教学计划可以帮助教师有效地安排课堂时间,合理组织教学内容,提高学生学习的积极性和参与度。阅读以下教学计划范文,可以提高你的教学设计和教学评估能力。
比例的意义数学教学设计(模板20篇)篇一
使学生在具体情境中理解比例的意义,掌握组成比例的关键条件;能应用比例的意义判断两个比能否组成比例。
使学生经历观察、比较、判断、归纳等活动,深化对概念的理解。
使学生感受数学知识的内在联系,学会综合运用所学知识,增强分析问题和解决问题的能力。
培养学生进行初步的观察、分析、概括能力,发展学生的思维,培养学生学习数学的兴趣。
在具体情境中理解比例的意义。
运用比例的意义判断两个比能否组成比例,并能正确组成比例。
:教学课件。
(一)创设情境,引出课题
(大屏幕出示一张天安门广场升国旗)
师情境创设:同学们,老师假期中外出正好赶上了一个特别激动人心的场景,想知道是什么场景吗?(生答想,教师大屏幕展示照片,但是特别小,学生说看不清)这时教师放大图片,但只放大长,把照片拉变形,学生还说看不清;然后老师再展示只放大宽的照片,学生还说看不清,最后老师展示按比例放大的照片,这时学生异口同声的回答是升国旗场面。
师:同学们,刚才在老师第三次放大照片的过程中,运用了一个数学知识,这个知识不但能帮助我们不变形的放大和缩小照片,还可以帮助我们解决生活中的许多问题,这个知识就是比例。(板书:比例)
(设计意图:借助图片的放大这一生活情景,让学生初步感知比例就来源于生活,并能解决生活中的问题,由此激发学生学习比例的兴趣和欲望。)
(二)搭建框架,整体感知
提问:看到比例,你都想了解关于它的哪些知识?
生自由回答后,教师大屏幕出示整单元知识框架的思维导图。
师:我们这个单元共给我们安排了这些内容,就帮助我们进一步学习你想了解的知识。
师指引学生通过思维导图整体感知本单元的知识,点明这节课要探究的是比例的意义并板书课题。
(设计意图:借助思维导图形式整体感知单元框架,让学生对所学知识有个系统化的认知,避免知识碎片化,有助于发展学生的数学思维。)
(三)复习旧知,搭建桥梁
师:请同学回顾一下你所掌握的比的知识,和同学们说一说。
学生汇报,教师适时用大屏幕展示比的知识。
(设计意图:“比例”的学习基础是“比”,学生也能从字面上感党到“比例”和“比”有联系的。通过回顾比的知识,为学生探究比例的意义做好铺垫,为探索新知搭建桥梁。)
(四)创设情境,探究新知
1、提出问题,初步感知比例的意义。
(1)师:我们的生活中,像放大照片这样按比例扩大或缩小的现象处处存在。请同学们看大屏幕(大屏幕展示三个不同场景不同大小的国旗)这是三面尺寸不同但形状完全相同的国旗。国旗是我们国家的标志,它的形状是完全不能改变的。那么,国旗是按照什么规格来制作的呢?国旗的长与宽之间是不是存在着什么关系呢?下面就请同学们在自己的练习本上完成屏幕上的第一个要求大屏幕展示第一个要求:随意选择其中任意两面国旗,写出每一面国旗长与宽的比,然后求出比值,看看有什么发现。
(2)学生自己在练习本上解决问题。
(3)分别指名三位同学在黑板上板书三组不同的比,写出比值。
(4)全班交流。
引导学生说出自己的发现,得出结论:每两面国旗长与宽的比的比值都相同。不同场合用到的国旗大小会不一样,但是长与宽的比是固定的。
(5)师引导得出:因为比值相等,所以可以用等号连接每组的两个比。
(设计意图:教师继续利用情境中的照片,给出数据让学生探究。学生在对数据充分观和分析的过程中,积累宝贵的数学经验,初步感知比例的意义。)
2、丰富情境,理解比例的意义
(2)学生独立思考,在本子上记录找到的相同比值的比,并写成等式。
(3)汇报交流
师:谁来说一说自己的发现?
生答师板书三组等式。
(设计意图:概念的建立应该经历从具体到抽象的过程,但这个“具体”不能仅仅局限于一组数据。教师提供国旗情境,给学生提供更为充分的探究和体验的机会,为后续的抽象概括出概念做好铺垫。)
3、冲突设疑,深化理解
师:既然国旗是“按比例”缩放的,那是不是国旗中任意数据组成的比都能构成等式呢?
学生思考。
师:老师这里有两个比,它们是否相等?
板书一组比,即天安门国旗长:天安门国旗宽和学校国旗宽:学校国旗长。
学生发现不相等。
师为什么不相等。
生,一个是长:宽,另一个也是长:宽才行。
(设计意图:形成完整的概念,除了引导学生观察到概念的显性结构特征和数量特征之外,还要帮助学生发现概念的隐性特点。通过引导,学生对比例的意义的内涵和外延都有了较为深入的思考。)
4、讨论交流,抽象归纳比例的概念。
(1)请同学们观察黑板上的这些等式,你有什么发现?请同学们先在小组里说一说,然后全班交流。
(2)全班汇报交流,得出结论:全有两个比,两个比的比值相等。
(3)教师指出:像这样的式子就是比例。
师:你能用自己的话说说什么是比例吗?
生答:两个比值相等的比写成的等式。
师:两个比要符合什么样的条件就可以成为比例呢?
生答后师(课件呈现):数学书上是这样描述比例的,学生齐读比例的概念。
(设计意图,在学生的讨论与交流中,对比例的概念己经基本建立,完成了由具体到抽象的过程。)
(五)练习巩固,综合运用
1、数字中的比例
师:刚才大家在照片、国旗尺寸中找到了比例。你能不能判断下面四组比能不能组成比例?如果能,请你把它写下来。
(1)6:10和9:15
(2)20:5和1:4
(3)0.6:0.2和3/4:1/4
(4)4:3和2:1.5
学生独立练习,教师巡视。
2、图形中的比例
顶设:两个三角形底与高的比可以组成比例,这两个三角形形状是一样的。
师:当两个三角形“按比例”缩小或放大时,它们的形状不变,请学生写出对应数的比组成比例。
3、生活情境中的比
一辆汽车第一天4小时行驶了200千米,第二天3小时行驶了150千米。根据汽车行驶的情况,看能否组成比例?能的话写出来。
学生独立完成
4、比和比例对比
判断下面哪些是比例,哪些不是
1:5=5:1()
40:5=4×2()
1:3=2:6()
5:6()
(六)课堂总结
师:今天我们学习了和比例有关的知识,你们有什么收获?
