研数学中取得好成绩,就一定要认真仔细的复习,重视三基(基本概念、基本方法、基本性质),多思考多总结,做到融会贯通。教材把线性代数的内容分为了六章:行列式、矩阵、线性方程组、向量、特征值和特征向量、二次型。考生在做题过程中,应该能发现,线性代数部分考察的知识点和题型都相对固定,以下我们针对考研数学,对线性代数部分的常考题型进行总结:
一、行列式常考的题型有:1.数值型行列式的计算,2.抽象型行列式的计算。
二、矩阵常考的`题型有:1.对矩阵的运算的考查,2.对逆矩阵的考查,3.初等变换,4.矩阵方程,5.矩阵的秩,6.矩阵的分块。
三、线性方程组与向量常考的题型有:1.向量组的线性表出,2.向量组的线性相关性,3.向量组的秩与极大线性无关组,4.向量空间的基与过渡矩阵,5.线性方程组解的判定,6.齐次线性方程组的基础解系,7.线性方程组的求解,8.同解与公共解。
四、特征值与特征向量常考的题型有:1.特征值与特征向量的定义与性质,2.矩阵的相似对角化,3.实对称矩阵的相关问题,4.综合应用。
五、二次型常考的题型有:1.二次型及其矩阵,2.化二次型为标准型,3.二次型的惯性系数与合同规范型,4.正定二次型。
kaoyan/
线性代数教学总结(专业15篇)篇二
《线性代数》是工科高校中颇为重要的一门课,也是较抽象难学的一门课程。本文从理论与实践两方面以作者的体会与认识,提出《线性代数》教学抽象概念的讲解应注意的几点问题,阐释了如何进行《线性代数》课程的课堂教学,并且能收到良好的教学效果。
[关键词]。
《线性代数》是高等院校理、工类专业重要的数学基础课。它不但广泛应用于概率统计、微分方程、控制理论等数学分支,而且其知识已渗透到自然科学的其它学科,如工程技术、经济与社会科学等领域。不仅如此,这门课程对提高学生的数学素养、训练与提高学生的抽象思维能力与逻辑推理能力都有重要作用。但由于“线性代数”本身的特点,对其内容学生感到比较抽象,要深入理解与掌握代数的基本概念与基本理论学生感到相当吃力、难以理解。因此,为培养与提高学生应用数学知识、解决实际问题的能力,进一步研究这门课程的教学思想和方法对提高教学效果甚为重要。
一、加强基本概念的教与学。
线性代数这一抽象的数学理论和方法体系是由一系列基本概念构成的。行列式、矩阵、逆矩阵、初等矩阵、转置、线性表示、线性相关、特征值与特征向量等抽象概念根植于客观的现实世界,有着深刻的实际背景,即是比较直接抽象的产物。高等数学与初等数学在含义与思维模式上的变化必然会在教学中有所反映。线性代数作为中学代数的继续与提高,与其有着很大不同,这不仅表现在内容上,更重要的是表现在研究的观点和方法上。在研究过程中一再体现由具体事物抽象出一般的概念,再以一般概念回到具体事物去的辨证观点和严格的逻辑推理。新生刚进入大学,其思维方式很难从初等数学的那种直观、简洁的方法上升到线性代数抽象复杂的方式,故思维方式在短期内很难达到线性代数的要求。大部分同学习惯于传统的公式,用公式套题,不习惯于理解定理的实质,用一些已知的定理、性质及结论来推理、解题等。
在概念的教学中,教师要研究概念的认识过程的特点和规律性,根据学生的认识能力发展的规律来选择适当的教学方式。因此,在概念教学中应注意以下几点。
1.合理借助概念的直观性。
尽管抽象性是《线性代数》这门课的突出特点,直观性教学同样可应用到这门课的教学上,且在教学中占有重要地位。欧拉认为:“数学这门科学,需要观察,也需要实验,模型和图形的广泛应用就是这样的例子。”直观有助于概念的引入和形成。如介绍向量的概念,尽管抽象,但它具有几何直观背景,在二维空间、三维空间中,向量都是有向线段,由此教学中可从向量的几何定义出发讲解抽象到现有形式的过程,降低学生抽象思考的难度。
2.充分利用概念的实际背景和学生的经验。
教师在教学中应充分利用学生已有的数学现实和生活经验,引导和启发学生进行概念发现和创造。如在讲解n阶行列式,首先从学生已掌握的二元、三元一次方程组的求解入手,然后求出方程组的解由二阶、三阶行列式表示,分析二阶、三阶行列式的特点。
二阶行列式,不难看出:它含有两项,若不考虑符号,每项均是来自不同行不同列的两个元素的乘积,那么会提出这样的问题:右边各项之前所带的正负号有什么规律?同样的,三阶行列式若不考虑符号,它含有3!=6项,每项也是来自不同行不同列的三个元素的乘积,并且包含了所有由不同行不同列的三个元素的组合。为解决n阶行列式,又引出排列的概念、性质,介绍奇偶排列后,又回到我们提出的问题上,可以发现,行标按自然排列,列标排列为奇排列时,该项为负;列标排列为偶排列时,该项为正(问题得到解决)。经过这一过程,学生对n阶行列式已有接触和了解,此时可给出n阶行列式定义,这样一来,学生就容易理解和掌握n阶行列式的性质了。
3.注意概念体系的建立。
r.斯根普指出:“个别的概念一定要融入与其它概念合成的概念结构中才有效用。”数学中的概念往往不是孤立的,理解概念间的联系既能促进新概念的引入,也有助于接近已学过概念的本质及整个概念体系的建立。如矩阵的秩与向量组的秩的联系:矩阵的秩等于它的行向量组的秩,也等于它的列向量组的秩;矩阵行(列)满秩,与向量组的线性相关和线性无关也有一定的联系。
二、学生要掌握科学的学习方法。
学习重在理解,学生必须在理解、领悟其深刻含义的基础上记忆定义、定理及一些结论,才能收到理想的效果。线性代数的最大特点就是:知识体系是一环扣一环,环环相连的`。前面的知识是后面学习的基础,如用初等变换求矩阵的秩熟练与否,直接影响求向量组的秩及极大无关组,进一步影响到求由向量组生成的向量空间的基与维数;又如求解线性方程组的通解熟练与否,会影响到后面特征向量的求解,以及利用正交变换将二次型化为标准型等。因此,学习线性代数,一定要坚持温故而知新的学习方法,及时复习巩固,为此,教师课前的知识回顾以及学生提前预习是十分必要的。
三、加强对学生解题的基本训练。
一定量的典型练习题能有助于学生深化对所学知识的理解,培养学生一题多解的能力,解题后反思,及时总结解题思路和方法。如证明抽象矩阵的可逆,就有很多方法,一是用定义。二是用秩的有关命题。三是借助于特征值理论。四是证明矩阵的行列式不为零等。
四、培养与激发学生的学习兴趣。
兴趣是最好的老师。教师一方面在传授知识,另一方面要鼓励学生有针对性的设计他们的目标,这样,他们才肯自觉钻研,乐于钻研。同时,课堂教学中可选择近年来研究生入学考题及一些与实际联系较紧的题目讲解或练习,以激发学生的学习欲望,并给他们带来成功的满足。此外,还可以适当介绍一些有趣的应用典范或教学史来激发学生的学习热情,提高他们的学习兴趣。
五、发挥多媒体优势,增强教学效果。
多媒体教学成为当前高校教学模式的重要手段。教师只有把传统教学手段、教师自己的特色和多媒体辅助教学三者有机结合起来,才能真正发挥多媒体课堂教学的效果。总之,教师在教学中所做的一切,其目的应在于既教会他们有用的知识,又教会学生有益的思考方式及良好的思维习惯。
参考文献:
[1]张向阳.线性代数教学中的几点体会.山西财经大学学报(高等教育版),.
