五年级教案总结了每一节课的重点和难点,有助于教师在授课中把握重点,解决学生的困惑。以下是小编为大家整理的五年级教案样例,供大家参考和借鉴。
五年级数学容积教案范文(16篇)篇一
1、知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。理解分数的意义,体会分数表示的部分与整体的关系。
2、运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。
3、学生在轻松和谐的氛围中主动参与、充分体验,感受数学与生活的密切联系,发展学生的数感。
小学阶段对于分数的研究大致分为5个阶段:低年级的平均分和除法、倍的认识、三年级的分数初步认识、五年级的分数再认识、分数的计算、六年级的比。从这些安排来看可以看出五年级的分数再认识是小学阶段一次系统的学习分数,这部分内容是在学生已对分数有了初步的认识的基础上,教材安排的一次理论上的概括。它不仅是前面所学知识的归纳、总结,更是对分数认识上由感性上升到理性的开始,是学习分数四则运算和应用的重要前提。
重点:
知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。
难点:
运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。
活动1【导入】。
一、沟通“1”、整数、分数的联系,度量中感受分数的产生和意义。
师:同学们学习过整数吗?如果用这张红色的纸条表示1,那么你能想办法表示出2吗?3怎样表示呢?我们发现有几个这样的“1”就可以用几来表示。
师:老师这里还有一张纸条(更长的纸条),你知道它表示几吗?(用1作为标准去量发现有不足1的)。
师:这段不足1的长度怎样表示呢?(用分数表示)。
在测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
师:猜一猜,这段不足1的长度是这个标准的几分之几呢?
老师给每个组的同学都提供了一些学具,请利用手中的学具验证你们的猜想。
预设1:两张绿色纸条拼成一个红色纸条,绿色纸条是红色纸条的。
预设2:红色纸条对折,不足1的部分是红色纸条的。
预设3:两张桔色的纸条。一张桔色的纸条是红色纸条的,两个就是。
我们发现我们只要找到不足1的部分与标准之间的关系,就可以用分数表示了。
活动2【讲授】。
二、分物中体会单位“1”可以是多个物体。
师:刚才我们找到了,生活中其他的地方有没有呢。
大米。
1000克。
拿出小片子,请你分别表示出它们的。
我们表示的都是,可是为什么对应的数量却都不相同呢?
回顾一下找的过程,你对分数又有了哪些新的体会?
师小结:除了可以把一个物体或一个图形平均分找到分数,也可以把多个图形或多个物体看作整体通过平均分找到分数。大家平均分的一个物体、一个图形、一个计量单位、一个整体,可以用自然数“1”表示,通常叫做单位“1”
活动3【讲授】。
三、分物中认识分数单位,深入体会分数的意义。
师:刚才同学们准确的找到了这些糖的,下面同学们可以自由地利用这些糖来表示你喜欢的分数。
合作建议:
独立思考:想一想、画一画,用这些糖还能表示出哪些分数。
小组讨论:在小组内说一说你找到的分数所表示的意义。
预设:
观察这两个分数你有什么发现吗?
相同点:都是把6块糖平均分成6份。
不同点:取的份数不同。
联系:2个是。
师:你会表示吗?
师:我们发现有几个就是六分之几。
师:你会表示吗?
师:那么有几个就是三分之几。
像、这样的表示一份的分数就叫做分数单位。而像、、这样的分数,我们可以理解为它们都是由分数单位不断累积而成的。
师:有些同学还找到了一样的分数,对吗?
师:表示了这么多分数,谁能来说说分数的意义。
活动4【导入】。
四、巩固练习。
1、填一填。
2、猜一猜。
师:请你对自己今天课堂学习的表现和收获进行评价。这里有10颗星星,你认为你可以得到几颗呢?请在纸上进行涂色。
师:谁再来说说你自己评了几颗星,同学们想一想他获得了全部星星的几分之几?
师:同学们想不想知道我给大家今天的学习情况评几颗星呢?
出示。
师:你知道这是几分之几吗?
有的同学在为没有得到全部的星星而感到遗憾,其实没有点亮的那半颗星才是我今天送给大家最宝贵的礼物,不满足是进步的首要条件,在陈老师心里你们每个人拥有着无限的潜能,我永远期待着你们更精彩的表现。
五年级数学容积教案范文(16篇)篇二
这节课的内容包括有两个例题及其随后的试一试。例6通过三个层次的操作活动引导学生初步认识体积的意义。有了这三个层次的活动,学生不仅能体会到物体总是占有一定的空间,而且能够体会物体所占的空间是有大小的,物体所占的空间的大小是可以比较的,在此基础上,建立体积的概念。例7通过让学生比较两个大小不同书盒所装的书的体积,形象而直观地揭示了容积的概念。随后的“试一试”让学生想办法比较两个玻璃杯的容积,引导学生在实际操作中进一步体会玻璃杯所能容纳物体的体积,也就是玻璃杯的容积,同时使学生认识到容积的大小是可以比较的。体积与容积意义的学习是后面学习体积(容积)单位、体积计算方法等知识的基础,也是发展学生空间观念的重要载体。
学情分析。
学生在日常的生活中,不仅能接触到大小各异的物体,还感受到不同的杯子、不同的纸盒所能装的东西有多、有少,这些都是在生活中找到的体积与容积的'原型。现在要把这些生活原型概念化,对于学生来说是比较抽象的。小学生的思维以形象思维为主,可能会受到表面积的影响,认为物体形状发生了变化,体积也会发生变化,对于体积与容积的概念,也可能会易于混淆。因此,在教学中,要充分利用直观的教学方法,让学生在观察、比较等操作活动中,体会体积与容积概念的真正内涵。
教学目标。
1、使学生通过动手实验和对具体实例的观察,理解体积与容积的意义。
2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思维。
3、使学生进一步体会空间与图形学习和实际生活的联系,提高数学学习的兴趣和学好数学的自信心。
教学重点和难点。
五年级数学容积教案范文(16篇)篇三
课本第76页。
1、掌握小数四则混合运算的顺序,能正确地进行计算。
2、经历计算、猜想、验证等数学活动过程,初步理解和掌握整数加法、乘法的'运算律对小数加法、乘法同样适用。
3、能运用运算律进行简便计算,掌握简便计算的方法,培养简便计算的意识。
正确计算小数四则混合运算,应用运算律进行简便计算。
运用乘法的运算律进行小数乘法的简便运算。
课件
一、复习导入,揭示课题。(4分钟左右)
1、回忆一下,我们学过的整数四则混合运算的运算顺序是怎样的?乘法运算律有哪些?请用字母表示出来。
总结:
(1)同一级符号从左往右依次计算;
(2)既有加减,又有乘除,先算乘除,再算加减;
(3)有小括号的,先算小括号里面的。
乘法交换律ab=ba
乘法结合律a(bc)=(ab)c
乘法分配率a(b+c)=ab+ac
2、明确课题。
今天就一起来学习“小数四则混合运算”。
1、明确例14中的数学信息及所需要解决的问题。
2、自学。
导学单(时间:5分钟)
(1)看图,根据题意列出综合算式。
(2)你是按照怎样的顺序进行计算的?为什么可以这样计算?
