作为一位无私奉献的人民教师,总归要编写教案,借助教案可以有效提升自己的教学能力。那么我们该如何写一篇较为完美的教案呢?这里我给大家分享一些最新的教案范文,方便大家学习。
长方体正方体的体积教案篇一
课题二:
教学要求 使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。
教学重点 长方体、正方体体积公式的推导。
教学过程
一、创设情境
填空:1、 叫做物体的体积。2、常用的体积单位有: 、 、 。3、计量一个物体的体积,要看这个物体含有多少个 。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)
二、实践探索
1.小组学习------长方体体积的计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。
观察结果:(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)
4 3 1
含体积单位数:4×3×1=12(个)
体积:4×3×1=12(立方厘米)
(3)它含有多少个1 立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)
通过上面的实验,你发现了什么?(可让学生分小组讨论)
结论:长方体的体积=长×宽×高。
用字母表示:v = a×b×h=abh
应用:出示例1,让学生独立解答。
2.小组学习——正方体体积的计算。
思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?
结论:正方体的体积=棱长×棱长×棱长
用字母表示为:v=a3
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
三、课堂实践
1.做第34页的“做一做”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第33页的“做一做”的第2题。
3、做练习七的第4、6题。
四、课堂小结
五、课后实践
做练习七的第5、7题。
长方体正方体的体积教案篇二
1. 教材简析:“长方体和正方体体积计算”是六年制五年级小学教学第十册第二单元的内容。这节课是学生全面系统地学习体积计算问题的开始,是学生的空间观念从二维向三维的一次飞跃,是学生形成体积的概念和掌握体积的计量单位的基础,也为今后学习圆柱体体积计算作了铺垫。
2. 教学目标:根据教材以及小学数学教学大纲的要求:我拟定本节课的教学目标是:(1)知识与技能目标:理解和掌握长方体和正方体体积的计算方法,并能用所学知识解决一些简单实际问题。(2)过程与方法目标:学会通过实践、观察、比析、综合、概括去获得知识的方法。(3)情感态度与价值观:培养学生积极探究的科学态度和与人合作的能力,养成良好的学习习惯。
3 . 教学重难点:体积对学生来说,是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次发展。学生对怎样计量物体的体积不易理解,为此,我认为本节课的教学重点是:理解和掌握长方体和正方体体积的计算方法。那么,怎么找到计算长方体喝正方体体积的.计算方法,学生有一定的难度。因此,我把“体积公式的推导过程”定为本节课的难点。
这节课我首先运用设疑导入法引入新课;其次,运用实验探究法、尝试教学法,让学生在操作中感知----探究中学知----在练习中用知,从直观教学入手,培养学生由形象思维到抽象思维的过渡,让学生自始至终在知识形成的过程之中,真正发挥学生的主体作用。
(一)设疑导入,揭示课题,明确任务
理想的新课导入,能唤起学生的记忆思维,激发他们求知欲望,能诱导他们全身心地投入学习。上课一开始,我就拿出一个长方体和一个正方体的木块,问大家:“你们能算出这两个物体的体积吗?想不想找到一个计算体积的方法?这节课请大家自己动手、动脑推导出长方体和正方体体积计算公式。”并由此揭示课题,让学生明确学习任务,兴趣盎然地进入最佳学习状态。
(二)操作感知,探究规律,巩固深化
小学生的思维特点是以形象思维为点逐步向抽象思维过渡。根据这一特点,先利用直观教具和学具,师生一起进行操作活动,引导学生观察、思考、比较,把学生的具体操作思维与语言表达紧密结合起来,发展学生的空间观念。新知识分三步进行:
第一步,做-----操作感知
先让学生用学具(体积是1立方厘米的方木块)摆一摆,坐下面3个实验并作实验记录:
实验1:每排摆4个方木块,摆3排,方木块的总数是( )个。
实验2:摆这样的2层,公用方木块( )个。
实验3:要摆成一个长5厘米,宽4厘米,高3厘米的长方格,应怎样摆?共要方块( )个。
小组汇报实验结果,并填入表中:
长方体正方体的体积教案篇三
教材分析:
长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算,。这节课要在此基础上掌握体积的概念和常用的体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。这是下一步学习体积单位进率的基础,更是以后学习容积的基础。因此,长方体和正方体的体积计算必须掌握熟练。
教学目标:
1、结合具体***作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。
2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。
3、培养学生数学的应用意识。
重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。
难点:理解体积公式的意义。
学情分析
学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维特点又一般都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学收到事半功倍的教学效果。
教学手段:学生动手***作,同时配合多媒体课件演示.
