教学计划包括整体计划和详细计划两个层面,确保教学活动的全面性和针对性。接下来,我们将分享一些优秀的教学计划样例,供大家参考和借鉴。
平方差公式教学设计理念(热门14篇)篇一
一、教学目标:
1、使学生理解和掌握平方差公式,并会用公式进行计算;
2、注意培养学生分析、综合和抽象、概括以及运算能力,培养应用数学的意识;
3、在紧张而轻松地教学氛围内,进一步激发学生的学习兴趣热情。
二、重点、难点:
重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。
三、教学方法。
以教师的精讲、引导为主,辅以引导发现、合作交流。
四、教学过程。
(一)创设问题情境,引入新课。
1、你会做吗?
(1)(x+1)(x—1)=_____=()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用简便方法运算:×(这里需要用到平方差公式,设疑激发学生兴趣。)。
交流上面第1题的答案,引导学生进一步思考:
(合作交流,探究新知:两数之和与这两数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于这两个数的平方差。)。
我们把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到类似形式的多项式相乘时,就可以直接运用公式进行计算。(在此基础上,让学生用语言叙述公式,并让学生熟记。)。
(三)尝试探究。
(四)巩固练习。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接写出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(让学生独立完成,互评互改。)。
(五)小结。
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意分清a、b。
(学生回答,教师总结)。
(六)作业。
p106习题1—5题。
七、板书设计:
教学反思。
通过精心备课,本节课在教学中是比较成功的。成功之处在于整个教学流程环环相扣,层层递进,抓住了学生思维这条主线,遵循由浅入深,由特殊到一般的认知规律,引起学生的兴趣。使他们能够积极参与其中,同时,使他们的思维得到了锻炼和发展。不足之处:时间安排不是很合理,前松后紧。课堂上没有给更多的学生提供展示自己思考结果的机会,过于注重“收”,而“放”不够。
平方差公式教学设计理念(热门14篇)篇二
(4)(+3z)(-3z)=_____.
(1)(x+1)(1+x),。
(2)(2x+)(-2x),。
(3)(a-b)(-a+b),。
(4)(-a-b)(-a+b)。
帮助学生理解公式的特征,掌握公式的特征是正确运用公式的关键,除了掌握公式的特征外还有必要理解公式中的字母a、b具有广泛的含义,几字母a、b可以表示具体的数、也可以表示单项式或多项式,由于学生的认知能力有一个过程,教学中应由易到难逐步安排学习这方面的内容。
平方差公式教学设计理念(热门14篇)篇三
本课的学习目的主要是熟练掌握整式的运算,并且这些知识是以后学习分式、根式运算以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可或缺的数学工具。而本节是整式乘法中乘法公式的首要内容,学生只有熟练掌握了包括平方差公式在内的乘法公式及它的推导过程,才能实现本节乃至本章作为数学工具的重要作用。因此,在教学安排上,我选择从学生熟悉的求多边形面积入手,遵循从感性认识上升为理性思维的认知规律,得出抽象的。概念,并在多项式乘法的基础上,再次推导公式,使原本枯燥的数学概念具有一定的实际意义和说理性;之后安排了一系列的例题和练习题,把新知运用到实战中去,解决简单的实际问题,这样既调动了学生学习的主动性,又锻炼了思维,整个过程由浅入深,在对所得结论不断观察、讨论、分析中,加深对概念的理解,增强学生应用知识解决问题的能力,从而达到较好的授课效果。
数学是一门抽象的学科,但数学是来源于实际生活的。因此,数学教育的目的是将数学运用到实际生活中去,让学生深切感受到数学是有价值的科学,来源于生活,是其他科学的基础。本节公式中字母的含义对学生来讲很抽象,是本节的难点,也是学生运用公式解决实际问题的最大障碍,通过巩固练习,让学生逐步体会,为今后学习其他乘法公式做好准备。乘法公式的逆用就是因式分解的重要方法,因此,在本节补充练习中,已经开始渗透这部分知识,为后面学习因式分解做好铺垫。
但是,我在教本章内容时却始终感到困惑。本以为这一章很简单,由于教材安排存在一定问题,如将同底数幂乘法、幂的乘方、积的乘方、单项式乘以单项式、单项式乘以多项式、多项式乘以多项式这么多的内容安排在一起,造成学生没掌握好、消化好,知识间相互混淆,设置了障碍。所以很多学生出现下列错误(3x?2)(3x?2)?3x象我们想象中掌握的那么好。
本章教材编者在此安排不太合理,没有考虑到学生的认知规律,不利于学生很好掌握,所以,我感觉以后上这章的时候不能按照教材课时安排走。否则还会出现今天的问题。
平方差公式教学设计理念(热门14篇)篇四
2、注意培养学生分析、综合和抽象、概括以及运算能力。
教学重点和难点。
难点:用公式的结构特征判断题目能否使用公式。
教学过程设计。
我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。
让学生动脑、动笔进行探讨,并发表自己的见解。教师根据学生的回答,引导学生进一步思考:
(当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差)。
继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算。以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式。
在此基础上,让学生用语言叙述公式。
例1计算(1+2x)(1-2x)。
解:(1+2x)(1-2x)。
=12-(2x)2。
=1-4x2.