(3)比较两种解法,哪一种更简便?
(4)计算并比较三组算式。
点拨:先分别算出种茄子和辣椒的面积;或先算出这块长方形菜地的长是多少米。
点拨:小数四则混合运算的顺序和整数相同。
总结:“先算出这块菜地的长,再算它的面积”相对简便些。
3、小组交流。
交流内容
(1)小数四则混合运算的顺序是怎样的?
(2)三道算式的圆圈里能填等号吗?为什么?
(3)整数加、乘法的运算律,对小数加、乘法也都适用吗?
4。集体交流。
导学要点:整数加法、乘法的运算律对小数加、乘法同样适用。而且,应用运算律常常能使计算过程比较简便。
(一)适应练习。
1。整合“练一练”第1题和练习十四的第2题,先说出各题的运算顺序,再计算。
点拨:“练一练”第1题的(1)可以先同时计算乘除法,再算加法;练习十四第2题的最后一题,算式中既有中括号又有小括号,先算小括号里的,再算中括号里的。
2。整合“练一练”第2题和练习十四的第2题,用简便方法计算。
点拨:0。25×36=0。25×4×9
运用了什么运算律?
2。4×1。02=2。4×(1+0。02)
运用了什么运算律?
(二)口答练习。
1、练习十四第1题中的6道题。
提醒:
(1)数位对齐;
(2)从个位算起;
(3)不要忘加小数点。
(三)整合练习。
1、练习十四第4题。
提示:要求这四名同学完成接力赛的总时间,只要把表中的四个数据相加就可以了;而求这四个数连加的和时,可以应用加法的交换律和结合律使计算简便。
2、练习十四第5题。
点拨:
(2)0.25×0.35×400先算每棵向日葵可榨油的千克数,再算400棵向日葵可榨油的总千克数。
(四)创编练习。
简便计算:7.3×9.9 0.125×8.8
提醒:7.3×9.9=7.3×(10-0.1)
0.125×8.8=0.125×8×1.1或
0.125×8.8=0.125×(8+0.8)
通过这节课的学习你学到了什么知识?
教学反思:
苏教版四年级上册《整数四则混合运算练习课》数学教案
苏教版四年级上册《整数四则混合运算练习课》数学教案
第七单元整数四则混合运算
第3课时整数四则混合运算练习课
教学内容:
教材第73页。
学生进一步掌握三步混合运算的运算顺序,逐步形成计算技能,经历分析数量关系的过程,巩固解决问题的策略,培养数学思维能力和解决问题的能力。
教学重难点:
掌握三步混合运算的运算顺序,巩固解决问题的策略。
教学过程:
1、揭示课题。
这节课我们继续来练习混合运算,完成练习十一上的练习。(板书课题)
2、口算:
720÷90 484÷2 450÷50
28+42 3×48 40÷2
360×2 65-17 56+8
3、计算下面各题。指名说说混合运算的运算顺序是怎样的?
完成练习十一第9题。
学生独立计算,提醒自觉验算。
4、练习十一第10题。
说说每组中两道算式的相同和不同的地方,再判断哪道算式的得数大。
通过计算检验。
1、练习十一第11、12题。
学生独立解答。
反馈交流各自的解题思路。说说是怎样整理题目中的条件和问题的,怎样分析数量关系的。
2、练习十一第13题。
先让学生独立完成估算,并说说是怎样估算的。
再列式算出结果,并把它与估算的结果比较。
3、练习十一第14题。
学生读题,独立解答。
反馈解题思路。
引导思考“你还能提出什么问题”。
学生提出问题并解答。
通过今天的练习,你有什么收获呢?
四则混合运算
这一单元的目标是这样定的:
1、使学生掌握含有两级运算的运算顺序,正确计算三步式题。
2、让学生经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两、三步计算的方法解决一些实际问题。
3、使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。
从教参的教学目标定位来看,应该是既注重两级运算的运算顺序教学,又要重视解决问题的一些策略。然而结合我们学生的学习实际情况来看,两样都已初步的感受过,但又不是很深入,如:四则运算的计算顺序包括带括号的计算顺序都在平时的练习中曾经碰到过,但不是很多(但有的学生在家长的帮助下对于先乘除后加减的运算顺序了然于胸了)。所以是不是把四则混合运算顺序作为重点来教我真的曾不止一次的怀疑过。让我怀疑动摇的还有一个原因就是学生解决问题的能力太差,新课程一线教师都清楚现在学生解决问题能力的欠缺。所以,这一次四则运算知识的教学也正是加强学生解决问题能力训练的一次好机会,与我有这种相同想法的教师还真不少,认为还是有必要侧重解决问题的策略教学。
在教学式题过程中,我要求学生用先算,再算,最后算来口述式题的运算顺序,减少运算顺序的错误,同时也加强学生语言表达能力。写作业时还要求学生根据式题的运算顺序用简单的画顺序线,以增强运算顺序的形象感。如:第11页例题5:先说出各题的运算顺序,再计算。
(1)42+6(12-4)
(2)42+612-4
口述顺序是:先算括号里的减法,再算口述顺序是:先算乘法,再算加法。最后
括号外的乘法,最后算括号外的加法。算减法。
而在教两三步计算解决简单的数学实际问题时,我先要求学生口述解题思路,让其明白列综合算式应先算什么,再算什么,最后算什么,把抽象的、明理的东西搞得的尽可能的形象,从而更接近于小学生的实际。
只有多巩固练习,就能熟能生巧,做到四则运算式题的顺序无误,列综合算式条理清晰,学生分析问题、解决问题的能力得到了提高,更大的收获是差生做式题的计算减少了不必要的错误。
五年级数学容积教案范文(16篇)篇四
北师大版数学五年级上册第一单元第10~11页《找因数》 学情分析:
在四年级的学习中,学生已经接触了解一些因数和积的概念。学习本单元的前三个课时后,学生已基本建立因数、倍数、奇数和偶数的概念。这些为学生能顺利学习和掌握本课时的学习内容作好前期准备。
“用小正方形拼长方形”对于学生来说,并不陌生。本课教材设计以“用小正方形拼长方形”做为学生学习活动的开始,让学生在理解“用12个小正方形拼成一个长方形,有哪几种拼法?”的前提下开始学习活动,是基于学生已有的知识经验展开的。在此基础上,引导并指导学生小组活动,让学生在小组中把自己的操作过程和思考的过程表达清楚。学生在思考“有几种拼法”时,一般会用乘法进行思考:几乘几等于12,然后再一对一对地找出1与12、2与6、3与4等12的因数。这一安排是借助“拼小正方形”的活动,让学生通过形象的排列特点,理解抽象地找因数的方法。在学生操作的基础上再组织学生交流,交流的重点是学生思考的过程,体会用“想乘法算式”找一个数的因数的方法。在学生交流的过程中,引导学生关注“有序思考”的方法,并逐步体会一个数的因数个数是有限的。最后,在设计找因数的练习题时,可以让学生独立尝试,反馈时注意学生能否有序思考。
1、在用小正方形拼长方形的活动中,体会找一个数的因数的方法,提高有序思考问题的能力。
2、在1—100的自然数中,能运用多种方法,正确写出指定自然数的所有因数。
3、经历探索找一个数的因数的活动过程,培养有条理思考的习惯和能力,发展初步的推理能力。
教学重点:在用小正方形拼长方形的活动中体会找一个数的因数的方法。 教学难点:提高学生有序思考的能力。
教具:投影、课件
学具:12个1平方厘米的小正方形。
师:同学们喜欢做拼图游戏吗?