这部分内容分3课时进行教学。第1课时教学体积的概念和常用的体积单位;第2课时教学长方体、正方体体积的计算方法。第3课时进行综合应用,提高学生运用所学知识解决实际问题的能力。
(一)激情引趣,揭示课题。
任何新知识都是以原有知识体系为依托,因此在复习中我设计了如下内容来为新课做好铺垫。
1.什么叫体积,常用的体积单位有哪些?用学具手势或其他方式描述出1立方厘米,1立方分米,1立方米分别有多大。
2.多媒体课件出示一个长方体和一个正方体,利用动画演示把它们切割成棱长1厘米的小正方体,请学生说一说他们的体积分别是多少?是怎样知道的。从中使学生体会到长方体、正方体是由多少个棱长1厘米的小正方体组成的,它的体积就是多少立方厘米。
这时学生就会产生疑问:生活中遇到的计算长方体正方体体积的问题,多数不能切开来数,这种方法在实际生活中行不通,又该怎么办?这样就在学生心里形成了一种悬而未决的状态,一方面自然而然地引出这节课要学习的“长方体和正方体的体积计算”,另一方面也激起了学生探索新知识强烈愿望。
(二)***作想象,探索公式。
小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行实验***作,首先吸引学生,刺激感官,启迪思维,提高兴趣,在头脑中建立清晰的表象,丰富他们的感性认识,也是引导学生的思维逐步由形象走向抽象。
具体的过程是:
(2)汇报交流,学生在事物投影上演示讲解,教师依次板书在表格中。
(3)请学生观察所摆的长方体的长、宽、高与它的体积有什么关系?
这里要充分发挥学生的主体性,给他们充足的讨论时间,让他们有机会各抒已见,然后根据学生的回答,共同总结出:长方体的体积=长×宽×高。
(4)用字母表示公式,要注意书写形式的指导。
(5)完成例1,学以致用,加深理解。
(6)利用关系,类推公式
通过前面的学习学生已经知道了正方体是特殊的长方体,并且在刚才的实验***作中,也有学生摆出了正方体,因此学生很容易就能够由长方体的体积公式推导出正方体的体积公式。需要注意的是用字母表示公式时,使学生明确三个a相乘也可以写成a3,3写在a的右上角。
(三)巩固练习,扩展应用
练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习:
1通过让学生完成教科书第33页的“做一做”的第一题,先让学生动作***作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,掌握长方体的体积计算公式。
2.做第33页“做一做”的第二题,巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。
3.完成练习七第1题,让学生运用公式计算。
4.完成练习七的第7题,要注意这道题算式的运算顺序。
5、拿出课前准备得长方体物体,同桌合作计算出它们的体积。
学生明确求体积应先量出它的长、宽、高,再进行计算。这样设计,既能使学生加深对计算长方体的计算方法的掌握,有利于培养学生的动手***作和解决实际问题的能力。
让学生说说这节课学习了什么?还有什么疑问。这样设计目的对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力和回顾与反思的习惯。
长方体正方体的体积教案篇四
1、说课内容。
本节所讲的内容是义务教育课程标准实验教科书教材五年级下册第三单元41页到43页有关长方体和正方体的体积和体积单位,教学内容属于新授课,授课时数为1课时。
2、教学内容的地位和作用
长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。在第二册的认识图形中,虽然已经接触到长方体和正方体,但那只是直观现象的认识,要上升到理性认识还是有一定难度的。
本单元前几课时已经基本上认识了长方体和正方体的特征和性质,学习了表面积的计算,掌握了体积的概念常用的体积单位,这节课要学习长方体和正方体的体积和有关的体积单位。
学习长方体和正方体的体积具有一定的实用价值,通过学生联系实际的操作活动,学习一些测量计算知识,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题。
3、教学目标的确定。