学生回顾知识要点。
大屏幕用思维导图的形式展示本课的内容要点。
(七)联系生活,拓展延伸
师:其实比例在我们的生活中无处不在,我们来看一看(课件介绍黄金比例)
师:穿高跟鞋也与比例有关,你知道女土为什么穿上高跟鞋会更美吗?
(设计意图:数学从生活中来,又到生活中去。学生在学会“比例”后再去理解生活中的各种现象,更容易对数学产生亲切感。全课由生活现象设疑开始,又由生活现象释疑结束,首尾呼应。)
(八)布置作业
请同学们制作一张数学小报,把今天所学的知识在小报中呈现出来,可以借助思维导图的形式。
1、有意识的培养学生的数学思维能力。
暨东师大培训回来之后,我对自己的教学进行了深入的思考,其中触动我的就是“培养思维比传授知识更重要”。于是,在本堂课的教学环节中,我有意识的设计了利用思维导图整体感知本章内容环节,目的就是给学生建立系统的知识框架,让他们了解学习每节内容的目的是什么,也感受到思维导图是归纳整理的有利工具。让学生带着目标去学习,对于激发他们的学习动机是有益的。这个环节的安排,可以在一单元的开篇一课的课堂上,也可以是在单元开始之前的预习环节。
2、提供丰富的生活素材,为学生探索新知奠定基础。
通过让学生验证大量的生活中的比的比值相等环节,为他们提供大量的生活中的素材,就是为了让他们水到渠成的理解比例的意义奠定基础。但这个环节因为时间关系,我觉得还稍有欠缺,应该再提供给他们变换形式写比验证的机会。因为这里处理不当,就造成了巩固练习中按规律写出比例题目的难度。应在以后的教学中有所更正。
比例的意义数学教学设计(模板20篇)篇二
知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
(一)复习猜想导入,引出问题。
1、成正比例的量有什么特征?什么叫正比例关系?
2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。
达成目标:猜想导课,激发探究愿望。
(二)共同探索,总结方法。
1、明确这节课的学习目标:(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
2、情境导入,学习探究。(1)我们先来看一个实验。
高度(厘米)。
底面积(平方厘米)10。
体积(立方厘米)。
提问:根据列表,你从中你发现了什么?
(2)学生讨论交流。
(3)引导学生回答:表中的两个量是高度和底面积。
高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。
每两个相对应的数的乘积都是300.(4)计算后你又发现了什么?
每两个相对应的数的乘积都是300,乘积一定。
教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。
教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)。
(5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)。
小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?
(6)归纳总结反比例的意义。(7)比较归纳正反比例的异同点。
达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。
(三)运用方法,解决问题。
1、生活中,哪些相关联的量成反比例关系,举例说一说。
2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?
3、出示反比例图像,与正比例图像进行比较学习。
达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。
(四)反馈巩固,分层练习。
判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。
(五)课堂总结,提升认识。
反比例。
高度(厘米)。
底面积(平方厘米)10。
体积(立方厘米)。
300。
300。
300。
300300高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。高×底面积=水的体积(一定)反比例关系式:x×y=k(一定)。
比例的意义数学教学设计(模板20篇)篇三
1.使学生在具体情景中理解比例的意义,掌握组成比例的关键条件;能应用比例的意义判断两个比能否组成比例。
2.使学生感受数学知识的内容联系,学会综合运用所学知识,增强分析问题和解决问题的能力。
:在具体情境中理解比例的意义。
运用比例的意义判断两个比能否组成比例,并能正确组成比例。
教学课件。
(一)复习旧知识导入新课。
同学们,我们已经学了有关比的知识,请大家回忆一下什么叫比?什么叫比值?比的基本性质是什么?看来,同学们对比的知识掌握的不错。今天我们一起来学习与比有关的知识,比例的意义。
(二)探究新知识
1.初步理解比例的意义。
请同学们看一组图片,依次出现三面国旗课件。让学生分别说出都是什么地方的国旗?
请仔细观察这三面国旗有哪些相同的地方和不同的地方?(这三面国旗形状相同,大小不同。)
师:不同场合的国旗大小是不一样的,但是他们是按一定的比制作的,在制作过程中,每面国旗长与宽存在有趣的比,你想知道吗?那就让我们算一算吧。
请大家根据国旗下面的数据,分别算出每面国旗长与宽的比值。
让一名学生在黑板上计算,其余学生写在练习本上。
提问:通过计算你发现了什么?(每面国旗长与宽的比值相等。)
根据这三个比,从中任意选两个比能不能组成一个等式。
让学生分别说出三个等式:0202
5:10/3=3/25:10/3=2.4:1.6
2.4:1.6=3/2=5:10/3=60:40
60:40=3/22.4:1.6=60:40
提问:这些等式有什么相同点?(都有两个比,并且两个比的比值相等。)
像这样的等式,叫做比例?