用你们课前准备好的的12个小正方形拼成一个长方形,比一比,谁的拼法多?边摆边做好记录。
1、学生:用12个小正方形自由拼(画)长方形
(教师巡视,指导个别有问题的学生,搜集学生中出现的问题.)
2、引导学生合作交流中总结出找一个数的因数的基本方法。
(学生独立写出算式并汇报)
学生观察算式,找出因数一样的算式。引导学生说出能用3种方法表示,这三种方法是:1×12=12 2×6=12 3×4=12,并指明算式一样时选择其中一种说出来。
板书:12=1×12=2×6= 3×4
师:同学们观察一下,12的因数有哪几个?
(学生说出12的因数有:1、12 、2、6、3、4。)
师:拼长方形与找因数有什么关系呢?
(指名学生说一说)
师:根据刚才的操作交流,请同学们说一说怎样找一个数的因数呢? (学生思考片刻后汇报,可以组内交流。)
引导学生说出:用乘法思路想,看哪两个数相乘得12,然后一对一对找出来。
3、引导得出“有序思考”的方法。
(学生独立思考后小组讨论,得出结论,再自由发言。)
根据学生发言小结:
找一个数的因数,要用“有序思考”的方法,即用乘法依次一对一对地找,这样有顺序的给一个数找因数,好处就是不重复也不遗漏。
师:请同学们按顺序说出12的因数。(学生汇报)
板书:12的所有因数有:1、2、3、4、、6、12。
基础练习
1、课本第9页试一试:分别找出9和15的全部因数。
学生独立思考分别找出9和15的因数;教师巡视指导,关注学生是否注意“有序思考”。
组织学生交流汇报,指明按从小到大,一个一个有序地说,以免遗漏。
2、 学生独立在书中完成第9页的练一练的第1、2、3题。
(投影展示1、2、3题,让学生说一说,集体评价。)
变式练习
1、16的因数有:( )
36的因数有:( )
一个数的最最小的因数是( ),最大的因数是( ),一个数的因数的个数是( )。
2、一个数的最大因数是17,这个数是( ),它的最小的因数是( ),17的因数是( ),一共有( )个。
一个数的最小倍数是17,这个数是( ),它( )最大的倍数,17的倍数的个数是( )。
拓展提高练习
师:同学们能不能利用找因数的方法来解决装球问题呢?请同学们先独立思考,然后小组内交流一下。
汇报:一共有几种装法呢?
思考:这种装球法与找因数有什么关系呢?
这节课你学会了什么呢?
学生汇报后师总结:同学们说得很好,这节课我们学会了找因数的方法,并能利用找因数的方法解决很多实际问题:在我们的生活中存在着很多数学奥秘,就看我们能不能发现,并应用所学知识去解决。
五年级数学容积教案范文(16篇)篇五
1、结合具体事例,经历认识“方”并解决土石方计算问题的过程。
2、了解“方”的具体含义,能够灵活运用体积计算公式解决一些简单的现实问题。
3、在综合运用所学知识解决现实问题的过程中,感受数学在生活中的广泛应用,培养数学应用意识。
熟练运用长方体和正方体的体积计算公式解决实际问题。
长方体和正方体的体积计算公式演变成“横截面的面积乘长”。
一、巧设情境,激趣引思。
同学们,前面几节课我们学习了体积的有关内容,请大家思考以下问题。
(1)什么是体积?体积的单位有哪些?它们之间的进率是多少?
(2)怎样求长方体的体积?正方体的体积,长方体和正方体体积计算的统一公式是什么?
(3)学生分组讨论,指名回答问题。
这节课我们运用体积的有关知识,解决实际生活中的问题。
二、自主互动,探究新知。
课件出示例题1:让学生读题,讨论:挖出的土与地窖的体积有什么关系?让学生尝试解决问题交流计算的结果。
教师介绍“方”,让学生用方描述挖出的土。
课件出示例题及拦河坝的和示意图。
让学生观察,问:你知道了哪些信息?师帮助学生理解题意。
怎样计算拦河坝的体积?为什么这样计算?使学生知道:拦河坝的体积=底面积×高。
让学生尝试解决问题,并交流计算的方法和结果。
三、应用拓展,反思交流。
1、应用:
(1)试一试帮助学生弄清图意,然后鼓励学生提出问题,师生合作解决。
(2)练一练第1、2题,帮助学生理解题中的事物和信息,再独立完成。
第3、4题,让学生先说一说,要解决问题,先要求出什么?