根据前面所述,长方体和正方体的体积计算是今后继续学习几何知识的基础。因此,本节课应当让学生了解长方体和正方体的体积公式的来源,理解它的意义,熟练地运用公式解决一些实际问题。学习一些研究问题的方法,通过学习知识,发展学生的思维能力,逐渐形成他们的空间观念。
4、教学重点、难点。
本节的两部分内容应当以第一部分为重点,长方体的体积计算中、重点理解体积公式的意义,并运用公式解决实际问题,难点理解公式的意义。
为了突出重点、突破难点,圆满地完成教学任务取得良好的教学效果,我采用了直观教学法,让学生观察图形填表,归纳出长方体体积的计算公式充分运用知识的迁移规律,引导学生掌握新知识、学习正方体的体积计算时,可以把长方体的体积计算方法直接迁移过来,让学生独立地得出正方体的体积公式。
三、教学过程设计。
教学我只安排了复旧引新、创设情境、激情引趣、揭示课题、操作想象、推导、公式。依据规律、归纳公式、利用关系、类推公式、巩固练习、运用公式、全课总结六环节。
(一)复旧引新、创设情境。
任何新知识都是在有知识系为依托,因此在复习中我设计的习题为本课做好铺垫。
什么是体积?常用的体积单位有那些?出示1立方分米、1立方厘米(教师出示体积单位的模型)完成此题,使学生进一步树立空间观念为这节课做好铺垫。
(二)激情引趣、揭示课题。
一节课教学效果如何?与学生学习的心理状态有关根据学生的心理特点。我联系实际生活中经常遇到计算长方体和正方体的体积问题,如果计量池水的体积,还能切开数吗?(切开数)这种方法在实际生活中是行不通的,那么怎么办?这就是今天这节课我们要学习的(长方体和正方体的体积计算)揭示课题,激励学生上进好学,充分发挥学生的主观能动性,让他们积极主动,生动活泼地探究新知。
(三)、探索活动、推导公式。
学生口答结果老师依次板书在表格中,通过观察表交流,讨论学生不难发现其中的规律。学生回答后,教师板书整理。
如长×宽×高=体积
2×3×2=12
4×1×3=12
6×1×2=12
2×2×3=12
从而,归纳出长方体体积计算公式:
长方体体积=长×宽×高
v=abh
进一步让学生默记公式,指名说一说求长方体的体积,必须要知道什么条件?
(四)、利用关系、类推公式
提问:4号长方体的长、宽、高有何特点?这种长方体又叫什么?它的体积怎么计算?学生进行讨论交流。
(五)、巩固练习、运用公式
练习是数学中教学巩固新知、形成技能、发展思维、提高学生分析问题、解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式、我设计了多层次的练习。
2、我对安排了四个判断题,以加深学生对a的立方的理解和运用。
3,解决实际问题,我安排了两道题目的是让学生所学新知识解决生活中的一些实际问题。
(六)、全课总结、
1、让学生说说这节课学习了什么
2、教师总结
这样设计的目的对新知识进行一次全面的回顾梳理,内化的过程、同时培养学生总结概括能力。
长方体正方体的体积教案篇五
课题二:
教学要求 使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。
教学重点 长方体、正方体体积公式的推导。
教学过程
一、创设情境
填空:1、 叫做物体的体积。2、常用的体积单位有: 、 、 。3、计量一个物体的体积,要看这个物体含有多少个 。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)
二、实践探索
1.小组学习------长方体体积的计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。
观察结果:(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)
4 3 1
含体积单位数:4×3×1=12(个)
体积:4×3×1=12(立方厘米)
(3)它含有多少个1 立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)
通过上面的实验,你发现了什么?(可让学生分小组讨论)
结论:长方体的体积=长×宽×高。
用字母表示:v = a×b×h=abh
应用:出示例1,让学生独立解答。
2.小组学习——正方体体积的计算。
思考并回答:长方体和正方体有什么关系?正方体的体积该怎样计算呢?