教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。
例2计算(b2+2a3)(2a3-b2)。
解:(b2+2a3)(2a3-b2)。
=(2a3+b2)(2a3-b2)。
=(2a3)2-(b2)2。
=4a6-b4.
教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算。
课堂练习。
(l)(x+a)(x-a);(2)(m+n)(m-n);
(3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。
例3计算(-4a-1)(-4a+1)。
让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演。
解法1:(-4a-1)(-4a+1)。
=[-(4a+l)][-(4a-l)]。
=(4a+1)(4a-l)。
=(4a)2-l2。
=16a2-1.
解法2:(-4a-l)(-4a+l)。
=(-4a)2-l。
=16a2-1.
根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果。解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果。采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷。因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。
课堂练习。
1、口答下列各题:
(l)(-a+b)(a+b);(2)(a-b)(b+a);
(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。
2、计算下列各题:
(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法。
2、运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。
(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
平方差公式教学设计理念(热门14篇)篇五
3、在紧张而轻松地教学氛围内,进一步激发学生的学习兴趣热情。
重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。
以教师的精讲、引导为主,辅以引导发现、合作交流。
(一)创设问题情境,引入新课。
1、你会做吗?
(1)(x+1)(x—1)=_____=()()。
(3)(3x+2)(3x—2)=_____=()()。
2、能否用简便方法运算:×(这里需要用到平方差公式,设疑激发学生兴趣。)。
交流上面第1题的答案,引导学生进一步思考:
(合作交流,探究新知:两数之和与这两数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于这两个数的平方差。)。
我们把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到类似形式的多项式相乘时,就可以直接运用公式进行计算。(在此基础上,让学生用语言叙述公式,并让学生熟记。)。
(三)尝试探究。
(四)巩固练习。
(l)(x+a)(x—a)。
(2)(m+n)(m—n)(3)(a+3b)(a—3b)。
(4)(1—5y)(l+5y)(5)998×1002。
(6)395×405。
2、直接写出答案:
(l)(—a+b)(a+b)。
(2)(a—b)(b+a)。
(3)(—a—b)(—a+b)。
(4)(a—b)(—a—b)(5)999×1001。
(6)×(让学生独立完成,互评互改。)。
(五)小结。
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意分清a、b。
(学生回答,教师总结)。
(六)作业。
p106习题1—5题。
教学反思。
通过精心备课,本节课在教学中是比较成功的。成功之处在于整个教学流程环环相扣,层层递进,抓住了学生思维这条主线,遵循由浅入深,由特殊到一般的认知规律,引起学生的兴趣。使他们能够积极参与其中,同时,使他们的思维得到了锻炼和发展。不足之处:时间安排不是很合理,前松后紧。课堂上没有给更多的学生提供展示自己思考结果的机会,过于注重“收”,而“放”不够。
平方差公式教学设计理念(热门14篇)篇六
学习目标:
1、能推导平方差公式,并会用几何图形解释公式;。
3、经历探索平方差公式的推导过程,发展符号感,体会“特殊——一般——特殊”的认识规律.
学习重难点:
难点:探索平方差公式,并用几何图形解释公式.
学习过程:
一、自主探索。
1、计算:(1)(m+2)(m-2)(2)(1+3a)(1-3a)。
(3)(x+5y)(x-5y)(4)(y+3z)(y-3z)。
2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现.
3、你能用自己的语言叙述你的发现吗?