[2]于朝霞.线性代数与空间解析几何.北京:中国科学技术出版社,.
线性代数教学总结(专业15篇)篇三
人的记忆效果随着时间的推移而迅速下降,这是正常的现象。一是可以通过反复加强记忆,第二种办法就是加强要点和重点的作用,提纲挈领,从而掌握全局。因此,大家在第一轮全面复习的时候同时就要兼顾复习要点,让要点成为复习中的“刀刃”,起到提纲挈领、统领全局的作用。那么,考研数学复习中的“刀刃”都有哪些呢?考研辅导专家认为,高等数学是考研数学的重中之重,所以大家在备考高等数学时要特别注意。
地毯式的反复练习。
大家在复习过程中,要对重要定理、重要的公式或者重要的结论应该经常翻一翻,已经有印象的,反复练习可以加深印象,使自己保持一个良好的状态。参加硕士研究生入学考试这种选拔性的考试跟体育竞技有些类似,想要保持一个良好的状态,必须把要考的内容在脑海里面反复强调。很多同学说把代数复习完以后,高等数学忘了,复习这个忘了那个,这个很正常,不要因为这个原因,就认为考不好数学,每个正常的人都会有这样的`感觉。考研辅导专家提醒考生,要解决这个困难,只有通过反复复习,学习英语亦是如此,通过反复使自己能够随时调用数学知识。记忆的关键就在于重复,如果大家能够把学习变成一种习惯,那势必会让你的复习锦上添花,也不会对学习产生抵触情绪,这样一来,效率和效果自然会高上无数倍。
线性代数教学总结(专业15篇)篇四
《线性代数》是工科高校中颇为重要的一门课,也是较抽象难学的一门课程。本文从理论与实践两方面以作者的体会与认识,提出《线性代数》教学抽象概念的讲解应注意的几点问题,阐释了如何进行《线性代数》课程的课堂教学,并且能收到良好的教学效果。
[关键词]。
《线性代数》是高等院校理、工类专业重要的数学基础课。它不但广泛应用于概率统计、微分方程、控制理论等数学分支,而且其知识已渗透到自然科学的其它学科,如工程技术、经济与社会科学等领域。不仅如此,这门课程对提高学生的数学素养、训练与提高学生的抽象思维能力与逻辑推理能力都有重要作用。但由于“线性代数”本身的特点,对其内容学生感到比较抽象,要深入理解与掌握代数的基本概念与基本理论学生感到相当吃力、难以理解。因此,为培养与提高学生应用数学知识、解决实际问题的能力,进一步研究这门课程的教学思想和方法对提高教学效果甚为重要。
一、加强基本概念的教与学。
线性代数这一抽象的数学理论和方法体系是由一系列基本概念构成的。行列式、矩阵、逆矩阵、初等矩阵、转置、线性表示、线性相关、特征值与特征向量等抽象概念根植于客观的现实世界,有着深刻的实际背景,即是比较直接抽象的产物。高等数学与初等数学在含义与思维模式上的变化必然会在教学中有所反映。线性代数作为中学代数的继续与提高,与其有着很大不同,这不仅表现在内容上,更重要的是表现在研究的观点和方法上。在研究过程中一再体现由具体事物抽象出一般的概念,再以一般概念回到具体事物去的辨证观点和严格的逻辑推理。新生刚进入大学,其思维方式很难从初等数学的那种直观、简洁的方法上升到线性代数抽象复杂的方式,故思维方式在短期内很难达到线性代数的要求。大部分同学习惯于传统的公式,用公式套题,不习惯于理解定理的实质,用一些已知的定理、性质及结论来推理、解题等。
在概念的教学中,教师要研究概念的认识过程的特点和规律性,根据学生的认识能力发展的规律来选择适当的教学方式。因此,在概念教学中应注意以下几点。
1.合理借助概念的直观性。
尽管抽象性是《线性代数》这门课的突出特点,直观性教学同样可应用到这门课的教学上,且在教学中占有重要地位。欧拉认为:“数学这门科学,需要观察,也需要实验,模型和图形的广泛应用就是这样的例子。”直观有助于概念的引入和形成。如介绍向量的概念,尽管抽象,但它具有几何直观背景,在二维空间、三维空间中,向量都是有向线段,由此教学中可从向量的几何定义出发讲解抽象到现有形式的过程,降低学生抽象思考的难度。
2.充分利用概念的实际背景和学生的经验。
教师在教学中应充分利用学生已有的数学现实和生活经验,引导和启发学生进行概念发现和创造。如在讲解n阶行列式,首先从学生已掌握的二元、三元一次方程组的求解入手,然后求出方程组的解由二阶、三阶行列式表示,分析二阶、三阶行列式的特点。
二阶行列式,不难看出:它含有两项,若不考虑符号,每项均是来自不同行不同列的两个元素的乘积,那么会提出这样的问题:右边各项之前所带的正负号有什么规律?同样的,三阶行列式若不考虑符号,它含有3!=6项,每项也是来自不同行不同列的三个元素的乘积,并且包含了所有由不同行不同列的三个元素的组合。为解决n阶行列式,又引出排列的概念、性质,介绍奇偶排列后,又回到我们提出的问题上,可以发现,行标按自然排列,列标排列为奇排列时,该项为负;列标排列为偶排列时,该项为正(问题得到解决)。经过这一过程,学生对n阶行列式已有接触和了解,此时可给出n阶行列式定义,这样一来,学生就容易理解和掌握n阶行列式的性质了。
3.注意概念体系的建立。
r.斯根普指出:“个别的概念一定要融入与其它概念合成的概念结构中才有效用。”数学中的概念往往不是孤立的,理解概念间的联系既能促进新概念的引入,也有助于接近已学过概念的本质及整个概念体系的建立。如矩阵的秩与向量组的秩的联系:矩阵的秩等于它的行向量组的秩,也等于它的列向量组的秩;矩阵行(列)满秩,与向量组的线性相关和线性无关也有一定的联系。
二、学生要掌握科学的学习方法。
学习重在理解,学生必须在理解、领悟其深刻含义的基础上记忆定义、定理及一些结论,才能收到理想的效果。线性代数的最大特点就是:知识体系是一环扣一环,环环相连的`。前面的知识是后面学习的基础,如用初等变换求矩阵的秩熟练与否,直接影响求向量组的秩及极大无关组,进一步影响到求由向量组生成的向量空间的基与维数;又如求解线性方程组的通解熟练与否,会影响到后面特征向量的求解,以及利用正交变换将二次型化为标准型等。因此,学习线性代数,一定要坚持温故而知新的学习方法,及时复习巩固,为此,教师课前的知识回顾以及学生提前预习是十分必要的。