2、拓展:
练一练5板书设计:
简单的土石方计算2×1.6×1.5=4.8(立方米)拦河坝的体积=横截面面积×长答:要挖出4.8立方米的土。
横截面的面积:(8+3)×4÷2=22(平方米)土石体积:22×50=1100(立方米)答:修这个拦河坝一共需要土石1100立方米。
五年级数学容积教案范文(16篇)篇六
已学的相关内容:分数意义的初步理解;简单分数的大小比较;同分母分数的加减计算。
本单元的主要内容:分数的再认识;真分数和假分数;分数与除法的关系;分数基本性质;公因数、最大公因数;约分;公倍数与最小公倍数;通分、分数大小比较。
1、在具体情境中进一步理解分数,体会分数的相对性。
教材通过创设具体的问题情境,丰富学生对分数的认识,进一步理解分数,体会分数的相对性。分数相对性就是结合具体情境使学生感受分数对应的“整体”不同,它所对应部分的大小或具体数量的多少是不一样的。在教学中,对学生来说,不需要出现“分数相对性”这样的专门术语,只要学生能结合具体情境体会就可以了。为了进一步加深学生对分数的理解,教材安排了“拿铅笔”等多个情境活动,教学时,教师要联系这样的实际情境,引导学生借助直观展开充分的交流。
在进一步认识分数的基础上,教材又安排真分数与假分数的认识,在“分饼”活动中具体体会真分数与假分数的产生过程及其实际含义,真分数与假分数的概念教材都只给出了描述性定义,要让学生自己说说真分数与假分数的特点。对于带分数的概念教材用介绍的方法,与真分数、假分数分开处理,有利于学生理解假分数与带分数的关系,避免造成错觉。
2、在观察比较中发现分数与除法的关系,探索假分数与带分数的互化方法。
除法计算不能整除时,除得的商可以用分数来表示。理解分数与除法的关系,是表示除法结果的需要,也是假分数与带分数互化的基础。教材通过具体情境引出除法算式,并根据分数的意义表示出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数表示成两数相除的形式。在此基础上引导学生探索假分数与带分数的互化方法。因为带分数的计算在学生的后继学习和生活实践中应用不是很多,所以学生只要能理解互化的方法并会正确进行互化即可,在速度及熟练程度上不要作过高要求。
3、经历知识的形成过程,探索分数的基本性质。
分数基本性质是约分和通分的基础,而约分、通分又是分数四则计算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中商不变的规律与这部分知识紧密联系,是学习这部分内容的基础。
探索分数基本性质,关键是让学生在活动中主动地观察和发现,在讨论交流的基础上归纳规律。教材安排了两个学习活动让学生寻找相等的分数,分别是“用分数表示图中的阴影部分”和“在折纸活动中找到与3/4相等的分数”,通过两个活动使学生初步体验分数的大小关系,为观察、发现分数基本性质提供丰富的学习材料。然后,引导学生观察这两组相等的分数,寻找分子、分母的变化规律,并展开充分的交流,在此基础上,归纳分数基本性质。
4、在探索活动中理解公因数与公倍数的含义,掌握约分与通分的方法。
本册教材对公因数、公倍数的知识与约分、通分的知识进行了整合。在分数单元学习约分、通分前,安排学习公因数和公倍数等知识,这样有利于学生感受数学知识之间的联系。同时,根据课程标准要求,本册教材对知识掌握的要求进行了适当的限制,如求最大公因数是两个数限制在100以内、,求最小公倍数是两个数限制在10以内等。为了帮助学生体会“公倍数”的实际意义,教材还安排了“找最小公倍数”等实际情境,引导学生在解决实际问题的过程中,理解和体会“公倍数”的实际意义。在探索和掌握找公因数、找公倍数的方法的基础上,学习约分和通分。
“整体----部分-----整体”观察策略。对观察对象的整体先作初步的了解,发现这一类现象可能存在着某种规律,然后分出个部分,分别作进一步的观察,发现存在于各部分中的基本规律,进而再研究各部分间的联系,发现共同的结构,提出假设。
(1)整体观察。发现这几组分数的分子、分母都起了变化,而分数的大小不变。这里可能存在某中规律。
(2)部分观察。先引导学生对其中一组数==,从左向右观察,并组织学生讨论:一个分数的分子、分母怎样变化,分数的大小不变?为了让学生能正确地运用数学语言表达,可以把这组分数改写成下式让学生练习:
得出:分数的分子、分母都乘以一个相同的数(0除外),分数的大小不变。
接着,引导学生从右向左观察,并练习:
得出:分数的分子、分母都除以一个相同的数(0除外),分数的大小不变。
在让学生观察其他几组分数,能得出同样的规律。
(3)整体观察。引导学生从整体上观察这组例证,概括得出结论后,让学生阅读课本,要求能运用商不变性质说明分数的基本性质,并说明为什么要“零除外”。
五年级数学容积教案范文(16篇)篇七
1、进一步熟练长方体、正方体表面积的计算方法。
2、通过解决粉刷墙壁的活动,提高学生对知识的综合运用能力和解决问题的灵活性。
通过解决粉刷墙壁的活动,提高学生对知识的综合运用能力和解决问题的灵活性。
结合生活实际,利用所学知识,灵活选择信息,解决实际问题。
今天,就让我们一起利用我们所学知识来解决粉刷墙壁的生活问题。(板书课题:粉刷墙壁)
2、提供信息,明确问题:
(1)出示信息。
课前经过实际测量和调查,同学们搜集了以下信息:
五年级一班的教室长8米,宽6米,高3米(每间教室门窗的面积大约19.3 2)我校有20间这样的教室。
品
种 规
格 价
格 粉刷
面积使用
年限人工
费用
仿瓷
涂料 20l/桶30元/桶0.5l/25年1元/2
多乐士乳胶漆易洗:10l/桶300元/桶0.2l/212年4元/2
普通:20l/桶400元/桶0.2l/212年4元/2
(2)明确信息的含义:请同学们,仔细观察这些信息,有不明白的地方吗?
(3)明确任务:选择哪种涂料呢?粉刷20间这样的教室至少准备多少钱?请同学们根据这些信息,在小组内一起讨论一下,把你们的想法说给同学听一听。
3、小组合作,解决问题。
学生小组讨论交流,解决一共需要花多少钱,从哪几个方面思考。注意了解学生的交流情况。
4、班级交流:要算一共需要多少钱?也就是算哪几个方面的费用?你们是怎样想的?引导学生,明确也就是算人工费和涂料费,但都应该先算出粉刷墙壁的面,再算出人工费和涂料费,后计算一共需要花多少钱。
6、交流汇报,比较:
学生根据自己选择的涂料,把计算的过程展示给大家。
根据计算结果,引导学生说出自己的想法。
教师小结:奥,同学们从不同的角度思考,制定了自己认为合理的方案!