结论:正方体的体积=棱长×棱长×棱长
用字母表示为:v=a3
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
三、课堂实践
1.做第34页的“做一做”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第33页的“做一做”的第2题。
3、做练习七的第4、6题。
四、课堂小结
五、课后实践
做练习七的第5、7题。
长方体正方体的体积教案篇六
本篇教学内容是在学生学习了体积及体积单位后进行教学的,长方体体积计算公式,教材让学生用体积为1cm的小正方体摆成不同的长方体,通过对摆法不同的长方体相关数据的分析,引导学生找出长方体中所含体积单位的数量与它的长、宽、高的关系,从而总结出长方体体积的计算公式,并用字母表示出来。接着,教材安排了例1,计算长方体的体积,以巩固长方体的体积计算公式。正方体的体积公式,教材是通过启发学生根;据长方体和正方体的关系,推导出来的。在用字母表示正方体的公式时,教材介绍了“立方’’的含意,说明三个相同的数连乘就是这个数的立方,之后安排例2,计算正方体的体积。
根据教学明白的要求,本教材的教学重难点主要体现为两点;
1、能正确运用体积公式计算长方体和正方体的体积。
2、能正确理解长方体和正方体体积公式的推导过程。
根据新课标的要求,在教法与学法上主要体现为以下两点;
1、给学生更多的动手操作实验与实践的空间。
2、课堂教学的组织,将突出探究性活动,使学生辛历;做数学’的过程。并在这一过程中,通过自主探索,认识和掌握图形性质,积累数学活动的经验,发现空间观念和推理能力,其间特别注意给学生提供充分的数学活动交流的机会。
鉴于新课标的要求,本节内容是在学生于掌握了体积的概念和体积单位的基础上进行的。教学过程中主要通过学生操作的方式,调动学生积极参与长方体体积公式的推导、推理和最后的结论,都由学生得出,老师只起‘导’的作用。正方体体积公式,小组合作的方式引导学生把它归为长方体的特殊情况来学习,这样既加深了对长方体、正方体之间包含关系的理解,同时也加深了对其它体积计算公式的理解。
长方体正方体的体积教案篇七
教材分析:
长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算,。这节课要在此基础上掌握体积的概念和常用的体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。这是下一步学习体积单位进率的基础,更是以后学习容积的基础。因此,长方体和正方体的体积计算必须掌握熟练。
教学目标:
1、结合具体操作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。
2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。
3、培养学生数学的应用意识。
重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。
难点:理解体积公式的意义。
学情分析
学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维特点又一般都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学收到事半功倍的教学效果。
教学手段:学生动手操作,同时配合多媒体课件演示.
这部分内容分3课时进行教学。第1课时教学体积的概念和常用的体积单位;第2课时教学长方体、正方体体积的计算方法。第3课时进行综合应用,提高学生运用所学知识解决实际问题的能力。
(一)激情引趣,揭示课题。
任何新知识都是以原有知识体系为依托,因此在复习中我设计了如下内容来为新课做好铺垫。
1.什么叫体积,常用的体积单位有哪些?用学具手势或其他方式描述出1立方厘米,1立方分米,1立方米分别有多大。
2.多媒体课件出示一个长方体和一个正方体,利用动画演示把它们切割成棱长1厘米的小正方体,请学生说一说他们的体积分别是多少?是怎样知道的。从中使学生体会到长方体、正方体是由多少个棱长1厘米的小正方体组成的,它的体积就是多少立方厘米。
这时学生就会产生疑问:生活中遇到的计算长方体正方体体积的问题,多数不能切开来数,这种方法在实际生活中行不通,又该怎么办?这样就在学生心里形成了一种悬而未决的状态,一方面自然而然地引出这节课要学习的“长方体和正方体的体积计算”,另一方面也激起了学生探索新知识强烈愿望。
(二)操作想象,探索公式。
小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行实验操作,首先吸引学生,刺激感官,启迪思维,提高兴趣,在头脑中建立清晰的表象,丰富他们的感性认识,也是引导学生的思维逐步由形象走向抽象。
具体的过程是:
(2)汇报交流,学生在事物投影上演示讲解,教师依次板书在表格中。
(3)请学生观察所摆的长方体的长、宽、高与它的体积有什么关系?