三、加强对学生解题的基本训练。
一定量的典型练习题能有助于学生深化对所学知识的理解,培养学生一题多解的能力,解题后反思,及时总结解题思路和方法。如证明抽象矩阵的可逆,就有很多方法,一是用定义。二是用秩的有关命题。三是借助于特征值理论。四是证明矩阵的行列式不为零等。
四、培养与激发学生的学习兴趣。
兴趣是最好的老师。教师一方面在传授知识,另一方面要鼓励学生有针对性的设计他们的目标,这样,他们才肯自觉钻研,乐于钻研。同时,课堂教学中可选择近年来研究生入学考题及一些与实际联系较紧的题目讲解或练习,以激发学生的学习欲望,并给他们带来成功的满足。此外,还可以适当介绍一些有趣的应用典范或教学史来激发学生的学习热情,提高他们的学习兴趣。
五、发挥多媒体优势,增强教学效果。
多媒体教学成为当前高校教学模式的重要手段。教师只有把传统教学手段、教师自己的特色和多媒体辅助教学三者有机结合起来,才能真正发挥多媒体课堂教学的效果。总之,教师在教学中所做的一切,其目的应在于既教会他们有用的知识,又教会学生有益的思考方式及良好的思维习惯。
参考文献:
[1]张向阳.线性代数教学中的几点体会.山西财经大学学报(高等教育版),2006.
[2]于朝霞.线性代数与空间解析几何.北京:中国科学技术出版社,2003.
线性代数教学总结(专业15篇)篇五
20考研线性代数重点内容和典型题型总结,线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,考研教育网就将线代中重点内容和典型题型做了总结,希望对20考研的同学们学习有帮助。
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《年全国硕士研究生入学统一考试数学120种常考题型精解》。
矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的`计算与证明、解矩阵方程。
向量组的线性相关性是线性代数的重点,也是考研的重点。2012年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。
特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求a、有关实对称矩阵的问题。
由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础.重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法.重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。
线性代数教学总结(专业15篇)篇六
基本概念、基本性质和基本方法一直是考研数学的重点,线性代数更是如此。从多年的阅卷情况和经验看,有些考生对基本概念掌握不够牢固,理解不够透彻,在答题中对基本性质的应用不知如何下手,因此,造成许多不应该的失分现象。所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌握,多做一些基本题来巩固基本知识。
二、加强综合能力的训练,培养分析问题和解决问题的能力。
从近十年特别是近两年的研究生入学考试试题看,加强了对考生分析问题和解决问题能力的考核。在线性代数的两个大题中,基本上都是多个知识点的综合。从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。因此,在打好基础的同时,通过做一些综合性较强的习题(或做近年的研究生考题),边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握。
三、注重分析一些重要概念和方法之间的联系和区别。
线性代数的内容不多,但基本概念和性质较多。他们之间的联系也比较多,特别要根据每年线性代数考试的两个大题内容,找出所涉及到的概念与方法之间的联系与区别。例如:向量的线性表示与非齐次线性方程组解的讨论之间的联系;向量的线性相关(无关)与齐次线性方程组有非零解(仅有零解)的讨论之间的联系;实对称阵的对角化与实二次型化标准型之间的联系等。掌握他们之间的联系与区别,对大家做线性代数的两个大题在解题思路和方法上会有很大的帮助。
线性代数教学总结(专业15篇)篇七
2013年考研线性代数重点内容和典型题型总结,线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的2012年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,考研教育网就将线代中重点内容和典型题型做了总结,希望对2012年考研的同学们学习有帮助。
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《2012年全国硕士研究生入学统一考试数学120种常考题型精解》。
矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的`计算与证明、解矩阵方程。
向量组的线性相关性是线性代数的重点,也是考研的重点。2012年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。
特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求a、有关实对称矩阵的问题。