(1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两个二项式必须有一项完全相同,另一项只有符号不同。
(2)、公式中的a与b可以是数,也可以换成一个代数式。
二、试一试。
平方差公式教学设计理念(热门14篇)篇七
平方差公式是多项式乘法运算中一个重要的公式,是特殊的多项式与多项式相乘的一种简便计算。通过复习多项式乘以多项式的计算导入新课,为探究新知识奠定基础。在重难点处设计问题:“观察以上3个算式的特点和运算结果的特点,对比等号两边代数式的结构,你发现了什么?”让学生发现规律并尝试运用自己的语言来描述。
问题提出后,学生能积极进行分组讨论、交流,各组小组长阐述自己小组讨论的结果。大多数的学生能找出规律,说出大概意思,但是无法用精准的语言完整的描述出来,语言表达无条理、含糊。针对这种情况,在以后的课堂教学过程中要注意加强对学生的逻辑思维能力和语言表达能力的.培养。最后经过师生的共同努力,得出了平方差公式以及公式的特征。
在例题展示环节中,我通过2道例题的运算,训练学生正确应用公式进行计算,体会公式在简化运算中的作用。实践练习的设计,使学生从不同角度认识平方差公式,进一步加强学生对公式的理解。在运用公式时,学生基本掌握运用平方差公式的步骤:首先要判断算式是否符合平方差公式特征,然后再寻找算式中的a,b项,最后运用平方差公式运算。
拓展延伸环节中,学生通过寻找算式中的a,b项,慢慢发现a,b项不仅可以代表数,也可以代表单项式、多项式等代数式,这样设计可以进一步深化学生对字母含义的理解。在学生独立完成练习和堂测中,经过巡视,我发现近三分之一的学生对较复杂的多项式不能准确找出a,b项,特别是b项代表多项式时,负数去括号时出错较多。
最后通过设计递进式的问题串,引导学生自己一步步总结出本节课所学的知识内容,从而培养他们的归纳总结和语言表达能力。
本节课采用学习小组讨论、交流的学习方式,让学优生带动学困生,整体教学效果良好,学生基本掌握平方差公式的运用,对于较复杂的a、b项的运算,在自习课上将加强练习。
平方差公式教学设计理念(热门14篇)篇八
在探索平方差公式的过程中,发展学生的符号感和推理能力。在计算的过程中发现规律,并能用符号表达,体会数学语言的严谨与简洁。
激发学习数学的兴趣,鼓励学生自己探索,培养学生的合作意识与创新能力。
重点。
难点。
一、复习导入。
1.回顾多项式乘多项式的法则。
2.创设情境:你能快速地口算下列式子的值吗?
(1);(2).
师生共同想办法,想到能否把数转化成较整的数?
变形成:,
再试试把它当成多项式乘法来算算,有什么发现?
继续用你发现的方法算算,,,成功了吗?
我们把这个有趣的结论整理并推广,就可以得到今天要学习的一个乘法公式,平方差公式。
二、新课讲解。
探究新知。
1.观察相乘的两个多项式有什么特点?运算的结果有什么特点?
讨论交流后总结出:两个数的和与这两个数的差的积,等于这两个数的平方差。
2.把式子里具体的数换成字母表示的数,结论还成立吗?
3.从上面的计算中你有什么发现呢?
引导学生发现对于不同形式的两个数,都有它们的和与它们的差的积都等于它们的平方差!用公式表示就是:,这里字母是任意形式的两个数。这个公式叫做平方差公式。
下列多项式乘法中,能用平方差公式计算的是_______________(填写序号)。
(1);(2);(3);
(4);(5);(6).
学生分组讨论交流,归纳什么情况下可以使用平方差公式。通过讨论,对平方差公式的理解达到一个新的高度:所谓两数和、两数差,从多项式的角度来看,就是有一项相同(),有一项相反(和),只要相乘的两个多项式具备这样的特点,都可以用平方差公式计算。不难判断,上面的式子中(2)、(5)、(6)都可以用平方差公式计算。
三、典例剖析。
师生共同解答,教师板书。初学运用时要写清楚步骤。
学生解答,关注学生是否理解平方差公式,能否正确识别乘法公式里的。
例3.计算:
学生解答,教师巡视,关注学生能否合理变形,灵活运用公式计算。
四、课堂练习。
1.下面各式的计算对不对?如果不对,应怎样改正?