谁能用自己的话说一说什么叫比例?学生
引导学生看课本40页教材上是怎样定义的?学生齐读。
教师板书:表示两个比相等的式子叫做比例。
在这句话中有哪些字或词最关键:两个比相等。
师:根据比例的意义让学生举一些比例的例子。
生:a:b=c:d或a/b=c/d
2.深化了解比例的意义
刚才我们通过计算发现,国旗长与宽的比值相等。
所以每两面国旗的长与宽可以组成比例。
除此之外,还有哪些比可以组成比例?分别写出来,根据国旗下面长与宽的数据小组合作交流:
师:根据学生汇报,将组成的比例板书。
宽:长=宽:长长:长=宽:宽
10/3:5=40:605:2.4=10/3:1.6
10/3:5=1.6:2.45:60=10/3:40
1.6:2.4=40:602.4:60=1.6:40
老师这里有两个比它们是否相等?强调:只有对应的量之间的比比值才相等。才可以组成比例。板书:第一面的长:第一面的宽和第二面的宽:第二面的长。学生发现不相等,师:为什么不相等。师结合板书归纳(出示课件)师根据学生们找的结果,我们看到这三面国旗的长与宽的比值都相等,所以每面国旗的长与宽的比都可以组成比例。同样,宽与长的比值也都相等,所以每两面国旗宽与长的比可以组成比例。
每两面国旗长与长的比可以和宽与宽的比组成比例。
(三)练习巩固
做一做。
(1)6:10和9:15
(2)20:5和1:4
(3)0.6:0.2和3/4:1/4
(4)4:3和2:1.5
两名同学板书,其他同学写在练习卡上,让学生讲解并纠错。
(四)请同学们看一看比例,比和比例有什么联系和区别?根据学生回答教师课件出示表格。
意义:两个数相除叫做两个数的比。表示两个比相等的式子。
项数:两项四项
联系:比例是由两个比组成的。
(五)当堂训练:
(六)课堂总结:
今天我们学习了比例的意义,你有什么收获?
比例的意义数学教学设计(模板20篇)篇四
购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。
2、成正比例的量有什么特征?
二、探究新知。
1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。
2、教学p42例3。
(1)引导学生观察上表内数据,然后回答下面问题:
a、表中有哪两种量?这两种量相关联吗?为什么?
b、水的高度是否随着底面积的变化而变化?怎样变化的?
d、这个积表示什么?写出表示它们之间的数量关系式。
(2)从中你发现了什么?这与复习题相比有什么不同?
a、学生讨论交流。
b、引导学生回答:
(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。
(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)。
三、巩固练习。
1、想一想:成反比例的量应具备什么条件?
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
(6)你能举一个反比例的例子吗?
四、全课小节。
这节课我们学习了成反比例的量,知道了什么样的'两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。
五、课堂练习。
p45~46练习七第6~11题。
比例的意义数学教学设计(模板20篇)篇五
1、能根据实例说出比例的基本性质。
2、能说出比例的各部分的名称。
3、能应用比例的基本性质解决实际问题。
理解比例的基本性质。
灵活应用比例的基本性质解决问题。
自主探究,合作交流。
一、铺垫导入:
1、师:什么叫比例?生答完后出示:
2:80、80:2、5:200、200:5。
问:上面哪两个比可以组成比例?
学生判断,并且说说判断的方法。
2、刚才,同学们是根据比例的意义先求出比值再作出判断的。这就需要分别求出每个比的比值。但是老师还有一种方法来进行判断,能够很快的判断出来。我们来试一试。
请同学们随意说出两个比,师进行判断。
3、想不想知道老师为什么判断得这么快?这就用到我们今天要学习的内容:比例的基本性质(板书),出示学习目标。
二、探索新知:
1、要研究比例的基本性质,首先我来认识一下比例各部分的名称(请自学课本34页第一自然段)。
2、同学们,请你观察我们刚才所组成的这几个比例,看看你发现了什么?
1、学生观察黑板上板书的几个比,想想有什么发现?并且可以两个人互相说一说,看看是不是和你发现的一样。
两个人一组,互相说说自己的发现,并且举个例子来验证。提示:
1)多举出几个例子,
2)所举的例子尽量包括整数、小数和分数。看看是不是都符合这个规律。同学们互相交流、验证。
2、集体交流:
请一位同学汇报,其他同学可以补充或提出自己的见解。
师板书同学们所举的例子。
强调:写成分数形式的比要找准比例的内项和外项。其他同学可以计算一下来进行验证他的发现。
师:老师也写了一个比例(板书:2.4∶1.6=60∶40)。
生:共同计算。
3、学生用自己的语言总结发现的规律。
4、小结:
同学们观察得很仔细,通过验证,我们发现了比例的基本性质。
板书:在比例中,两个外项的积等于两个内项的积。这叫做比例的基本性质。
比例的意义数学教学设计(模板20篇)篇六
1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。
2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。
3、初步渗透函数思想。
教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。
教学难点:利用反比例的意义,正确判断两个量是否成反比例。
比例的意义数学教学设计(模板20篇)篇七
2、了解比例和比的区别。
3、能根据比例的意义正确判断两个比能否组成比例。
4、探索国旗中蕴含的数学知识,渗透爱国主义教育。
一、创设情境,目标认同。
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来,并注明比的各部分的名称。
2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让学生求出它们的比值。
12:16。
3/4:1/8。
4.5:2.7。
10:6。
学生求出各比的比值后,再提问:你有什么发现?
(4.5:2.7的比值和10:6的比值相等。)。
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)。
二、自主探究,构建新知。
1、学生观察课本情境图,激发爱国情操。
2、板书国旗的长和宽,并提出问题。
天安门升国旗。
仪式:长5米,宽10/3米。
校园升旗仪式:长2.4米,宽1.6米。
教室场景:长60厘米,宽40厘米。
签约仪式:长15厘米,宽10厘米。
师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?
3、学生探索,发现问题。
师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?
学生自主观察、计算,发现国旗的长和宽的比值相等。
(1)比较学校操场上和教室里的国旗长与宽的比值。
2.4:1.6=3/260:40=3/2。
2.4:1.6=60:40。
(2)在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?学生回答,教师板书(说明:四面国旗的大小不同,但因为是按照一定的比制作的,它们的长与宽的比值是相等的。)。
像这样表示两个比相等的式子叫做比例。
4、我们也学过不同的两个量也可以组成一个比,如:
一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
指名学生读题。
教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。
这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问边填写表格。)。
“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答,板书:
第一次所行驶的路程和时间的比是80:2。
第二次所行驶的路程和时间的比是200:5。
让学生算出这两个比的比值。
指名学生回答,教师板书:80:2=40,200:5=40。
让学生观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)。
教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。
5、比较“比”和“比例”两个概念。
三、练习反馈,巩固新知。
做p33“做一做”。
让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。
四、拓展迁移,升华新知。
比例的意义数学教学设计(模板20篇)篇八
1、结合具体情境,通过计算,能说出比例的意义。
3、通过观察、比较、小组讨论说出比和比例的区别。
比例的意义,应用比例的意义判断两个比是否能构成比例。
教学过程。
一、复习旧知、导入新课。
同学们,以前我们学习了比,现在大家想一想,什么是比?比有几项?比有什么性质?并给我们举出实例。
二、比较分析,探究新知。
1、出示情景图,说一说各幅图的情景。
第一幅:xx前的升国旗仪式。
第二幅:学校每周一的升旗仪式。
第三幅:教室前面的红旗。
第四幅:谈判桌上的红旗。
(对学生进行爱国主义教育)。
问题:
1:你能说一说这四幅图中国旗的相同点和不同点吗?