经过我们粉刷墙壁的活动,你有什么感受?什么收获?
说来听听吧?
我相信大家,在生活的大舞台上,会有更多精彩的表现!
五年级数学容积教案范文(16篇)篇八
1、能直接在方格图上,数出相关图形的面积。
2、能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。
3、在解决问题的过程中,体会策略、方法的多样性。
整点:指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。
难点:学生能灵活运用。
(一)直接揭示课题
1、今天我们来学习《地毯上的图形面积》。请同学们把书p18页,请同学们认真观察这幅地毯图,看看它有什么特征。
2、小组讨论。
3、汇报:对称图形、边长为14米的正方形、图案由蓝色组成。
4、看这副地毯图,请你提出一些数学问题。
(二)自主探索、学习新知
1、如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?
2、学生独立解决问题。要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。
3、小组内交流、讨论。
4、全班汇报。
a)直接一个一个地数,为了不重复,在图上编号。(数方格法)
b)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4。(化整为零法)
c)用总正方形面积减去白色部分的面积。(大减小法)
d)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)
5、师总结求蓝色部分面积的方法。
(三)巩固练习
1、第一题。
(1)学生独立思考,求图1的面积。
(2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。
2、第二题。独立解决后班内反馈。
3、第三题。
(1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。
(2)学生观察结果,说发现。
第(1)题的4个图形面积分别为1、2、3、4的平方数。
第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形面积的一半。
(四)总结
对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。
地毯上的图形面积
一个一个地数(数方格法)
平均分成4份,再乘4。(化整为零法)
总面积减去白色面积。(大减小法)
本节课从设计上讲,我充分考虑到学生是主体的新理念,采用小组合作、探索交流的教学形式,在大胆猜测、积极尝试中寻找解决问题的策略,对于不同情况优化选择。
五年级数学容积教案范文(16篇)篇九
1、运用角色游戏活动,帮助幼儿建立初步的角色意识,丰富幼儿的生活经验。
2、复习区分圆形、三角形和正方形的外形特征,尝试描述图形的二维特征。
3、启发幼儿用礼貌用语,进行简单的交往,积累美好的情感体验。
重点:在游戏活动中积累生活经验,并愿意描述。
难点:区分物体图形、颜色的二维特征。
1、小熊两个;小鸭、小兔、小猫挂饰若干;各种形状的礼物若干。
2、供幼儿操作的圆形、三角形和正方形的、大小、颜色不同的饼干若干,贴有圆形、三角形和正方形标记的'盘子各一。活动设计:
一、引起兴趣:
1、今天,我们来做个游戏——扮小动物,你愿意扮谁就选一个挂饰挂在身上。
2、幼儿带上挂饰,你扮谁呀?(我是小兔、我是小鸭……)。
4、怎么去呢?买些什么礼物呢?
5、每位选一件礼物,你选的是什么?告诉你的好朋友。
6、出发——小熊家到了。(敲门进入)。
二、送礼物:
1、告诉小熊自己送的是什么礼物,并祝小熊生日快乐。
2、按小动物分组把礼物送给小熊。
3、请个别幼儿把礼物按图形分类。
三、小熊请客人吃饼干:
1、小黑和小白准备了点心给你们吃,(出示两盆饼干)小黑准备的是奶油饼干,小白准备的是葱油饼干。
3、小白请大家动脑筋:
(1)请小鸭吃红的三角形饼干;
(2)请小兔吃黄的圆形饼干。
(3)请小猫吃绿的正方形饼干。
四、结束部分:
1、我也准备了一份礼物(出示生日蛋糕),引导幼儿一起唱“生日快乐歌”。
2、时间不早了,我们该回家了,等到明年再来给小黑、小白过生日。为您服务学科吧。
五年级数学容积教案范文(16篇)篇十
1、认识常用的体积单位:立方厘米、立方分米、立方米,在数学活动中建立体积是1立方厘米、1立方分米、1立方米的空间观念。
2、自主探索得出相邻体积单位之间的进率,发展学生的空间观念,培养学生的推理能力。
3、培养学习类比能力,从已有知识——面积单位引发思考,初步了解体积单位和面积单位之间的联系与区别。
4、在动手操作、观察比较、质疑反思等活动中,培养团队意识,提升合作精神与质疑能力。
初步建立体积是1立方厘米、1立方分米、1立方米的空间观念,能正确应用体积单位估算常见物体的体积。
通过探索,自主推算出相邻体积单位间的进率。
多媒体课件、体积单位模型、彩泥、魔方等。
师:上一节课,我们认识了体积,什么是物体的体积?
问:体积有大有小,小胖和小巧运用所学知识搭积木、比体积。哪个体积比较大?(生生交流)。
师:今天这节课就让我们一起来探究体积单位(揭示课题:体积单位)。
问:关于体积单位你已经了解了些什么?让我们先相互交流一下!(生生交流)。
(预设:知道常用体积单位有立方厘米、立方分米、立方米,并会用字母表示)。
(1)初步感知1cm3有多大:
问:让我们先畅所欲言,你认为1cm3有多大?哪些物体接近1cm3?(课件展示)。
123。
(2)触类旁通,定义1cm3的大小:
师:我们已经知道边长为1cm的正方形,面积是1cm2,你能触类旁通定义1cm3的大小吗?(同桌讨论)。
(3)进一步感知1cm3的大小:
做一做:请大家四人为一小组,用彩泥捏出一些体积是1立方厘米的正方体。拼一拼,2立方厘米、5立方厘米、10立方厘米分别有多大。
(4)想一想,填一填:
师:我们知道计量一个物体的体积,就是看它含有多少个体积单位。下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件展示)。
(1)举一反三:从1cm3定义1dm3、1m3的大小。(生生交流)。
(2)想象一下:1dm3、1m3有多大?哪些物体接近1dm3、1m3?(学生举例,课件、教具辅助)。
(3)学生活动:4个同学为一组,手拉手,围出一个大约1m3的空间。
一块橡皮的体积约是8()。
一台录音机的'体积约是10()。
运货集装箱的体积约是40()。
一本新华字典的体积约是0.4()。
一个西瓜的体积约是5()。
一间教室的体积约是180()。
1、师:学好知识要能触类旁通,今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,同时我们也要关注它们的区别,它们有哪些区别呢?(同桌交换意见)。
2、追问:cm2、dm2、m2每相邻两个面积单位间的进率是100,猜想一下cm3、dm3、m3相邻体积单位间的进率又是多少呢?(学生猜想)。
3、验证:你们有什么好方法证明1cm3和1dm3间的关系呢?(课件辅助演示1个——10个——100个——1000个的过程)。
4、运用:同桌合作,请说一说1dm3和1m3间的关系。(课件演示)。
5、拓展:通过探究,我们知道每相邻两个体积单位之间的进率是1000,你们还有什么疑问吗?(预设:你能试着说一说1cm3和1m3之间的关系吗?)。
用一些棱长为1厘米的小正方体,做下面的活动。
1、用4个小正方体可以摆成一个大正方体吗?