由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础.重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法.重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。
线性代数教学总结(专业15篇)篇八
2015考研线性代数行列式与矩阵知识点复习。结合考试分析,建议考生从行列式自身知识、与其它知识的联系这两方面来把握该部分内容。
一、行列式。
行列式是线性代数中的基本运算。该部分单独出题情况不多,很多时候,考试将其与其它知识点(矩阵、线性方程组、特征值与特征向量等)结合起来考查。行列式的重点是计算,包括数值型行列式、抽象型行列式和含参数行列式的计算。
结合考试分析,建议考生从行列式自身知识、与其它知识的联系这两方面来把握该部分内容。具体如下:
1.行列式自身知识。
考生应在理解定义、掌握性质及展开定理的基础上,熟练掌握各种形式的行列式的计算。行列式计算的基本思路是利用性质化简,利用展开定理降阶。常见的计算方法有:“三角化”法,直接利用展开定理,利用范德蒙行列式结论,逆向运用展开定理。
2.行列式与其它知识的`联系。
行列式与其它知识(线性方程组的克拉默法则、由伴随矩阵求逆矩阵、证明矩阵可逆、判定n个n维向量线性相关(无关)、计算矩阵特征值、判断二次型的正定性)有较多联系。考生应准确把握这些联系,并灵活运用。
二、矩阵。
矩阵是线性代数的核心,也是考研数学的重点考查内容。考试单独考查本部分以小题为主,平均每年1至2题。但是矩阵是线性代数的“活动基地”,线性代数的考题绝大部分是以矩阵为载体出题的,因此矩阵复习的成败基本决定了整个线性代数复习的成败。
该部分的常考题型有:矩阵的运算,逆矩阵,初等变换,矩阵方程,矩阵的秩,矩阵的分块。其中逆矩阵考得最多。
结合考试分析,建议考生从以下方面把握该部分内容:
矩阵运算中矩阵乘法是核心,要特别注意乘法不满足交换律和消去律。逆矩阵需注意三方面――定义、与伴随矩阵的关系、利用初等变换求逆矩阵。伴随矩阵是难点,需熟记最基本的公式,并灵活运用。对于矩阵的秩,着重理解其定义,及其与行列式及矩阵可逆性的关系。
线性代数教学总结(专业15篇)篇九
高职数学是教育中的重点内容,在实际教学中,线性代数是教学的难点,由于线性代数的内容较为复杂零散,且对学生的逻辑连贯性要求极强,因此学生往往感觉学习起来非常吃力。线性代数与中学数学知识联系不大,且高等数学的教学任务紧迫,课时安排有限,在众多因素的限制下,线性代数的教学必须要进行全面的创新和改革,才能激发学生的学习兴趣,让学生将零散的知识有效贯穿,整体性掌握,提升数学学习成绩。基于此,本文对高职院校中线性代数的教学方法改革进行探究。
1.在教学中应用现代信息技术。
高等数学中的线性代数是教学的难点,且由于高职数学课时安排有限,因此在教学过程中,要在有限的教学时间内完成教学任务,那么应该在传统教学方式的基础上加以创新,通过现代信息技术的应用以及教学辅助工具的支持进行线性代数教学[1]。例如matlab软件的应用,能够有效解决数学教育中的难题。matlab是应用于工程计算中的高性能的编程软件,能够在复杂的计算中发挥有效功能,在现实中该软件常用于工程计算,但现今已经在数理统计、概率论以及线性代数等数学教育课程中应用,并且实践证明应用中能够取得较好的效果。
2.案例教学法的应用。
案例教学法是线性代数教学中的一种重要方式,在实际生活中,案例教学法通常应用于财务、会计、法律等专业的.教学中,但对于高职数学而言,线性代数的教学中案例教学法的应用也具有较大的优势[2]。在高职数学教学过程中,案例教学法的应用前提是适宜的案例导入,因此要求教师寻找专业知识与数学知识中的最佳交叉点,将专业性的应用案例转化为数学教学的一种方式,将专业知识融入数学知识中,并且通过一些工具的辅助对学生进行教学。通过贴近生活、与专业相契合的案例导入,能够增加课堂的趣味性,并且能让学生认知到线性代数在实际的专业和生活中能够应用。案例教学法的应用能够简化线性代数的复杂概念,以抽象性方式促进学生学习,提升学生的实际应用能力。
线性代数的教学难点在于概念、性质的复杂性和零散性,因此明确线性代数的重难点之后,采取有效的方式进行教学,能够促进教学质量的进一步提升。学好线性代数的前提在于基础性的学习,基础概念,知识掌握熟练就会使学生在练习中能够更灵活的应用这些知识,从而提升基本运算能力。因此要求教师在进行线性代数教学时,将应用作为教学的核心,以培养学生的应用能力为目标展开教学,让学生能够全面掌握线性代数的基础知识,培养学生的运用能力以及解决实际问题的能力。在教学中,不能过分注重线性代数的理论性,要注重线性代数和其它专业的关联性,并且注重生活实际中线性代数能够应用的领域,在课堂中讲授在实际岗位中能够应用的知识,让学生认知到线性代数的实用性和有效性,从而深入掌握理解基本概念,提升线性代数的基本计算能力。只有基础性知识的掌握较为熟练,并且在学生的脑海中形成基础知识理论框架,才能促进学生进行更深入的学习,帮助学生解决更为困难的数学难题,促进学生的进一步发展。
4.结束语。
综上所述,高职教学中对于教学内容的改革和更新是十分必要的,有助于推进学校教育质量的提升,促进学校的进一步发展,同时为社会培养出实用型、应用型的高级专门技术人才。在高职教学中,不仅要应用新式的教学手段,将线性代数的复杂过程简化分解,同时还要应用全新的教学方式,激发学生的学习兴趣,缓解学生的学习压力。在教学过程中,要注重线性代数与其它专业的关联性和实际应用性,强化应用性重要知识点的学习,提升学生的基础知识储备,提升学生的基础运算能力,如此才能让学生体验学习的乐趣,帮助学生学好线性代数。
参考文献:
[2]杨朝晖.以学生为主体提高教学质量———谈高职线性代数教与学的和谐发展[j].科教文汇(下旬刊),2008,10:102+104.