2:你们想知道这些长和宽是多少吗?
出示国旗的长宽数据。
3:请同学们观察、计算一下,国旗的长和宽的比值是多少?
4:探求共性,概括意义。
师:比较一下,你什么发现?
师:那既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!
生:用等号(师把左右两个中间板书=)。
生:表示相等的两个比。
生:表示两个比值相等的比。
(师板书:比相等)。
师:像这样表示两个比相等的式子叫做比例。板书。
同桌互相说说。
这个就是今天我们学习的——比例的意义(板书:比例的意义)。
三、合作探究,进一步理解比例。
1、探索组成比例的条件。
师:请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?
(教师再强调:一定是比值相等的两个比才能组成比例。)。
2、寻找比例。
师:你还能从四面国旗中找出哪些比例?(学生写在练习本上,然后汇报。教师板书2.4∶1.6=15∶1060∶40=5∶)。
3、介绍比例的第二种表示方法。
师:我们在学习比的时候,可以把比写成分数的形式,那比例也能写成分数的形式吗?怎么写?(学生口答,教师板书:)。
4、区分比和比例。
师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?(小组交流)。
从形式上区分:比由两个数组成;比例由四个数组成。
从意义上区分:比表示两个数相除;比例表示两个比相等的式子。
四、根据意义,判断比例。
生:看比值是不是相等。
五、总结。
师:这节课,大家都非常积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)。
比例的意义数学教学设计(模板20篇)篇九
教学目标:
1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。
2、培养学生概括能力和分析判断能力。
3、培养学生用发展变化的观点来分析问题的能力。
教学重点:
教学难点:
理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律。
教法:
启发引导法。
学法:
自主探究法。
教具:
课件。
教学过程:
一、定向导学(5分)。
1、已知路程和时间,求速度。
2、已知总价和数量,求单价。
3、已知工作总量和工作时间,求工作效率。
4、导入课题。
今天我们来学习成正比例的量。
5、出示学习目标。
二、自主学习(8分)。
自学内容:书上45页例1。
自学时间:8分钟。
自学方法:读书法、自学法。
自学思考:
1、举例说明什么是成正比例的量,成正比例的量要具备几个条件?
(1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。例如底面积一定,体积和高成正比例。
y/x=k(一定)。
(4)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是175立方米?225立方厘米的水有9厘米。
2、归类提升。
三、合作交流(5分)。
1、正比例图像是什么样子的?
2、完成46页做一做。
3、各组的b1同学上台讲解。
四、质疑探究(5分)。
1、第49页第1题。
2、第49页第2题。
3、你还有什么问题?
五、小结检测(8分)。
1、什么是正比例关系?如何判断是不是正比例关系?
2、检测。
六、堂清作业(9分)。
练习九页第4、5题。
比例的意义数学教学设计(模板20篇)篇十
教学目标:
1、结合丰富的事例,认识正比例。
2、掌握成正比例变化的量的变化规律及其特征。
3、能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学重点:认识正比例的好处和怎样决定两个变化的量是不是成正比例。
教学难点:决定两个变化的量是不是成正比例。
教具准备:课件。
教学过程:
一、导入新课:
出示:路程、单价、正方形的边长……。
根据上面的某个量,你能想到些量?为什么?
在我们的生活中象这样的一个量随着另一个量的变化的例子还有很多很多,这天我们就继续来研究这些相互依靠的变量间的关系。
二、新课探究:
(一)、活动一:初步感受正比例关系。
1、课件出示正方形周长与边长、面积与边长的变化状况:
(1)请把表格填写完整。
(2)观察表格,你能发现什么规律?
(群众填表后,独立观察,发现规律,
2、组织学生交流发现的规律,引导学生比较两个规律的异同点。
3、小结:正方形的周长和面积虽然都是随着边长的增加而增加,但这两个规律又有一个不同点,在变化的过程中,正方形的周长与边长的比值是不变的,都是4,而正方形的面积与边长的比值是一向在变化的。
所以两个相互依靠的变量之间的关系是不一样的。
(二)、活动二:结合实例体会正比例的好处:
1、课件出示:
(1)将表格填完整。
(2)从表格中你能发现什么规律?
(以小组为单位,选取一个情境进行研究。)。
2、交流汇报:
(三)、活动三:揭示正比例的好处。
1、这2规律有什么共同点?
教师随着学生的回答板书:
都是一个量随着另一个量的变化而变化,并且这两个变量所对应的数的比值持续不变。
像这样两个相关联的量,一个量随着另一个量的变化而变化,并且两个量的比值不变,这两个量就成正比例。(教师随着板书完整。)。
3、结合实例说明:
表一中路程随着时间的变化而变化,并且路程和时间的比值是不变的,所以路程和时间成正比例。
学生说一说表二的两个量。
4、用字母表示出正比例关系。
(四)、活动四:决定两个量是不是成正比例的量。
1、出示活动一中的表格:
学生自主决定后交流。
2、看来决定两个量是否成正比例务必具备几个条件?
强调:只有具备两个条件,我们才能说这两个量成正比例。
三、课堂练习:
1、根据下表中的数据,决定表中的两个量是不是成正比例:
平行四边形的面积/cm2。
6
12。
18。
24。
30。
平行四边形的高/cm。
1
2
3
4
5
(1)。
买邮票的枚数/枚。
1
2
3
4
5
所付的钱数/元。
0.8。
1.6。
2.4。
3.2。
4.0。
(2)。
2、小明和爸爸的年龄变化状况如下:
小明的年龄/岁。
6
7
8
9
10。
11。
爸爸的年龄/岁。
32。
33。
(1)把表格填写完整。
(2)父子的年龄成正比例吗?为什么?