(1);
(1);(2);
(3);(4).
3.计算:
(1);(2);
教师要注意发现学生的错误,组织学生对错误进行分析,对于第1题可以引导学生分析导致错误的原因。
五、小结。
师生共同回顾平方差公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业。
p50第1、6题。
平方差公式教学设计理念(热门14篇)篇九
通过教学我对本节课的反思如下:
1、本节课我从复习旧知入手,在教学设计时提供充分探索与交流的空间,使学生经历观察,猜测、推理、交流、等活动。对于平方差公式的教学要重视结果更要重视其发现过程,充分发挥其教育价值。不要回到传统的“讲公式、用公式、练公式、背公式”学生被动学习的'局面。我在教学时没有直接让学生推导平方差公式,而是设置了一个做一做,让学生通过计算四个多项式乘以多项式的题目,让学生通过运算并观察这几个算式及其结果,自己发现规律。目的是让学生经历观察、归纳、概括公式的全过程,以培养学生学习数学的一般能力,让学生体会发现的愉悦,激发学生学习数学的兴趣,感觉效果很好。
不足:在学生将4个多项式乘多项式做完评价后,应及时把他们归纳为某式的平方差的形式,以便学生顺理成章的猜测公式的结果。
2、学生刚接触这类乘法,我设计了两个问题(1)等号左边是几个因式的积,两个因式中的每一项有什么相同或不同之处。(2)等号右边两项有什么特点?便于学生发现总结。在这两个二项式中有一项(a)完全相同,另一项(b与—b)互为相反数。右边为这两个数的平方差即完全相同的项的平方减去符号相反的平方。公式中的a,b不仅可以表示具体的数字,还可以是单项式,多项式等代数式。提醒学生利用平方公式计算,首先观察是否符合公式的特点,这两个数分别是什么,其次要区别相同的项和相反的项,表示两数平方差时要加括号。平方差公式(a—b)(a+b)=a2—b2,它是特殊的整式的乘法,运用这一公式可以简捷地计算出符合公式的特征的多项式乘法的结果。我很细地给学生讲了以上特点,学生容易接受,课堂气氛活跃,收到了一定的效果。
3、本节课如能将平方差公式的几何意义简要的结合说明,更能体会数学中数形结合的特点,因时间关系放在下一课时。
4、学生错误主要是:(1)判断不出哪些项是公式中的a,哪些项是公式中的b;(2)平方时忽视系数的平方,如(2m)2=2m2。针对这一点在课堂教学中应着重对于共性的或思维方式方面的错误及时指正,以确保达到教学效果。平方差公式是乘法公式中一个重要的公式,形式虽然简单,学生往往学起来容易,真正掌握起来困难。部分学生只是死记硬背公式,不能完全理解其含义和具体应用。
总之,在以后的教学中我会更深入的专研教材,结合教学目标与要求,结合学生的实际特点,克服自己的弱点,尽量使数学课生动、自然、有趣。
平方差公式教学设计理念(热门14篇)篇十
:1、进一步提高分析,解决问题的能力。
2、学会条件整理,明晰解题思路。
3、运用二元一次方程解决有关配套与设计的应用题。
配套的关键在于:做上衣和做裤子的条数是相等的(也可以理解为相等数量关系)。
另一相等关系体现在:做上衣和做裤子的布料之和为600米。
甲乙两种作物的单位面积产量的比是1:1.5是什么意思?
甲、乙两种作物的总产量的比是3:4是什么意思?
本题有哪些等量关系?