线性代数教学总结(专业15篇)篇十
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
线性代数是继微积分之后又一门高等数学,与微积分想比,线性代数的基础行列式和矩阵是在高中有所学习的,入门还是相对比较简单的。线性代数从内容上看前后联系紧密,环环相扣,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。所以多做题也是积累经验来方便自己在解题时能更快更准确得运用适当的性质来简化题目。
线性代数的许多公式定理难理解,但一定要理解这些东西才能记得牢,理解不需要知道它的证明过程的每一步,只要能朦朦胧胧地想到它的所以然就行了。学习线代及其它任何学科时都要静下心来,如果学习前很亢奋就拿出一两分钟时间平静下来再开始学习。遇到不会做的题时不要去想“这道题我怎么又不会做”等与这道题无关的东西,一心想题,这样解出来的可能性会大很多。做完题后要想想答案上的方法和自己的方法是怎么想出来的,尤其对于自己不会做的题或某个题答案给出的解法非常好且较难想到,然后将这种思路记住,即做完题目后要总结自己做题的思路,活用在之后的做题中。
很多人都说,审计是文科的,学像微积分和线代这样的理科课程没有什么意义,虽然表面看起来是这样的,但实际上却不然。理科注重的逻辑,在学习的理科的过程中,我们的思路会变得清晰,会计是很复杂的一个专业,很多时候不同的条件会需要进行不同的处理,而理科会让这些复杂的东西在我们脑海中变得仅仅有条,所以学习线代也是有必要的。
线性代数教学总结(专业15篇)篇十一
线性代数课程是以讨论有限维空间线性理论为主的课程,具有较强的抽象性与逻辑性。在当前的线性代数课程教学中,采用的基本是讲授式教学法。
讲授式教学法就是老师通过语言给学生传授知识的教学方法。讲授法采取定论的形式直接向学生传递知识,不仅避免了认识过程中的许多不必要的曲折和困难,而且具有无法取代的简捷和高效两大优点。
但是讲授式教学法如果运用不当,很容易使教学失去生机而成为填鸭式、一言堂等带有贬义色彩的教法代表。探究式教学是指学生在学习概念和原理时,教师只是给他们一些事例和问题,让学生自己通过阅读、观察、实验、思考等途径去独立探究,自行发现并掌握相应的原理和结论的一种方法。随着探究式教学法、个别教学法等现代教学方法的崛起,传统的讲授式教学法作为满堂灌的教法代表而成为众矢之的。本文结合线性代数课程的特点和多年的教学实践体会,分析了讲授式教学法和探究式教学法在线性代数课程中的可行性。
一、讲授式教学法是其他教学方法的`基础。
讲授法依旧是课堂教学中的一种重要的教学方法,尤其对于一些深奥、难懂,不易探究或不能探究的教学内容,我们仍需用到讲授法。
从教的角度来看,任何方法都离不开教师的“讲”,讲授是其他方法的工具,教师只有讲得好,其他各种方法的有效运用才有了前提。从学的角度来看,讲授法也是学生学习的一种最基本的方法,其他各种学习方法的掌握大多是建立在讲授法的基础上。讲授式教学法中,教师可通过口头语言、多媒体或者模型向学生系统地传授科学文化知识,不需要做大量的配套设施准备,便于广泛运用。
离开讲授法,各种教与学的方法都易成为无土之木,无源之水。讲授式教学过程中应尽量想办法讲得有趣。譬如线性方程组来源于实际问题,我们就可以这样来引入线性方程组。看这样的趣题:隔墙听得贼分银,不知人数不知银,七两分之多四两,九两分之少半斤(注:古秤十六两为一斤)。实际上求人数和银两数的问题就是求解一个简单的二元一次线性方程组。学生的兴趣马上就来了。
二、讲授式教学法能更好地解决线性代数教学面临的内容与学时的矛盾。
线性代数教学时数一般为48学时,传统的线性代数教学内容体系要求面面俱到,理论上追求严谨,有些工科院校把向量代数与空间解析这一块内容也纳入进去,因而教学内容相对较多。
对同一教学内容,探究式教学法,耗时更长,在课时比较少的学科实施探究式教学时只能够选择性应用。而利用讲授式教学法可以合理安排教学的主要内容及重点进行讲授式教学。切忌贪多求全及平均使用力量和时间。教师可以事先在教学组织上狠下功夫,形成精练的课堂教学内容,甚至在备课环节把讲授时所用的语言都准备好。抓住主要问题形成精练的讲授内容。对教学内容须分清主次,从而以基本概念、基本理论、基本方法等主要内容为核心形成精练的内容。
对这些内容,保证学时,讲透彻。而其他内容,应根据学生的实际情况,可简明扼要地讲解,或者在教师引导下学生自学。教师要注意运用精练的表达,对讲授的语言、板书的运用都讲究精练。除此之外,将多媒体技术引入教学中来,提前准备好教学课件,把书写冗长的定义、定理的时间节省出来,用于解释定义的背景、定理的证明及应用,把宝贵的课堂教学时间充分利用起来。
三、借助探究式教学法解决线性代数内容从抽象到具体的矛盾线性代数的内容抽象,要掌握其原理与方法,必须具备较强的抽象思维能力,即对形式概念的理解能力和形式逻辑的演绎能力,这导致学生在学习的过程中,普遍感到概念难以理解,内容不易接受,面对具体的问题经常茫然不知所措,不知从何处下手。
譬如向量组与极大线性无关组的关系,我们可以这样具体化来理解。我们班有很多人(对应一个向量组),但如果认为任意两个男生是线性相关的,任意两个女生也是线性相关的,则其实只有两个人即男生和女生(对应一个极大线性无关组),任选一个男生和一个女生就可以代表我们整个班(一个向量组的极大线性无关组不唯一)。
事实上,对线性代数中的那些抽象的理论,我们完全可以通过提问,借助于探究式教学法,让学生自己去寻找这样有趣的具体化解释,然后让他们自己讨论,优中取优,让学生准确理解概念,这样就能使课程中枯燥的内容变得丰富多彩,就会使那些死的东西活起来,会使那些抽象的东西实际起来,使那些难懂的东西亲切起来,变得被学生乐意接受。
数学不仅仅是一种“思维体操”.随着人们对数学更深层次的认识,数学的文化现象已明显地凸现了出来。我们学习数学不仅是为了获取知识,更能通过数学学习接受数学精神、数学思想和数学方法的熏陶,提高思维能力,锻炼思维品质。数学文化的教育应该成为数学教育的根本点。线性代数作为一门大学数学基础课程也不例外。