3、决定下面各题中的两个量是否成正比例,并说明理由。
(1)每袋大米的质量必须,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长和长。
(4)圆的周长和直径。
(5)圆的面积和半径。
四、课堂总结:
透过本节课的学习,你学到了什么新本领?其实啊,在生活中还有很多成正比例的两个量,课后请大家用心去发现,找出生活中成正比例的量。
正比例。
一个量随着另一个量的变化而变化。
两个量的比值是不变。
x=ky(k必须)。
教学反思:
1.课堂流程的设计,延展了探究空间。
本节课为学生设计了四大板块,第一板块“初步感受”板块,在这一板块利用学生熟悉的数学情境“正方形的周长与边长、面积与边长的关系”让学生明白同样都是一种量随着另一种量的增加而增加,但在变化过程中却存在着不同的关系。让学生对正比例有个初步的感受。第二板块是选取材料、主体解读的“体会好处”板块。在这一板块中,借助两则具体材料的依托,让学生经历自主选取、独立思考、小组交流和评价等数学活动,使学生充分积累了与正比例知识密切相关的原始信息和感性认识。第三板块是交流思维、构成认识的“概念生成”板块。在这一板块中,学生立足小组间的观点交流和思维共享,借助教师适时适度的点拨,自然生成了正比例的概念,并透过回馈具体材料的概念解释促进了理解的深入。第四板块是“应用”板块,在学生认识了正比例后,让学生自主决定两个量是否成正比例,这两先以表格出现,再以文字叙述的方式呈现,使学生从直观认识向抽象思维发展。这样的设计,使探究空间却更为宽广。
2.数学材料的呈现,丰富了体验途径。
为了给学生的数学学习带给更为充足的材料,将第二三个情境作为可供学生自主选取的两则数学材料进行整体呈现。这样教学的结果是:对于自己选定的数学材料,学生能够凭借个体独立解读、小组交流互评的渐进过程,充分深入地自主探究,在亲历和体验中达成学习目标。而对于另一个未选的数学材料,学生则能够借助全班交流这一互动环节分享其他小组的学习成果,在倾听和欣赏中达成学习目标。这样的教学设计,使得学生的数学学习不再是面面俱到和点到为止,而是重点突破且走向深入的。
3.学习方式的选取,促进了深度感悟。
教师让学生采取选取材料、自主探究、合作共享的学习方式,并注意对学生的学习进行适度的点拨,有利于促进学生的深度感悟。由于学习材料是自己选取的,因而学习过程便更多地体现自觉、自主、自我的主体意味。在自主探究的过程中,学生初步积累了丰富真切的原始体验。在与同伴交流时,学生在表达中巩固了自己的探究成果,同时又在倾听中分享了别人的学习收获、体会。能够说,虽然每个学生只重点研究了一则材料蕴含的规律,但却全面收获了三则材料所彰显的数学事实,这正是数学交流的魅力所在。在此基础上,借助教师恰当及时的教学点拨,自然实现了“数学事实”向“数学概念”的提升。
文档为doc格式。
比例的意义数学教学设计(模板20篇)篇十一
1.联系图形的放大和缩小理解比例的意义,通过练习使学生进一步理解、掌握比例的意义。
2.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
3.通过多样化教学,使学生自主获取知识,全面参与教学活动,培养学生分析、概括能力、和数学的思维能力。
4.学生在认识比例的过程中,联系列表策略,初步体会数学领域不同内容的内在联系,建构知识网络,促进有效学习,培养学生对数学的积极情感。
理解比例的意义。
应用比例的意义判断两个比能否组成比例,并能正确地组成比例。
1、求下面比的比值? 90:30 5:10/3 2.4:1.6
(一)学习新知
1.教学比例的意义。
(2). (课件再出示学生照片)师:现在我把这张照片放大,这是放大前后的两张照片。你发现了什么?引导、交流。
生:第二张照片变形了。因为它没有按照一定的比例放大。看!小小的照片就蕴藏着很多数学知识,只要你善于思考,就会有收获!那么今天我们就在比的基础上研究比例——比例的意义。(板书课题)
(3).我们继续看这两张照片,根据所给的数据,你能找出长和宽的比吗?看看有什么发现。
学生独立思考并解答,
生:我发现两个比的比值相等。
师:原来不变形,按比例缩放指的是可以找到两个比值相同的比。因为它们的比值相等,我们可以用等号连接起来,写成这样的一个等式。
师板书,学生在下面写。
师:揭示定义:(板书)像这样表示两个比相等的式子叫做比例。
这就是一个比例。因为比可以写成分数的`形式,所以比例换一种形式写出来。
(板书比例的另一种写法)学生下面写。
师:那么怎么判断两个比是否能组成比例呢?
生:如果两个比化简后的比相同或它们的比值相等,那么这两个比就能组成比例。
2.丰富对比例的感知
师:生活中还有很多“按比例”缩放的现象,(课件出示国旗图)这是在学校出现的两面国旗,国旗是我们中华人民共和国的标志,请你根据长宽的数据,看看能不能组成比例。
学生独立思考,找生汇报。
师:不同场合的国旗大小不一样,但长与宽的比是固定的。除了长与宽的比,你还能组成其它的比例吗?学生交流,汇报。
师:长与宽的比值相等,宽与长的比值相等,长与长宽与宽比值也相等,所以都能组成比例。但是,只有对应量之间的比,比值才相等,才可以组成比例。
谈话:你会判断两个比能否组成比例了吗?下面我们来检验一下。
1.完成练习(课件出示,要求写格式)
学生板演
2、完成表格题,注意学生找出对应的量。
3、三角形找比例,看能找出多少个。
师:其实比例在生活中无处不在,我们一起看一看。
比例的意义数学教学设计(模板20篇)篇十二
1.知识与技能。
理解反比例函数的意义;根据已知条件确定反比例函数的解析式。
2.过程与方法。
学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际问题;发展学生的抽象思维能力,提高数学化意识。
3.情感态度与价值观。
经历反比例函数的形成过程,体会数学学习的重要性,提高学生学习数学的兴趣;在学习过程中进行分组讨论,培养学生的合作交流意识和探索精神,体验学习的快乐与成就感。
教学重点。
理解反比例函数的意义;根据已知条件确定反比例函数的解析式。
教学难点。
反比例函数解析式的确定。
教学过程。
一、创设情境,导入新课。
问题1:(课件展示)。
问题2:(课件展示)。
问题3:(课件展示)。
下列问题中,变量间的`对应关系可用怎样的函数关系式表示?