2、最少要用多少个小正方体才可以摆成一个大正方体?
3、你能再摆一个大一些的正方体吗?用了多少个小正方体?
师:通过今天的学习,你有哪些新的收获?(生生互动)。
今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,学习就要学会触类旁通、举一反三。
五年级数学容积教案范文(16篇)篇十一
:教材第1--3页的内容及练一练。教学目标:
1.在实际操作活动中,经历了解容量概念和认识测量工具、以及认识“升”和“毫升”的过程。
2.了解容量的含义,认识“升”和“毫升”,了解升和毫升怎样用字母表示;会读量杯和量筒中液体的多少。
3.积极参与“玩水”实验活动,获得愉快的学习体验和数学活动经验。重点、难点
:使学生感知“升”和“毫升”这两个容量单位的大小,会读量杯和量筒上的刻度。
理解容量的含义。
课件,水盆、杯子。
一、揭题示标。
1、设疑导入
师手拿两个杯子,提出问题:如果两个杯子都装满了水,哪个杯子装的水多呢?这里面隐藏着有趣的数学知识,谁来猜一猜是什么?(让生自由猜)
2、板书课题。
师:今天我们就一起来学习“认识升和毫升”(板书课题)
3、出示目标
我们这节课要达到的目标是:(学生齐读)
1、知道“容量”的概念,认识容量单位“升”和“毫升”。
2、了解升和毫升怎样用字母表示;我会读量杯和量筒中液体的多少。
师:接下来就让我们带着目标根据自学指导的.要求认真自学,相信每位同学都会有所收获。
二、学习指导。
认真看课本第1-2页的内容,然后动手试一试,比一比,思考:
1、哪个杯子装的水多?你是怎样比较的?
2、你认为什么是容量?容量的单位有哪些?
3、升和毫升用字母怎样表示?
师:自学时,可以边看边动手做一做,重点的地方用笔画下来。
(自学时间5分钟,看书-思考-动手-交流-汇报)
三、自研共探
1、看一看(自学探究)
生认真看书自学,师巡视,督促人人认真地看书,也可参与学生的活动中。
2、议一议(对子交流,疑难问题小组讨论,整合答案)
针对自学探究中的问题先对子交流,还不能解决的问题可以小组讨论。
教师在学生合作交流时巡视,观察小组交流情况,对合作不太好的小组给以帮助和提醒,促使每个组及组员都能积极参与到合作交流活动中。
3.动手演示说一说(汇报展示)
师:同学们学的怎么样呢?下面,就让我们一起来检测一下大家的自学成果。以小组为单位由老师指定题目进行汇报,没有得到展示机会的小组可以在期间举手示意要求汇报,但只展示不同方式或质疑补充。各组展示后,可以自评,他评或老师评价。对疑难地方师及时点评讲解。
4.小结归纳
生说,师生共同总结:容器中所能装液体的多少,就是容器的容量。
常用的容量单位:升和毫升
四、学情展示。
1、课本第3页试一试。
2、练一练中的1题.
3、练一练中的第2题。
要求:
1、独立完成、对子交流。
学法指导:先自己独立完成题目,然后举手示意对子,待对子完成后小声讨论
2、组内讨论、整合答案。
学法指导:待组内成员全部完成后交流各自答案和理由,最终形成统一答案。
3、分工合作、板演展示。
学法指导:每两组展示一题,预展速度快的组先展示,另外一组只展示不同之处,或质疑补充评价。由组长分工:展示题1可板演口答,展示题2可以边演示边说明理由,展示题3可以口答。展示形式可以多样化。(预展时间:2分钟)
4、汇报讲解、补充评价。
学法指导:由一个小组做讲解展示,讲解时可以组内补充,也可其它组补充或质疑。展示后,其它组或教师给予评价。
5、操作指导:教师要在预展时巡视各小组,指导并帮助小组快速分工,让每一个学生都参与其中,做到人人有事做。
五、归纳总结
同学们,经过这节课的学习我们学到了哪些知识呢?你还存在什么疑惑?
教师可从以下几方面引导学生说一说:1、知识点(表格、知识树等)2、方法3、易混易错点4、疑惑5、学情。
六、巩固提升
1、在()内填入升或毫升。
(1)一瓶大瓶可乐的容量是2()
(2)一瓶牛奶的容量是250()
(3)一瓶眼药水的容量是5()
(4)一桶饮用水的容量是15()
(5)一瓶洗发水的容量是200()
2、课本练一练第3题。
3、拓展:课本第3页练一练的第4题。
五年级数学容积教案范文(16篇)篇十二
1、能直接在方格纸上数出相关图形的面积。
2、能利用分割的方法将较复杂的图形转化为简单图形,并用较简单的方法计算面积。
3、在解决问题的过程中体会策略,方法的多样性。
将复杂图形转化为简单图形,体会解决问题方法的多样性和简便性。
如何将整体图形转化为部分的图形。
多媒体课件,作业纸。
一、复习旧知。
不规则图形通过割补,平移可以转化为规则图形从而计算出它的面积,出示练习,提出问题:每个图形的面积是多少?你是怎么得知的?对于图123学生的方法会有很多,要对学生进行充分的肯定。
(设计意图:这组练习复习了已学过的知识,学生在解决面积是多少的过程中打开了思路,如图1既可以利用轴对称图形的特征先算出左边图形的面积,再乘以2得到整个图形的面积。也可以根据组合图形是平移得到特点,先算出上面一个大三角形的面积再乘2求出整个图形的面积。还可以沿对称轴将图形分割为四个三角形,再旋转平移转化为长方形算出面积,即化不规则为规则图形来计算。孩子们灵活多样的解决问题方法是为后面地毯上图形面积计算方法的多样性做了很好的铺垫。)。
二、新授。
(一)对图形特征的观察。
今天老师带来了一块漂亮的地毯,出示课件。
请同学们用数学的眼光来观察,说说这幅图有什么特点。
生1:这块地毯是轴对称图形,是由许多小正方形组成的。
师问:对称轴在哪里?有几条?