解这个方程组,得。
过长方形土地的长边上离一端约处,把这块土地分为两块长方形土地,较大一块土地种种作物。较小一块土地种种作物。
当堂检测题。
拉机每天耕地亩,可列方程组。
2、某校运动员分组训练,若每组7人余3人,若每组8人,则缺5人,设运动员人数为人,组数为组,则列方程组()。
a、b、c、d、
3、某地区“退耕还林”后,耕地面积和林地面积共180平方千米,耕地面积是林地面积的25%,设耕地面积为平方千米,林地面积为平方千米,根据题意,可得方程组()。
a、b、c、d、
4、某人身上只有2元和5元两种纸币,他买一件物品需支付27元,则付款的方法有()。
a、1种b、2种c、3种d、4种。
5、如图,一个长形,它的长减少4厘米,宽增加2厘米,所得的是一正方形,它的面积与原长方形的面积等,求原长方形的长和宽。
平方差公式教学设计理念(热门14篇)篇十一
平方差公式本节课的重点是要学生明白平方差公式及其推导(含代数验证和几何验证),并能应用平方差公式简化运算,其中关键是要学生明确平方差公式的结构特征,准确找到a、b。为了让学生对平方差公式有个全面的认识和了解。先让学生计算符合平方差公式的两位数乘法,进而将数转化为字母,从代数的角度,利用多项式乘多项式的知识,推导出平方差公式,接着从几何角度让学生加以解释说明。在此基础上,通过分析公式的结构特征,加深对公式的理解。之后,设计了一个“寻找a、b”的环节,通过这个练习进行难点突破。引导学生反思练习过程,得出“谁是a,谁是b,并不以先后为准,而是以符号为准”这一结论。紧接着给出两组例题,考察学生对公式的应用。最后通过一组判断题和补充练习,拓展学生的.思维水平。
为了给学生渗透数形结合的思想,要从代数、几何两个角度证明平方差公式,但是从哪个角度入手,有利于知识的衔接,便于学生理解。最终决定给让学生猜想结论,再用代数方法加以证明,后给出几何解释,符合知识的发生过程。
对于课本中的公式文字说明是“两数和与这两数差的积”的理解:公式中“a、b不仅表示一个数或字母,还可以表示代数式”。但这里说的是“两数”,原因是所有的规律最初都是在具体的数字中发现的,然后才推广到字母。所以这里说的数不再是具体的数,而是代表一个整体;公式中说的“两数和与两数差的积”,从这个角度说,这两项应是完全相同的,差别只在于运算符号上。但由于我们之前介绍过“代数和”,(a+b)(a-b)也可以理解为(a+b)[a(-b)],就像许多教参上说的,是相同项与互为相反数的项,这样就与课本定义发生矛盾。为了避免这个问题,我在介绍公式结构特征时,只说“有一项完全相同,另一项只有符号不同”,学生可以自己去理解。
平方差公式教学设计理念(热门14篇)篇十二
1、左边为两数的和乘以两数的差,即在左边是两个二项式的积,在这两个二项式中有一项(a)完全相同,另一项(b与-b)互为相反数。右边为这两个数的平方差即完全相同的项的平方减去符号相反的平方。
2、公式中的a,b不仅可以表示具体的数字,还可以是单项式,多项式等代数式。
提醒学生利用平方公式计算,首先观察是否符合公式的特点,这两个数分别是什么,其次要区别相同的项和相反的项,表示两数平方差时要加括号。
平方差公式教学设计理念(热门14篇)篇十三
本节课采用情景—探究的方式,以猜想、实验、论证为主要探究方式,得出平方差公式,应用逆向思维的方向,演绎出平方差公式,对公式的应用首先提醒学生要注意其特征,其次要做好式子的变形,把问题转化成能够应用公式的方面上来,应用公式法因式分解的过程,实际上就是转化和化归的过程。在解决认识平方差公式的`结构时候,重点突出学生自我思想的形成,能够充分地不公式用自己的语言来叙述,在整个教学设计中,教师只作为了一个点拨者和引路人。然后应用有梯度的典型例题加以巩固,在学生头脑中形成一个清晰完整的数学模型,使学生在今后的练习中游刃有余。
不足之处:
教学中时间把握还是不足,在设计的题目中不怎么合理,应按题目的难度从易到难。
有些题目的归纳可放手给学生讨论后由学生说出,而不是教师代替。小组评价做的不够,没有足够的小组的活动,没有小组的竞赛。
教学语言还太随意,数学的语言应该严谨。在语调上应该有所变化。
平方差公式教学设计理念(热门14篇)篇十四
(4)(+3z)(—3z)=_____。
(1)(x+1)(1+x),
(2)(2x+)(—2x),
(3)(a—b)(—a+b),
(4)(—a—b)(—a+b)。
帮助学生理解公式的特征,掌握公式的特征是正确运用公式的关键,除了掌握公式的特征外还有必要理解公式中的字母a、b具有广泛的含义,几字母a、b可以表示具体的数、也可以表示单项式或多项式,由于学生的认知能力有一个过程,教学中应由易到难逐步安排学习这方面的内容。