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化。
(2)某住宅小区要种植一个面积为1000o的矩形草坪,草坪的长y(单位m)随宽x(单位m)的变化而变化。
(3)已知某市的总面积为1.68×10平方千米,人均占有的土地面积s(单位:平方千米/人)会随全市人口n(单位:人)的变化而变化。
二、观察思考,明晰概念。
1.这些关系式都体现了函数关系,它们是我们曾学习过的正比例函数或一次函数吗?
2.这些函数关系式与正比例函数、一次函数有何不同?
3.这些函数关系式有什么共同的特征?
4.各关系式中两变量之间有什么关系?
5.你能归纳出反比例函数的概念吗?
通过回答以上问题,师生共同总结反比例函数的概念。
三、小组讨论,领悟概念。
1.反比例函数关系式中有几个变量?
2.变量之间存在什么关系?
3.反比例函数还有其他形式吗?若有请指出。
4.反比例函数中,变量x、y和常数k有什么具体要求?为什么?
四、内化新知,拓展应用。
1.下列函数中哪些是反比例函数?请指出反比例函数中的k值。
2.已知y是x的反比例函数,且当x=2时,y=6。
(1)写出y与x的函数关系式。
(2)求当x=4时,y的值。
3.当x为何值时函数y=x-2a-4是反比例函数?
4.已知函数y=y1+y2,与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5。
(1)求y与x的函数关系式。
(2)当x=-2时,求函数y的值。
五、课堂练习。
师生共同完成教课书第40页的练习题。
六、课堂小结。
1.通过本节课的学习你对反比例函数有怎样的认识?
2.反比例函数与正比例函数的区别有哪些?
七、作业布置。
教材中本节习题17.1第1、2、4题。
(责任编辑赵永玲)。
比例的意义数学教学设计(模板20篇)篇十三
教学目标:1.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2.通过动手、动脑、观察、计算、讨论交流等方式,使学生自主获取知识,全面参与教学活动,体验获取获取知识的过程。
3.培养学生在实际生活中发现数学的存在,感受数学的区位和快乐,获得成功体验,增强学好数学的信心,提高学习积极性。适时进行爱国主义教育。教学重点:理解比例的意义。教学难点:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。教学过程:。
一、创设情境。
1、播放国歌:
你知道他们在干什么?
你们知道在哪些地方可以看到国旗呢?
校园升旗仪。
3、媒体出示国旗的长和宽,并提出问题。(1)呈现信息:
天安门升国旗仪式:长5米,宽10/3米。校园升旗仪式:长2.4米,宽1.6米。教室场景:长60厘米,宽40厘米。
4、学生探索,发现问题。
(2)学生自主探索:学生自主观察、计算,发现国旗的长和宽的比值相等。(3)通过计算,发现它们的比值都相等,解释说明我国国旗法规定:任何一面国旗的长宽之比都是3:2。,这是对国旗的尊重,进行爱国主义教育。
二、认识比例,理解含义。
1、引出比例,理解比例的意义。
(1)媒体出示操场上的国旗和教室里国旗长和宽,计算出两面国旗的长和宽的比值。
并板书:
2.4∶1.6=3/2。
60∶40=3/2(2)引导写出:指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并板书:2.4∶1.6=60∶40(3)指着这些等式说:“在数学中,像这样的等式就叫做比例(4)学生尝试说说什么叫比例。
(5)共同归纳,得出结论:表示两个比相等的式子叫做比例。这就是我们这节课所学的内容“比例的意义”。(板书课题)请同学们齐读并理解。
2、探讨一:判断两个比是否能够组成比例,关键是什么?(学生讨论,教师参与引导)。
3、探讨二:我们刚才一直在强调比和比例的联系,那么比和比例有什么区别吗?(小组讨论)。
学生从形式上区分:比由两个数组成;比例由四个数组成。
学生从意义上区分:比表示两个数相除;比例表示两个比相等的式子。
三、
巩固应用。
课本做一做(1)选择两题。(学生汇报比值是否相等,所以成不成比例。)(四)拓展练习(课件演示):
1、猜一猜并填空,说说你是怎样思考的?120:6=():2。
2、生活中的比例。
b、分别写出上午、下午时间与路程的比,求出比值,看两个比能否组成比例?
四、
总结。
评价。
1、课件出示:你说我说大家说,说你说我说大家。(前一句偏重是说收获,后一句是互相评价,当然包括评价老师。)。
2、课件出示老师的话:我为你们今天的表现感到骄傲和感动!期待你们更好的表现!