线性代数中充盈着丰富的数学文化。借助探究式教学法,我们可以通过提问等方式让学生自己去摸索、总结心得体会。譬如,矩阵的初等变换这个概念我们说非常重要,类似于《西游记》里的照妖镜。一个看上去很复杂的东西,容易被其表象所蒙骗时,我们用照妖镜照一下就露出本质来了。那么初等变换照出来的本质是什么呢?原来就是矩阵的秩。这一思想继续引导学生提升:数学是在干什么?原来数学就是研究一个对象(线性方程组或者是矩阵)在一一对应下(初等变换或者说照妖镜)所得到的另一个对象(简化阶梯型矩阵)。当然,后一对象要比前一对象简单易懂才能真正解决问题。这就体现出数学的文化内涵:转化就是创新。
又如,线性方程组来源于实际问题,而为了对线性方程组求解,我们得到了矩阵理论,然后我们又利用矩阵理论来解决二次型的标准化问题。这种理论来源于实践,反过来理论又能指导实践的方法,正符合马克思主义哲学中辩证唯物主义的认识论。因此,学习线性代数,可以帮助我们更好地认识自然,了解世界,适应生活;它可以促进我们有条理地思考,有效地表达与交流,不仅仅运用数学具体的知识去分析问题和解决问题,更能运用数学的思想文化去分析问题和解决问题。
可见,这两种教学方法各有所长,教学过程当中既要有教师主动的精练讲解,又要在教师的引导下,以学生为主体,让学生自觉地、主动地探索,掌握认识和解决问题的方法和步骤,研究客观事物的属性,发现事物发展的起因和事物内部的联系,从中找出规律,形成自己的概念。在树立新的教学理念的同时,不应该完全摒弃传统的教学观念,应使两者有机结合,取长补短,从而更为合理地安排教学。
【参考文献】。
线性代数教学总结(专业15篇)篇十二
知识点2:余子式、代数余子式。
知识点3:行列式的性质。
知识点4:行列式按一行(列)展开公式。
知识点5:计算行列式的方法。
知识点6:克拉默法则。
知识点7:矩阵的概念、线性运算及运算律。
知识点8:矩阵的乘法运算及运算律。
知识点9:计算方阵的幂。
知识点10:转置矩阵及运算律。
知识点11:伴随矩阵及其性质。
知识点12:逆矩阵及运算律。
知识点13:矩阵可逆的判断。
知识点14:方阵的行列式运算及特殊类型的矩阵的运算。
知识点15:矩阵方程的求解。
知识点16:初等变换的概念及其应用。
知识点17:初等方阵的概念。
知识点18:初等变换与初等方阵的关系。
知识点19:等价矩阵的概念与判断。
知识点20:矩阵的子式与最高阶非零子式。
知识点21:矩阵的秩的概念与判断。
知识点22:矩阵的秩的性质与定理。
知识点23:分块矩阵的概念与运算、特殊分块阵的运算。
知识点24:矩阵分块在解题中的技巧举例。
知识点25:向量的概念及运算。
知识点26:向量的线性组合与线性表示。
知识点27:向量组之间的线性表示及等价[]。
知识点28:向量组线性相关与线性无关的概念。
知识点29:线性表示与线性相关性的关系。
知识点30:线性相关性的判别法。
知识点31:向量组的最大线性无关组和向量组的秩的概念。
知识点32:矩阵的秩与向量组的秩的关系。
知识点33:求向量组的最大无关组。
知识点35:内积的概念及性质。
知识点36:正交向量组正交阵及其性质。
知识点37:向量组的正交规范化、施密特正交化方法。
知识点38:向量空间(数一)。
知识点39:基变换与过渡矩阵(数一)。
知识点40:基变换下的坐标变换(数一)。
知识点41:齐次线性方程组解的性质与结构。
知识点42:非齐次方程组解的性质及结构。
知识点43:非齐次线性线性方程组解的各种情形。
知识点44:用初等行变换求解线性方程组。
知识点45:线性方程组的公共解、同解。
知识点46:方程组、矩阵方程与矩阵的乘法运算的关系。
知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例。
知识点48:特征值与特征向量的概念与性质。
知识点49:特征值和特征向量的求解。
知识点50:相似矩阵的概念及性质。
知识点51:矩阵的相似对角化。
知识点52:实对称矩阵的相似对角化。
知识点53:利用相似对角化求矩阵和矩阵的幂。
知识点54:二次型及其矩阵表示。
知识点55:矩阵的合同。
知识点56:矩阵的等价、相似与合同的关系。
知识点57:二次型的标准形。
知识点58:用正交变换化二次型为标准形。
知识点59:用配方法化二次型为标准形。
知识点60:正定二次型的概念及判断。
线性代数教学总结(专业15篇)篇十三
(一)沿用高师钢琴教学模式的弊端。
其中钢琴普修课为二人一节课,主修课则是一人一节课,同时普修声乐、管弦乐两年,使学生到达“一专多能”的培养要求,以适应中小学音乐教学的需要。高师音乐专业的课程设置固然对培养中小学音乐教师起到良好的作用,但这种课程设置周期较长,课程频率低,教学成本高,更重要的是中小学教师招考的报考条件不利于独立学院毕业生,使其在就业上面临很大的制约,难以与高师毕业生竞争,增加独立学院毕业生的就业压力。
(二)照搬音乐学院钢琴教学模式的弊端。
音乐学院是以培养高、深、尖的专业化音乐人才为目标的,其钢琴教学注重钢琴的演奏能力、表演能力,培养学生走专业化的发展道路。在钢琴课程设置上以“一对一”教学为主,同时开设多门与钢琴演奏相关课程,如钢琴艺术史、钢琴音乐欣赏、钢琴教学法等。这种课程模式对培养我国钢琴专业人才具有很大的推动作用。但另一方面,社会对钢琴专业人才的需求十分有限,毕业生就业面临巨大压力。由于独立学院的生源质量与音乐学院存在很大差距,相当部分的学生入学时钢琴程度都比较浅,即使个别学生毕业时能够演奏几首难度较高的独奏作品或是开独奏音乐会,其演奏能力与音乐学院学生相比还是相距甚远,难以胜任与钢琴演奏相关的工作,就业形势令人担忧。因此,独立学院的钢琴课程教学模式既不能生搬高师“一专多能”的培养模式,更不能效仿音乐学院的“精英化”培养模式,而是应该从学生的就业实际问题出发,按需所教,制定符合独立学院发展的钢琴教学模式。
二、福州大学至诚学院钢琴教学改革的设想。