这里要充分发挥学生的主体性,给他们充足的讨论时间,让他们有机会各抒已见,然后根据学生的回答,共同总结出:长方体的体积=长×宽×高。
(4)用字母表示公式,要注意书写形式的指导。
(5)完成例1,学以致用,加深理解。
(6)利用关系,类推公式
通过前面的学习学生已经知道了正方体是特殊的长方体,并且在刚才的实验操作中,也有学生摆出了正方体,因此学生很容易就能够由长方体的体积公式推导出正方体的体积公式。需要注意的是用字母表示公式时,使学生明确三个a相乘也可以写成a3,3写在a的右上角。
(三)巩固练习,扩展应用
练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习:
1通过让学生完成教科书第33页的“做一做”的第一题,先让学生动作操作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,掌握长方体的体积计算公式。
2.做第33页“做一做”的第二题,巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。
3.完成练习七第1题,让学生运用公式计算。
4.完成练习七的第7题,要注意这道题算式的运算顺序。
5、拿出课前准备得长方体物体,同桌合作计算出它们的体积。
学生明确求体积应先量出它的长、宽、高,再进行计算。这样设计,既能使学生加深对计算长方体的计算方法的掌握,有利于培养学生的动手操作和解决实际问题的能力。
(四)总结全课,质疑解惑。
(1)让学生说说这节课学习了什么?还有什么疑问。
这样设计目的对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力和回顾与反思的习惯。
长方体正方体的体积教案篇八
《长方体和正方体的体积》是义务教育课程标准实验教科书五年级下册的教学内容,此时,学生对长方体和正方体的特征已经很熟悉了,而且在前两节课的学习中,学生还知道了什么是体积,以及常用的体积单位。在此基础上,我们再来对长方体和正方体的体积计算方法进行顺势教学。
1、在操作中,让学生感知出长方体的体积大小与它的长、宽、高等有关。
2、能运用长方体、正方体的体积公式,计算长方体、正方体的体积。并能运用所学知识解决一些实际问题。
3、借助学生自己的动手操作、动口表述及课件的动态演示,培养学生的空间观念。
其中,发现、归纳长方体和正方体的体积公式是本节课的重点,难点是带领学生经历公式的推导过程,实现他们对知识的发现和再创造。
为了突出教学重点,突破教学难点,力求体现本课的设计理念,在教学中我主要采用了以下教学方法:
1、设疑激情
“学起于思,思源于疑”。心理学认为,疑最容易引起探究反射,思维也就应运而生。在导入时,我选用了两个生活中常见的盒子,学生们通过猜测,引发矛盾。疑问萌发起学生的求知欲望,同学们跃跃欲试,开始了对新知识的探究。
2、引导探索:在教学中,我把学生分成四人学习小组,并为每个小组提供了学习材料,让学生们通过自己“拼、摆,观察、计算、讨论、交流”等活动形式,自己去发现,归纳出长方体的体积计算方法。
3、观察演示:利用多媒体教学和操作活动帮助学生理解,突出重点,突破难点。
“教法为学法导航,学法是教法的缩影”。鉴于这样的认识,本节课在学习过程中,主要指导学生掌握以下的学习方法:
1、观察的方法。
2、活动实践的方法。
3、独立思考的方法。
4、小组交流的方法。
依据这节课的教材知识结构及小学生认知规律和发展水平,为优化教学过程,实现“愉悦和谐发展,主动探究新知,大胆发现创造”的课堂教学要求,这节课的教学过程是这样安排的:
学生们通过观察大胆的猜测,有的认为电话盒大,有的认为咖啡盒大,有的认为一样大。究竟哪一个大呢?我们需要掌握一种科学的方法来进行计算,这样才能验证我们的猜测。今天我们就一起来探究“长方体和正方体的体积计算方法”。
【】:著名教育学家苏霍姆林斯基说过:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望感到自己是一个发现者、研究者、探索者。而在儿童的精神世界中,这种需要特别强烈。”因此,教师要在学生的认识过程中不断激发学生心灵深处那种强烈的探索欲望。在讲长方体、正方形面积计算这节课时,就先出示两个图形让学生想办法比较两个图形面积的大小。进而引发矛盾冲突,激起学生探索新知的渴望。我这样导课既活跃了课堂气氛,也抓住了学生的心,让学生情不自禁的想去探究和发现。
二、动手操作,感知认识
1、摆一摆:请同学们拿出20个1立方厘米的小正方体,小组合作摆一些任意长方体,并说说它的长、宽、高是多少?体积是多大?记录在记录单上。看看哪个小组摆得又多又快。
2、汇报交流。谁来汇报一下你们组摆的长方体的长、宽、高是多少?你能说说你们组是怎样摆的吗?体积是多少?还有不同的摆法吗?(学生边说,老师边记录)
3、观察发现:通过刚才的摆,观察这些数据,你发现了什么?
4、总结,长方体的体积计算公式。
总结出字母公式。
】:充分信任学生、尊重学生,把学习的主动权交给学生,教师的指导作用是潜在而深远的,学生的主体作用是外显而巨大的。为学生创设各种不平衡的问题情境,放手让他们自己去尝试、探究、猜想、思考,给学生留下了足够的思维空间。在这种设计理念的引导下,我也让学生们自己去拼摆、去观察、去记录、去发现。自己归纳总结出长方体的体积计算方法。这样虽然会走一些弯路,但学生亲自经历和体验了学习过程,他们用自己理解的方式实现了数学的“再创造”。
三、尝试练习,再次发现
1.同学们真聪明,通过自己动手操作,发现了长方体体积的计算方法,要求一个长方体的体积,必须知道那些条件?出示例一,学生独立完成,集体订正。
2、看来同学们很聪明,那这个图形怎么求呢?(在例一的基础上变化数据,把它变成一个正方体)
3、小结:当长宽高相等的时候它就变成了一个正方体,正方体的体积就是棱长×棱长×棱长。如果用a来表示正方体的棱长,那它的体积公式用字母怎样表示呢?学生自己总结出正方体体积的字母表示公式,老师以小资料的形式介绍a3的读法和意义。
4、完成书上例2
5、小结:这节课我们学到了什么?
【】:正方体是特殊的长方体,它的体积计算方法与长方体的体积计算方法有着密切的联系,所以正方体体积计算方法的得来可以通过学生迁移学习获得。这样学习把学习的主动权交给了学生,还让学生体会到了数学知识之间的联系,深入体会了长方体和正方体的核心概念。
四、解决疑难,运用拓展
1、这节课我们学会了求长方体和正方体的体积的计算方法。那么这两个盒子要求它的体积,需要知道什么?师提供测量数据,让学生求体积。并且比较大小。
3、出示拓展题二。一块不规则的橡皮,怎样求它的体积?