总结:同学们说的很好,通过这节课的学习,我们认识了比例,并会判断两个比能否组成比例,还会自己根据数据组比例,看来同学们这节课真是掌握了不少的知识,继续加油哦!板书设计:
表示两个比相等的式子叫做比例。
2.4:1.6=3/2。
60:40=3/2。
2.4:1.6=60:40。
教学反思:
比例这部知识是在学习了比的知识和除法与分数关系的基础上教学的,属于概念教学,为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触对应函数的思想,而且可以用来解决日常生活中一些具体的问题。
本节课,为了更好地突出重点,突破难点,按照学生的认知规律,遵循自主性原则,主要让学生在情境中通过观察、计算、比较等的学习过程中掌握知识。为充分调动学生的学习积极性,促进学生有效学习。本节课力求做到以下几点:
一、创造有效学习情境,激发学习激情。
数学课堂教学需要必要的生活情境,这节课为学生提供四个实际情境图,创设这个情境有五方面的考虑:一是歌曲情境引入;二生活情境和已有知识经验、基础引入比例意义的教学;三是依据四面国旗长与宽可以组成多个比例式。四是有助于在教学中渗透爱国主义教育,注重了“数学化”和“生活化”,为学生展现出了“活生生”的思维活动过程,充分发扬自主。
二、活用教材。
教材是提供给学生学习内容的一个文本,我根据学生和自己的情况,大胆对教材进行了再思考、再开发和再创造,用活、用实教材。这节课中在四面国旗的尺寸中找比组成比例,学生比较容易找到国旗长与宽的比,两两可以组成比例。同样国旗宽与长的比,两两也可以组成比例。另外每两面国旗的长之比与它们的宽之比也可以组成比例,课题中通过“你还能找出其它的比例吗?”的提问,鼓励学生打开思路,充分发挥合作学习的作用,调动学习的主动性,从不同角度去寻找,以加深对比例意义的认识。
比例的意义数学教学设计(模板20篇)篇十四
反比例关系和正比例关系一样,是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的正、反比例方面的实际问题。我就这节课的收获、感悟,简要谈谈:
在教学反比例的意义时,我首先是联系旧知、渗透难点。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,提出自主学习“要求”,让学生主动、自觉地去观察、分析、概括、发现规律。对于学生来说,数量关系并不陌生,在以前的应用题学习中是反复强调过的,因此,学生观察、分析、概括起来是较为轻松的。当学完例1时,我并没有急于让学生概括出反比例的意义,而是让学生按照学习例1的方法学习试一试,接着对例1和试一试进行比较,得出它们的相同点,在此基础上来揭示反比例的意义,就显得水道渠成了。然后,再通过说一说,让学生对两种相关联的量进行判断,以加深学生对反比例意义的理解。最后,通过学生对正反比例意义的对比,加强了知识的内在联系,通过区别不同的概念,巩固了知识。通过这节课的教学,我深深地体会到:要上好一节数学课很难,要上好每一节数学课就更难,原因多多……这节课课前我虽做了充分的准备,但还是存在一些问题。比如练习题安排难易不到位。由于学生刚接触反比例的意义,应多练习学生接触较多的题目,使学生的基础得到巩固,不能让难题把学生刚建立起的知识结构冲跨。
比例的意义数学教学设计(模板20篇)篇十五
人教版义务教育课程标准实验教科书数学六年级下册第32—33页的内容。
1、结合具体情境,通过计算,能说出比例的意义。
3、通过观察、比较、小组讨论说出比和比例的区别。
比例的意义,应用比例的意义判断两个比是否能构成比例。
教学过程。
一、复习旧知、导入新课。
同学们,以前我们学习了比,现在大家想一想,什么是比?比有几项?比有什么性质?并给我们举出实例。
二、比较分析,探究新知。
1、出示情景图,说一说各幅图的情景。
第一幅:xx前的升国旗仪式。
第二幅:学校每周一的升旗仪式。
第三幅:教室前面的红旗。
第四幅:谈判桌上的红旗。
(对学生进行爱国主义教育)。
问题:1:你能说一说这四幅图中国旗的相同点和不同点吗?
2:你们想知道这些长和宽是多少吗?
出示国旗的长宽数据。
3:请同学们观察、计算一下,国旗的长和宽的比值是多少?
3板书:2.4:1.6=2360:40=2。
4、探求共性,概括意义。
师:比较一下,你什么发现?
师:那既然这两个比的比值相等,请你想想用什么符号把这种关系表示出来!
生:用等号(师把左右两个中间板书=)。
生:表示相等的两个比。
生:表示两个比值相等的比。
(师板书:比相等)。
师:像这样表示两个比相等的式子叫做比例。板书。
同桌互相说说。
这个就是今天我们学习的——比例的意义(板书:比例的意义)。
三、合作探究,进一步理解比例。
1、探索组成比例的条件。
师:请同学们再默读一遍比例的意义,思考:想要组成比例必须要具备哪些条件?
(教师再强调:一定是比值相等的两个比才能组成比例。)。
2、寻找比例。
师:你还能从四面国旗中找出哪些比例?(学生写在练习本上,然后汇报。教师板书2.4∶1.6=15∶1060∶40=5∶)。
3、介绍比例的第二种表示方法。
师:我们在学习比的时候,可以把比写成分数的形式,那比例也能写成分数的形式吗?怎么写?(学生口答,教师板书:)。
4、区分比和比例。
师:我们刚才一直在强调比和比例的联系,那么比就是比例吗?(小组交流)。
从形式上区分:比由两个数组成;比例由四个数组成。
从意义上区分:比表示两个数相除;比例表示两个比相等的式子。
四、根据意义,判断比例。
生:看比值是不是相等。
1、完成“做一做”。
下面哪组中的两个比可以组成比例?把组成的比例写出来(见书上做一做)。
3、反馈:(1)你给5:8找的朋友是(),组成的比例是(),向大家介绍你用了什么方法找到的。
4、想一想,能与5:8组成比例的朋友能找几个?你认为这无数个朋友有什么共同特点?
5、处理做一做第二题。
6、处理练习六第一题。
四、目标检测。
1、判断:
(1)、有两个比组成的式子叫做比例。
()。
(2)、如果两个比可以组成比例,那么这两个比的比值一定相等。
()。
(3)、比值相等的两个比可以组成比例。
()。
(4)、0.1:0.3与2:6能组成比例。
()。
(5)、组成比例的两个比一定是最简的整数比。
()。
2、写出比值是5的两个比,并组成比例。
3、练习六第二题。
五、总结。
师:这节课,大家都非常积极和认真,老师相信你们的收获肯定很多,那谁来说说本节课有什么收获?(学生自由说)。
操场上的国旗:2.4∶1.6=1.5。
教室里的国旗:60∶40=1.5。
2.4∶1.6=60∶40也可以写成。
表示两个比相等的式子就叫做比例。
比例的意义数学教学设计(模板20篇)篇十六
教学内容:义务教育课程标准实验教科书六年级下册数学第32至33页“比例的意义”。
教学目标:
2、掌握组成比例的必要条件和方法。
3、会运用比例的意义组成比例,检验组成的比例是否正确,能用两种形式写比例。
4、在比例意义的学习探究中,培养学生的观察、比较、分析、推理、概括能力和勇于探索的精神。
5、进行爱国主义教育。教学重点:理解比例的意义;
教学难点:掌握组成比例的条件,能正确组成比例;教学关键:会运用比例的意义检验两个比是否能组成比例。教具准备:多媒体课件教学过程:
(一)复习准备。
1、谈话导入。
师:同学们,上学期我们学习了比,这节课我们继续学习和比有关的知识——比例。在学习之前,我们先来复习有关比的一些知识。
2、学生回忆:什么是比值?怎么求一个比的比值?