福州大学至诚学院音乐系自创办以来,为社会输送200多名音乐专业毕业生,仅有20%左右的毕业生从事中小学音乐教学工作或是专业文艺团体工作。这一方面是由于福建省教育厅对中小学教师招考条件的设置不利于独立学院毕业生,另一方面是因为独立学院毕业生与高师、音乐学院毕业生在专业、综合能力等方面确实存在一定差距,难以与之竞争,因此导致独立学院毕业生就业率低下。与此同时,社会钢琴教学市场依旧火热,但合格、规范的钢琴教师队伍远远不能满足庞大的琴童队伍,对钢琴略知皮毛的毕业生都涌入到钢琴教学的大军之中,至诚学院音乐系毕业生很大一部分也投身其中,在各个艺术培训机构、琴行任职,从事钢琴教学工作。针对这一现象,笔者以为至诚学院的钢琴教学应做出相应的调整,从而帮助学生更好地适应就业需求。
(一)制定务实的钢琴教学目标。
至诚学院的钢琴教学应以职业需求为导向,跟市场接轨,接地气,以社会钢琴基础教学作为主要的培养目标,为社会输送合格、规范的钢琴基础教育人才,这在一定程度上能够推动社会钢琴教学市场规范化进程,从而为我国钢琴教育事业的推广和普及做出一份贡献。根据这一培养目标,在原有的钢琴演奏、钢琴伴奏、钢琴教学法等课程基础上,还应增设教育心理学,钢琴教材分析,钢琴教学实践,少儿钢琴教育,成人钢琴教育等相关选修课程,为培养合格、规范的社会钢琴教学人才奠定坚实的基础。
(二)综合多样的钢琴教学形式。
长期以来,高校钢琴教学是以传统的个别课和数码钢琴集体课两种教学形式为主。个别课,教师根据学生的个体差异进行针对性的讲解、辅导、示范,因人而异,因材施教,对症下药,及时解决学生存在的问题,较快地提高学生的演奏能力,是必不可少的钢琴教学形式。但对于没有钢琴基础或是钢琴基础薄弱的学生而言,个别课无法涉及更多的音乐基础知识,教学进度慢,“重复”教学多,学生兴趣不大,同时又造成教学资源的浪费。数码钢琴集体课运用多媒体手段进行综合教学,能够加快学习进度,提高学习效率,强调钢琴技能与乐理、视唱、和声、伴奏等音乐理论课程的有机结合。但由于集体授课难以照顾到学生的个性,教师无法全面了解学生的学习情况而进行针对性辅导,在学生达到一定钢琴程度后,能力分化日趋明显,这种“大锅饭”式的教学模式已不能满足进步较快学生的学习需求,因此只适用于钢琴初级教学。笔者以为,至诚学院钢琴教学可以在结合个别课和数码钢琴集体课两种教学模式的同时,根据教学时期、学生程度,分成集体课,小组课,个别课三种授课形式。集体课:安排在第一学年。根据新生的钢琴程度、摸底评测结果分为入门班,提高班两种不同程度的班级,10-20人为一班,每个班按照统一的教学进度授课。小组课:安排在第二学期-第四学期。通过第一学期的钢琴学习,学生钢琴程度分化逐渐明显,将钢琴程度相近的.学生编排在一组,4-6人为一组,进行小组授课。这样,在解决同一程度存在的共性问题的同时,又能避免重复性教学,更好地提高教学效率。个别课:安排在第三—第六学期。这时期学生的钢琴演奏能力都得到较大的提高,程度分化也更加突出,需要进行个别授课,以更好地因材施教,最大限度地发挥学生的主观能动性,帮助学生在有限时间内尽可能地提高钢琴演奏水平。三种钢琴教学形式综合应用,既可以最大程度地优化教学资源,又利于激发学生的学习积极性。可以根据第二、第三学期末成绩进行重组,即原来上小组课的学生通过努力可以“晋升”到个别课;原来上个别课的学生由于不够努力将编排到小组课,从而营造良好的学习气氛,培养学生的竞争意识。
(三)选择实用的钢琴课程教材。
以培养社会钢琴基础教育人才为主的教学目标,决定了在钢琴教材的选择上一定要注重实用性。在钢琴集体课教学中,李和平编著的《现代钢琴集体课教程》可以说是一套使用最广、实用性强的钢琴集体课教程。这套教材在训练钢琴弹奏技巧的同时,综合乐理、视唱、练耳、和声、即兴伴奏等教学内容,强调学生听觉、记忆、视谱、视奏、创造力等音乐素质训练和能力的全面培养。此外,薛庆编著的《数码钢琴集体课教程》、李美格主编的《全新数码钢琴集体课教程》、唐艺主编的《钢琴集体课教程》等教材都是优秀的钢琴集体课程教材,包含基础理论知识、基本训练、练习曲、乐曲、视奏与移调、歌曲配弹、合奏练习等,程度为从入门到车尔尼599中后部,适用于独立学院非钢琴演奏专业的钢琴初学者使用。在钢琴小组教学中,应注重提高学生钢琴技能的同时,强调钢琴学习的综合性,可以选用高等学校音乐学本科钢琴专业教材。如李和平主编的《钢琴》,韩林申主编的《钢琴基础教程》,黄瑂莹主编的《钢琴教程》,上海音乐学院钢琴基础课教研室编纂的《新编钢琴基础教程》等。这些钢琴教材都是由浅入深,分级教学,每个级别都包含相应程度的基本练习、练习曲、复调乐曲、大型乐曲、中小型乐曲、歌曲伴奏、四手联弹等内容,都是优秀的本科钢琴教材。但这些钢琴教材初、中级程度的,不同时期风格的作品较少,教师可以根据学生的程度选择具有代表性、实用性的中小学中外乐曲作为补充内容。在钢琴个别课教学中,教材的选用更为广泛、自由,但不要盲目追求难度高的曲目,应从学生实际能力出发,在适当提高曲目难度的同时,要充分考虑学生今后教学的实际需要。同时将钢琴教学法、钢琴弹奏理论、钢琴教材使用融入教学中,使学生掌握钢琴弹奏技能的同时学习钢琴弹奏理论和钢琴教学法,为学生之后的钢琴教学之路奠定良好的基础。
三、结语。
综上所述,独立学院钢琴课程教学应有别于高师、音乐学院的钢琴教学模式,要走一条符合独立学院特色的钢琴教学之路。作为独立学院的钢琴教师,我们应该以社会需求为导向,突出教学实用性,体现以人为本的教育精神,在教学实践过程中不断探索,不断研究,不断深化独立学院的钢琴教学改革,使之更好地适应社会发展需要。
线性代数教学总结(专业15篇)篇十四
摘要:随着我国经济水平的快速发展,越来越多的外国友人来到中国,同时,中国的学生到国外留学也成为大势所趋。重视对初中生英语的学习与培养是促进其全面发展的基础。然而,无论是国内交流还是出国学习,都少不了与人的面对面交流,这就凸显出了初中英语学习中情景对话的作用。
关键词:初中英语;情景对话;作用。
随着新课改的逐步实施,对初中英语的教学方法也提出了新的要求。情景教学是初中英语教学中新研究的教学方法,在提高初中生的学习兴趣,在加强师生互动性,提高学生的灵活性等方面具有重要的意义。