(学生到黑板前演示给全班学生看,目的是提醒孩子可以把整个图形平均分成两份或四份,为化整体到部分,知部分求整体的解题思想做准备。)。
生2:这块地毯是蓝色和白色两种颜色。
师问:能找到这两种颜色的格子与总格子数之间的关系吗?
(学生能说到蓝色格子数加上白色格子数等于总格子数,或者是另外两种变式的数量关系也可以。为用大正方形面积减去空白面积等于蓝色部分的面积这一解决问题策略做准备)。
生3:学生会说到在蓝色格子部分有的是拼成较大的长方形和正方形。
师问:能到前面来指给大家看吗?
(设计意图:注重培养学生的观察能力,能用数学的眼光看待生活问题。这正体现学习内容应当是现实的,有意义的,和富有挑战性的,这更加激起学生主动的进行观察交流等学习活动。学生在指的时候会随着观察的深入发现那些长方形也是轴对称的。当学生把蓝色的格子部分看作是一个个正方形时却发现这些正方形又不是独立的,要想按正方形面积来算就要解决两个正方形之间的重叠部分。学生对以上这些内容的发现与关注激发起学生的探索=,同时也为学生解决问题更加多样化及方法的简洁性埋下了伏笔。)。
(二)提出问题。
1、独立探究。
同学们对地毯图案有了充分的`认识,老师想知道蓝色部分的面积,你认为该怎么算?
同学们手中都有一张和大屏幕上完全一样的图,先独立思考,再把自己的想法和思路写在作业纸上。
(教师巡视学生的活动情况,并留意不同的解决问题的情况)。
2、合作交流。
师:把你自己的想法和思路和小组内成员进行交流,比一比谁发现的方法最多?
(学生小组内进行交流)。
师:大家都讨论得很充分了,谁愿意代表小组与大家分享?
3、展示提高。
生1:数方格的方法,一个一个的数,一共有108个小格,所以蓝色部分面积是108平方米。
生2:我先数出一行有几个蓝色格子,分别是6,6,10,6,10,8,8,8,8,10,6,10,6,6、再把每行的数相加,也是108平方米。
生3:数的方法太麻烦了,这是个轴对称图形,我数出左边一半6+6+10+6+10+8+8是54,再乘2就是全部面积。
生4:我找到这个图案的横竖两条对称轴,这样就把整个图形平均分成四份,我数出它的左上角蓝色格子数是3+3+5+3+5+3+3+2=27个,27乘4也是108平方米。
师:请你上来指一指你所说的左上角。
(学生上台活动)。
师:大家认为这个同学的方法怎样,谁能说说这是一种怎样的方法?
教师引导学生总结出:分整体为部分,知道部分求整体。
师:谁还有不同的方法?
生5:蓝色部分可以看作4个长6宽2的长方形,面积是48平方米。还有4个3乘3的正方形,面积是36平方米。4个4乘1的长方形,面积是16平方米。中间蓝色面积是2×4=8平方米。总面积是48+36+16+8=108平方米。
师:你能把找到的长方形上来指给大家看吗?再写出每一步的算式。
(学生按要求重新说一遍)。
生6:上下左右有4个6乘3的长方形,面积是72平方米。每个角还有7格,再乘4是28平方米。加上中间8个,蓝色部分面积也是108平方米。
生7:我是把整个图案均分成四份,每一份是边长为7的正方形,面积是7×7=49平方米,空白部分可以看作5个边长是2的正方形,面积是2×2×5等于20平方米。一份面积是用49—20—2=27平方米,再乘4得到蓝色部分面积是108平方米。
生8:如果把最中间的2个向上平移,空白部分就是2个4乘2的长方形,外加6个白色格子,用每一分面积27乘4得到蓝色面积是108平方米。
生9:用大正方形的面积减去空白部分的面积得出蓝色部分的面积,空白部分面积是每个角是12个格子,4个角面积是48平方米,中间部分是5个2乘4的长方形,面积是40平方米。用总面积14×14—12×4—5×2×4,剩下面积是108平方米。
师:谁听明白了,能结合图再具体说一说这种方法是怎样算的吗?
学生重新叙述一遍。
师:这种方法和前面方法有什么不一样?
生10:用的是地毯总面积减去白色部分面积得到蓝色部分面积。
生11:每个角有2乘2的正方形各3个,中间部分的空白可以看作5个4乘2的长方形,用14×14—2×2×3×4—4×2×5,求得蓝色部分面积是108平方米。
生12:把空白部分从上往下看,再把中间的平移,从左往右依次得到11个4乘2的长方形,用14×14—4×2×11。
生13:我和前面同学不一样的是把空白部分看作是边长为2的正方形,共有22个正方形。算式是14×14—2×2×22。
生14:14×14—4×3×4—4×10,用总面积减四个角空白部分面积,再减中间空白部分面积。
生15:我没用总面积减空白面积,当我画出图形的两条对称轴时,我发现蓝色部分都可以看作是正方形。
师用手势示意学生利用大屏幕讲解教师出示课件,引导学生观察。
生16:可这些正方形像拉环一样套在一起。
(细心的学生发现每个正方形都不是各自独立的,而是有重叠部分。)。
生17:先不管重叠部分,共有12个正方形,减去重叠的8格,加上中间8格,算式是3×3×12—8+8。
生18:先按每个正方形是3乘3是9,一共有(3×4)个正方形,用9乘12是108,9个正方形有8处重叠,而中间的8个小正方形正好和重叠的抵消,最后结果仍是108平方米。算式是3×3×(3×4)—8+8。
生19:如果平均分成四份来看的话,每一份是3×3×3=27个蓝色面积是27×4=108。
生20:我在计算过程中这几种方法都用到了,先把整体分做四个小部分,数出一部分蓝色面积是多少,再算出整体蓝色部分的面积。
(考虑到不同方法思维难度的大小与计算时间的长短和学生个体之间存在差异,允许学生有不同的选择)。
(设计意图:学生探索计算方法和书写可能用到的时间较长,因此教师在巡视的同时要关注需要帮助的孩子,同时要留意不同的解决问题的方法并随时板书在黑板上,在学生讲述自己的方法与过程中努力帮助学生寻找简便的方法。学生在这么一场对话之后会从中受益很多,充分发挥班级学习的优势)。
三、小结。
四、综合运用。
课本第一题:选择自己喜欢的方法来解决问题。
(学生汇报,重点让学生说一说运用的方法,谁的方法更简便?)。
第二题:先独立解决,再小组内交流解决方案,并作简单记录,比一比哪组方法多。
(选择自认为最简便的方法汇报)。
第三题独立解决,并对比两组题,把你的发现写在练习本上。
(学生之间进行交流)。
五年级数学容积教案范文(16篇)篇十三
教材第52页例1和“练一练”,第58页练习八的第1~4题。
1、使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义,能根据具体情境表示出相应的分数,联系实际情境解释或说明分数的具体意义;认识分数单位,能说明分数的组成。
2、使学生经历有具体到抽象的认识、理解分数意义的过程,感受分数的来源与形成,体会数的发展,培养观察、比较、分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。
认识和理解分数的意义。
认识和理解单位“1”。
探究合作法、讲解分析法、练习法等。
ppt。
在三年级,我们曾经分两次认识分数,今天这节课,我们要在以前学习的基础上,进一步认识分数。
出示例1中的一组图。
请大家根据每幅图的意思,用分数表示每个图中的涂色部分。写出分数后,再想一想:每个分数各表示什么?在小组内交流。
学生汇报所填写的分数,你认为这些图中分别是把什么平均分的?