【】:教师要精心地、创造性地设计课堂练习,应以练习设计的艺术魅力感染学生。使学生在课堂练习这个广阔的天地中,既长知识,又长智慧,促进学生的全面发展。“设计游泳池”和“求不规则橡皮的体积”这两个拓展练习设计。不是在单纯地模仿例题,机械地套用公式计算。而是在对题目的观察、分析中渗透了辩证唯物主义的“变中有不变,不变中有变”观点,培养了学生要“透过表面现象,看到问题实质”的辩证思维。在对题目的解答过程中培养了学生用“逆向思维”的思考方法解决问题的能力。同时,还体现了数学和生活的紧密联系。游泳池的深度要科学,符合生活实际,长和宽要成比例。这样不仅使学生加深了对长方体和正方体体积计算方法的理解,还培养了学生思考问题的深刻性和全面性,实现了对数学知识的再创造。
长方体正方体的体积教案篇九
1、使学生初步掌握长方体、正方体的表面积的概念;
2、学生通过观察、操作、探究等合作活动初步掌握长方体和正方体表面积的计算方法;
3、能较灵活地运用所学知识解答简单的实际问题;
1.谈话
师:你们快要毕业了,我们班级陈艾菲的妈妈为我们班级的每个孩子准备了一份特殊的礼物。对!是一本长方体的相册,里面有我们班每一个同学的照片。
多媒体:相册
2.引题
师:你能说说什么是长方体的表面积呢?
板书:长方体六个面的总面积,叫做它的表面积。
1.提出问题。
师:长方体的表面积和什么有关呢?
师:小组可以先讨论讨论,再把算式写在纸上,贴到黑板上来。
2. 分组合作进行计算。
3. 小组讨论并把算式贴在黑板上:
方法一:30282+3052+2852
方法二:(3028+305+285)2
4. 在完整解答过程中要注意什么?注意写解,单位。
5. 小结:计算长方体的表面积一般有哪几种方法?
(根据总结,演示多媒体)
6. 练习:
师:老师的难题解决了。那你们昨天不是回家测量了长方体形状物体的长、宽、高,现在你们给同桌求它的表面积好吗?注意只列式不计算。
出示几份学生计算物体的表面积:
(1) 餐巾纸盒
问:求餐巾纸盒的表面积有什么用呢?
(2)大橱
问:求大橱的表面积有什么用呢?
7. 出示课题:
师:今天这节课我们探讨了什么问题呢?
出示课题:长方体的表面积计算
8. 这里有个长方体,看看哪个算式是正确的?
(1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是( )
a.272+672+62
b.(27+26+67)2
c.27+26+67
(2)给一个长和宽都是1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是( )
a.(11+13+13)2
b. 112+134
c.112+143
问:那2、3、两个算式有什么道理呢?小组可以先讨论讨论。
师:先说说112+134有什么道理?
(多媒体演示)
师:那112+143有什么道理呢?
生:112求的是上下底的面积,正方形的边长就是长方形的宽。14就是4个长方形拼成的大长方形的长,3就是大长方形的面积。
(3)一个长方体的长、宽、高都是4m,它的表面积是多少?( )
a. 444
b. (44+44+44)2
c. 446
问:为什么第3个答案也是正确的?
(多媒体演示)
9.问:这节课你掌握了哪些本领?
完整板书:和正方体
(小组讨论)
生:计算的结果是能做成的
生:66=36(平方分米)
(41.5+42+21.5)2=34(平方分米)
师:铁皮的面积是36平方分米,书箱的表面积是34平方分米,看来是够的,那老师就开始做了。
(教师演示)
问:不够了,为什么会不够呢?
问:那怎么办?
生:把旁边多余的切下来移到左面这里,用焊接的方法拼起来。
师:所以在制作物品的过程中,还不能单看表面积的大小是否合适,还需要考虑到其他种种因素,我们不能把所学的知识生搬硬套地运用到实践中去,要具体问题具体分析。
多媒体出示:一个火柴盒
问:如果用纸板做一个这样的火柴盒,我们该怎样知道至少要多少纸板呢?可以怎样计算?
师:我就把这个问题留给同学们,请同学们课后来解决好吗?可以独立思考,也可以几个同学合作解决。明天上课时我们来作交流。