作为一名默默奉献的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么问题来了,教案应该怎么写?下面是小编为大家带来的优秀教案范文,希望大家可以喜欢。
初一数学教案设计篇一
3.方程的已知数和未知数楷体五号
已知数:一般是具体的数值,如中(的系数是1,是已知数.但可以不说).5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有等表示.
4.方程的解使方程左、右两边相等的未知数的值,叫做方程的解.楷体五号
5.解方程求得方程的解的过程.
注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.
初一数学教案设计篇二
教学目标:
1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
重点难点:
重点:了解勾股定理的由来,并能用它来解决一些简单的问题。
难点:勾股定理的发现
教学过程
一、创设问题的情境,激发学生的学习热情,导入课题
二、做一做
出示投影3提问:
1、图1—3中,a,b,c之间有什么关系?
2、图1—4中,a,b,c之间有什么关系?
3、从图1—1,1—2,1—3,1|—4中你发现什么?
学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。
三、议一议
1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?
2、你能发现直角三角形三边长度之间的关系吗?
在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。这就是的“勾股定理”也就是说:如果直角三角形的两直角边为a,b,斜边为c,那么我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。
3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立)
四、想一想
文档为doc格式
初一数学教案设计篇三
出示投影1(章前的图文p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。
出示投影2(书中的p2图1—2)并回答:
1、观察图1-2,正方形a中有_______个小方格,即a的面积为______个单位。
正方形b中有_______个小方格,即a的面积为______个单位。
正方形c中有_______个小方格,即a的面积为______个单位。
2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:
3、图1—2中,a,b,c之间的面积之间有什么关系?
初一数学教案设计篇四
1、(知识点1)要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是()
a、选取该校一个班级的学生
b、选取该校50名男生
c、选取该校50名女生
d、随机选取该校50名九年级学生
2、(题型二)下列调查适合用抽样调查的是()
a、了解义乌电视台“同年哥讲新闻”栏目的收视率
b、了解禽流感h7n9确诊病人同机乘客的健康状况
c、了解某班每个学生家庭电脑的数量
d、“神七”载人飞船发射前对重要零部件的检查
3、(题型三)为了了解某市八年级男生的身高,有关部门准备对200名八年级男生的身高做调查,以下调查方案中比较合理的是()
a、查阅外地200名八年级男生的身高统计资料
b、测量该市一所中学200名八年级男生的身高
c、测量该市两所农村中学各100名八年级男生的身高
初一数学教案设计篇五
出示投影3(书中p3图1—4)提问:
1、图1—3中,a,b,c之间有什么关系?
2、图1—4中,a,b,c之间有什么关系?
3、从图1—1,1—2,1—3,1|—4中你发现什么?
学生讨论、交流形成共识后,教师总结:
以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。