1、对情景教学的认识与理解。
情景教学是一种借助课堂这个平台,由教师和学生亲身还原现实生活中的交流场景,融入真实的对话过程的一种对课标要求所掌握知识的灵活运用的讲课方式。在情景教学中情景对话是其主要的活动形式。对情景教学的作用研究即是对情景对话过程的作用研究。学习知识的目的在于能够应用到具体的生活中去,对初中英语的学习也是如此,运用情景教学的教学模式只不过是提前使学生投入到现实生活中来,这样不仅有利于加深学生对所学知识的理解与运用,更提高学生的自主学习能力,更快的适应社会。
2、情景教学实施的现状分析。
2.1情景教学与课程要求脱轨:在课堂上开展情景教学无疑肯定会耗时耗力,活动的组织与安排都牵扯到时间的问题。这样就不利于课标所要求教学目标的完成。如果想实施的效果更好难免有相关硬件的要求,这肯定会涉及金钱问题。也容易引起其他相关问题。
2.2情景对话流于形式:理想的情景对话模式是能够实现每位学生的积极参与对知识的运用。然而在现实课堂中情景对话模式的作用没能发挥出来。学生在交流的过程中只是按照已有的对话模式照读或是背诵下来进行僵硬的对话,没有理解英语对话的真谛,做不到将英语的课本知识活化到对话中去。
3、情景教学问题的解决策略。
3.1针对第一个存在的问题,教育领导者可以选出在英语教学中经验丰富,口语好的教师组成情景教学模拟小组,根据初中英语课堂安排,规定在一周的某个时间段内开展情景对话课堂。此外,学校要加大投入力度,完善相关硬件设施,小组内安排专门的物品采购人员,做好财政预算等。这样即有利于情景教学规范化、系统化、合理化,又有利于避免长期实行造成学生的厌倦。
3.2情景对话要做到真实有效必须以掌握知识为前提。在开展情景对话课堂时,要提前安排学生掌握对话内容,在背诵记住的前提下融入自己的想法,鼓励学生大胆地张开口去交流。在这个过程中教师要扮演好引导人的角色,防止出现两极分化。要争取做到每个学生平等的参与到学习中来。
4、开展情景教学的积极影响。
4.1锻炼学生的口语交际能力:开展情景教学的目的在于锻炼学生的口语能力,英语作为一门实用性语言,必须做到听、说、读、写并重。在开展情景教学的过程中,学生能够把自己背诵的单词、短语组合成句子、短文然后再自己说出来。情景教学为学生创造了真实的交流环境,使学生全身心的投入到与人交流的情景当中去,在边听边说的对话过程中,提高了自己的口语表达能力。
4.2缩短师生间的距离,增进了师生情谊:处理好学生与教师之间的关系也是提高学习效率的重要保证。学生对老师总有一种敬畏心理,使老师与学生之间有距离感,这就不利于彼此之间想法的沟通与交流。情景教学模式使教师与学生零距离接触,在对话的过程中彼此沟通。教师能够倾听学生的意见,学生也敢于表达学习中遇到的问题。这样就有利于增进师生情谊,更高更快的实现学习目标,共同进步。
4.3带动课堂气氛,提高学习效率:情景教学模式是一种互动的,全员参与的学习方式。在课堂上,教师可以根据每个学生的学习情况,分配搭档小组,使每个人都参与到这个过程中来,让课堂动起来。打破了以往老师侃侃而谈,学生昏昏沉沉的局面。这样就有利于提高每个学生的学习兴趣,自觉主动的学习英语。从而有利于提高每堂课的学习效率,能够更轻松的实现教学目标,让学生在一种舒适,无压的环境中学习与成长。情景教学实现了理论与实践的统一,让初中英语的学习来源于生活,最终又反馈给生活。对任何一门学科学习都是为了让学生掌握一种基本的技巧与能力,是学生真正踏入社会后可以独当一面。情景教学将这一时间缩短化,具体化。让学生更早的接触社会,了解社会。因此,对情景教学进行分析是为了将其推广,使其有更加宽广的发展空间。
参考文献:。
[2]李小琴.浅议情景课堂下的初中英语教与学[j].考试周刊.2015(95)。
[3]王化国.情景教学在初中英语课堂的应用探微[j].校园英语.2015(09)。
将本文的word文档下载到电脑,方便收藏和打印。
线性代数教学总结(专业15篇)篇十五
旅游管理专业的教学特征。
旅游行业是经验性服务行业,从员工的发展来看,一般要经历服务操作层到基层管理层再到中高管理层最后到决策层。目前,高等院校的旅游管理专业一般以“培养应用型旅游管理的高级专门人才”作为专业定位,旅游管理专业的学生作为未来的经营管理人才,在旅游企业的职务升迁也多遵循这样一个逐步上升的过程。因此,在大学阶段加强理论教学的同时,突出应用性教学,可以帮助学生就业后缩短服务操作层的时问,从而加速进人管理层,这样既符合学校的培养目标和学生的自我定位,又能为旅游企业提供合适的人才。
理论研究尚未形成完整体系,教学科研水平有待提高。目前大多数独立学院旅游专业的教学计划、课程设置照搬普通高校,主导专业仍然是酒店管理、导游方向.而旅游电子商务、度假管理、会展策划、景区规划、宣传促销、理论研究等专业方向都未涉及,与地方旅游经济发展的多样化人才需求相悖,也没有体现独立院校的办学特色。
课程设置和现有教学方法不利于应用型人才的培养。独立学院旅游专业根据培养目标和岗位定位,一般要求毕业生具备多方面的实际应用能力。但目前仍然在课程设置上模仿普通高校,忽视两者在课时总数、培养目标上的差别。一些人文基础课程,往往因为课时限制被舍弃,导致学生专业知识面过窄。课堂教学以讲授为主,重理论,轻实践,学生不能主动参与,造成学生动手应用能力差,基础知识薄弱,很难适应现代旅游业快速发展的要求。
教学计划缺乏实践性内容,实践环节难以达到预期的目的。虽然独立学院的旅游教育强调学生动手能力的培养,教学计划中也明确规定实践与理论教学的课时比例,但力度不够。目前独立学院旅游实践性教学内容较单一,教学手段相对落后。大部分院校仅仅停留在餐饮摆台、客房做床等环节。有的院校实训过程中对学生要求不严,有的院校由于场地、器材的限制,实训课草草应付,效果很难保证。另外,目前许多独立学院的旅游专业在第三学年的第二学期安排毕业实习,由于学校实习目标不明确,企业不重视,往往把学生当成廉价劳动力,学生基本不能从事管理工作或轮岗,没有真正达到实习效果。而学生也在这一日寸期忙于求职,心浮于事,使实习流于形式。