3、计算下面每组中两个比的比值。
6:10和9:156:4和:0.6:0.2和:20:5和1:4师:观察以上几组比中有没有比值相等的比?如果有请找出来。教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们可以用等号连起来。
(板书:6:10=9:156:4=:)。
(二)探究比例的意义出示例1插图。
师:同学们,看这四副图,你们发现了吗?在不同的场合国旗的大小一样吗?(不一样)。
师:请同学们写出每面国旗长和宽的比,并计算出比值。
121312133414。
(每面国旗宽和长的比;每两面国旗的长之比;每两面国旗的宽之比等。)。
这些比能组成比例吗?学生写比,并写出比例。
1、思考:比例由几个比组成?任意两个比都能组成比例吗?为什么?
两个比能否组成比例的关键是什么?
2、判断练习:
(1)、下面每组中两个比能组成比例吗?为什么?1∶5和3∶1210∶20和30∶60(2)、判断下面每个式子是不是比例,为什么?10∶11„„„„„„„„„„„()8∶10=0.8„„„„„„„„„()7∶14<28∶14„„„„„„„()。
3、写出两个比值是3的比,并组成比例。
4、比例是由比组成的,小组同学说一说比和比例有什么区别?小结:从形式上区分,比由两个数组成,是一个式子;比例由四个数组成,是一个等式。
比例的意义数学教学设计(模板20篇)篇十七
1、教学内容:人教版六年级下册正比例。
2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。
3、教学重点,难点、关键:
教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。
4、教学目标:
根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的'教学目标。
知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。
过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。
情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。
遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。
引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。
本节课我安排了六个教学环节。
第一个环节:游戏导入,激发兴趣。
用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。
第二环节:引导观察,启发思考。
教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。
第三环节:创设情景,观察实验。
用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。
学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。
第五环节:巩固练习,拓展提高。
第六环节:全课小结。
在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。
本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。
比例的意义数学教学设计(模板20篇)篇十八
人教版六年制第十二册第42~43页的内容。
二、教学目标。
(一)经历探索两种相关联的量的变化过程,发现规律,理解反比例的意义。
(二)根据反比例的意义,正确判断两种量是否成反比例。
(三)渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。
三、教学难点。
正确判断两种相关联的量是否成反比例。
四、教学过程。
(一)情境导入。
1.课前谈话:同学们,你们去过南昌吗?你知道萍乡到南昌需要多长时间吗?(媒体显示:几年前,我乘坐由萍乡开往南昌的k8727次列车需要4小时到达,现在改乘d117次列车,只需2小时5分钟,这是为什么呢?)。
2.学生对上述问题发表意见。
3.师:今天,我们就来研究这种类型的问题。
(二)探索新知。
将本文的word文档下载到电脑,方便收藏和打印。
比例的意义数学教学设计(模板20篇)篇十九
反比例。(教材第47页例2)。
1。使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2。让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
投影仪。
1。让学生说说什么是正比例,然后用投影出示下面的题。
下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
1。教学例2。
创设情境。
教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?
出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:
30×10=20×15=15×20=……=300。
教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
组织学生小组内讨论:反比例的意义是什么?
学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3。用字母表示。
学生探讨后得出结果。
x×y=k(一定)。
4。师:生活中还有哪些成反比例的量?
在教师的引导下,学生举例说明。如:
(1)大米的`质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5。组织学生将例1与例2进行比较,小组内讨论:
正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
6。你还有什么疑问。
如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
1。教材第48页的“做一做”。
2。教材第51页第9、10题。
答案:1。(1)每天运的吨数和所需的天数两种量,它们是相关联的量。
(2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。
(3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。
2。第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。
第10题:5010012。
说一说成反比例关系的量的变化特征。
1。完成练习册中本课时的练习。
2。教材51~52页第8、14题。
答案:
2。第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。
第14题:
(1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。
(2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。
解答:从图像中可以知道斑马10min跑12km,那么1min跑1。2km,18min跑1。2×18=21。6(km)。
从图像中可以知道长颈鹿5min跑4km,1min跑0。8km,18min跑0。8×18=14。4(km)。
(3)斑马跑得快。
第3课时反比例。
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用x和y表示两种相关联的量,x和y成反比例关系用字母表示为:x×y=k(一定)。
正比例与反比例的相同点和不同点:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
比例的意义数学教学设计(模板20篇)篇二十
1使学生理解什么是相关联的量。
3学会判断两个量是否成正比例关系。
一、导入。
师(板书:关联):知道关联是什么意思吗?
生:指事物之间有联系。
生:也可以指事物之间相互影响。
师:对,关联就是指事物之间发生牵连和影响。
师:能举一些生活中相互关联的例子吗?
生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。
生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)。
生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。
这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”
生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。
二、新授。
师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?
师:从这个表格中。你还知道什么?
生:答对一题得10分,答对两题得20分,答对三题得30分……。
师:表中有哪两个量?它们的关系怎样?
生:答对的题目与最后的成绩,它们是两个相关联的量。
师:你们能够从中发现什么规律?
生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。
师:还能发现什么呢?
生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。
师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。
(随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)。
师:刚才这位同学在算出比值的时候,你们发现了什么?
生:不管怎样,它们的比值不变。
师:这个比值实际上就是什么呀?(板书:每题的分数)。
师:你能用一个关系式表示吗?
板书关系式:成绩/答对的题目=每题的分数(一定)。
师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)。
1表中有()和()两种量。
2路程是怎样随着时间的变化而变化的?
3任意写出三个相对应的路程和时间的比,并算出它们的比值。
4比值实际上表示(),请用式子表示它们的关系。
(学生交流汇报,师板书关系式)。
(结合学生的.发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)。
反思:
从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。
以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生独立得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。