一个饼可以称为一个物体,一个长方形是一个图形,“1米”是一个计量单位,而左起第四个图形是把6个圆看成一个整体。
左起第四个图形与前三个图形有什么不同?
一个物体,一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。
(1)在这几个图形中,分别把什么看成单位“1”的?
(2)分别把单位“1”平均分成了几份?用分数表示这样的几份?
(3)从这些例子看,怎样的'数叫作分数?
拿12根小棒自已创造一个分数。
说说你是怎么做的?
如果老师要表示6根小棒可以用什么分数表示?
第1题,各图中的涂色部分怎样用分数表示?请大家在书上填空。说说是怎样想的。
每个分数的分数单位是多少?各有几个这样的分数单位?
第2题,观察直线上是把哪个部分看作“1”的?直线上表示是怎样想的?
引导:分数也可以在直线上表示。这里从0起到1是1个单位,同样地从1到2也是1个单位,这1个单位就是把单位1平均分成若干份,就可以用直线上的点表示分数。
让学生在()里填上合适的分数。
交流:你是怎样填的?为什么这样填?
先让学生在每个图里涂色表示三分之二,再说说是怎样涂的、怎样想的。
同样是三分之二,为什么涂色桃子的个数不同?
第2题先读出每个分数,再说说每个分数的分数单位。
第3题让学生填,交流时说说是怎样填的。
第4题在研究分数时,把哪个数量平均分成若干份,这样的数量就是单位“1”
这节课学习了哪些内容?
五年级数学容积教案范文(16篇)篇十四
掌握有括号的小数四则混合运算的运算顺序。
掌握有括号的小数四则混合运算的运算顺序。
难点:弄清有括号的运算顺序。
多媒体。
1、先让学生说一说运算顺序。
2、让学生独立完成。校对。
有括号的`小数四则混合运算和有括号的整数四则混合运算相同。今天我们就来学习有括号的小数四则混合运算。
例3:4.38÷(36.94+34.3×0.2)。
提问:1、在有括号的算式里要先算什么?
2、先算什么,再算什么?
3、学生独立完成。校对。
4.38÷(36.94+34.3×0.2)。
=4.38÷(36.94+6.86)。
=4.38÷43.8。
=0.1。
例4:[(5.84-3.9)÷0.4+0.15]×0.92。
提问:1、先算什么,再算什么?
2、独立完成。校对。
3、做错的说一说错的原因。
[(5.84-3.9)÷0.4+0.15]×0.92。
=[1.94÷0.4+0.15]×0.92。
=[4.85+0.15]×0.92。
=5×0.92。
=4.6。
1.8×(1.4-0.26÷2)[7.6-5×(0.3+0.9)]÷10。
1、先说一说运算顺序,再进行计算。
2、抽两名学生板演。
在既有中括号,又小括号应该先算什么,再什么?
p-52第一题、第二题和第三题。
课堂作业本。
练习十一。
五年级数学容积教案范文(16篇)篇十五
1、通过解决问题,进一步理解方程的意义。
2、学会用方程解答简单的应用问题。
重点:学会解方程。
难点:正确列方程。
一、出示课题。
1、你对方程是怎样认识的`?既然同学们已经理解了方程的意义,下面我们就来应用方程解答简单的应用问题。
二、重点练习:
1、基础题:第2题。
理解和掌握解方程的方法。
2、应用题:第1、3、4、5、6、、9、10、7题。
在理解题意的基础上寻找等量关系,根据关系列方程解决问题。
3、相遇问题:第8题。
练习时,在学生理解题意的基础上,让学生说说估计两人在何处相遇,鼓励学生根据题意寻找等量关系,列方程解决第(2)题。
4、拓展题:第11题。
根据学生实际情况,尝试让学生列方程解决问题。第(2)题,只要学生提出的问题合理,都给予肯定。
三、课堂小结。
略
五年级数学容积教案范文(16篇)篇十六
xxx年12月11日。
复习复式统计表和复式条形统计图,完成“练习与应用”1-3题。
1、使学生进一步学习和认识复式统计表,根据收集、整理的数据填写统计表,并能根据统计表中的数据进行简单的分析。
2、使学生进一步认识复式条形统计图,学习根据收集、整理的数据完成复式条形统计图。
3、感受数学与生活的密切联系,发展数学应用意识。
统计图与统计表
小组讨论:
这一单元,你学习了那些知识?你有什么收获?
1、完成第1题。
可以让学生根据教材提供的数据独立填表,再进行适当交流。
要重点指导计算“人均耕地面积”的计算方法。知道根据问题,应该用全果耕地的总公顷数除以总人口数。
总结,得数大约是0.11公顷。
2、你知道吗。
先让学生自由阅读,再交流体会。
3、完成第2题。
学生观察后,可以要求说说这里的复式条形图与此前认识的复式条形图有什么不同,体会复式条形图的具体形式是可以变化的。
学生填表后,适当可以组织交流,使学生体会我国城乡社会经济正在不断发展、进步。
4、完成第3题。
可以先让学生根据复式统计表中的数据独立完成条形统计图,再组织对统计图的观察与分析。
要启发学生根据对条形统计图的直观观察从整体上评价这两只球队,看出红队的状态不够稳定,而蓝队的水平正在逐步提高。
这节课你又收获了什么?