六年级教案可以促进学生的主动学习,培养他们的自主思考和解决问题的能力。在以下是一些经验丰富的教师编写的六年级教案范文,或许对教师的教案编写会有所帮助。
六年级数学圆的认识教案(汇总12篇)篇一
1.通过画一画、折一折、量一量等活动,观察、体会圆的特征,认识圆的各部分名称,理解在同圆或等圆中直径与半径之间的关系。
2.了解、掌握多种画圆的方法,并初步学会用圆规画圆。
3.在活动中,感受圆与其它图形的区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。
探索圆的各部分名称、特征和关系。
通过实际的动手操作体会圆的特征。
1.出示幻灯:生活中的圆。
摄影作品,在这些美丽的图片中你们发现了什么图形?生活中你在哪见过圆?
2.揭示课题:圆无处不在,这节课我们就来认识它。
3.同学们喜欢玩套圈的游戏吗?现在就来试试?
我这有一个玩具,要求你只能站在距离它三米远的地方扔圈,你可以站在哪里?
我们用三厘米代表三米,你能在本上标出你所在的位置吗?
2.实投学生成果(由画几个点到多点,直到圆)。
问:站在这几点都可以吗,为什么?只能站在这几点上吗?
出现圆后问,还有地方站吗?
3.课件演示。
师:那么到底可以站在哪?(圆上任意一点)。
圆上这样的点有多少个?
1.屏幕上有一个圆,同学们能利用现有的工具制造一个圆吗?
2.学生画圆,师巡视。
3.汇报不同画圆的方法(先找用圆形工具画的汇报)。
拿线绳画的黑板演示。
圆规画的实投展示。
4.总结圆规画圆方法。
5.学生练习圆规画几个圆。
既然我们可以借助圆形工具来画圆,人们为什么还会发明圆规呢?
6.观察自己所画的圆,除了一条封闭的曲线还有什么?(点儿)。
给它取个名字——圆心(如果学生能说就让学生说)用字母o表示。
7.拿出手中的圆纸片,你们有办法确定这个圆的圆心吗?
学生动手折。
问:除了圆心你们还发现了什么?(折痕)。
你发现的折痕是什么样子的。
师:谁愿意到前面介绍自己的发现?揭示直径半径定义。
你能在圆上画出直径和半径吗?
在自己所画的圆上标出圆心、画出半径和直径。
圆心和半径到底有什么作用呢?画一画就知道了。
1、用圆规在本上画出几个不同的圆,看谁画得漂亮。
2、投影展示。
问:你们画得圆有的在上、有的在下、有的偏左有的偏右,什么决定的?
学生汇报,圆怎么这么听话呢。
师小结:圆心决定圆的位置,怪不得人家叫圆心呢。
这些圆大小各异,怎么画就能让他有大有小?
小结:圆的半径决定圆的大小(圆规两脚间距离)。
那就结合老师的提示利用手中的工具小组共同研究吧。
4.研究提示。
同一个圆内,半径与直径有什么关系?
同一个圆内,半径有多少条?
同一个圆内,半径的长度都相等吗?
汇报。
同圆直径是半径的2倍板书d=2r。
问:你怎么知道的?
同圆的半径有无数条,为什么?(圆上有无数的点、折痕中发现)。
同圆的半径有无数条,那么直径有多少呢?
板书:同圆内半径有无数条。
同圆的半径都相等,为什么?(通过测量,通过推理)。
同圆的半径都相等,那么直径都相等吗?
板书:同圆内半径都相等。
所以古人说:圆,一中同长也。
这个一中指什么?同长指什么?
边看幻灯边读这句话。
一中同长的圆在生活中应用很广泛。
4、车轮的外形为什么做成圆的,你能解释吗?
为什么不把车轮做成这些形状的?(出示正多边形图片)。
1.由正三角形到正十二边形,有什么变化?
2.想象,正100边形会是什么样子?(接近圆,但不是圆)。
正3072边形呢?(更接近圆,但还不是圆)。
到底多少边的时候就是圆了呢?
4、阴阳太极图。
5、下面我们还将面临3个实际问题的挑战,同学们敢接受挑战吗?
问题1、你能测量出1圆硬币的直径吗?(参考用工具:直尺,一副三角板)。
问题2、你能在地面上画一个半径1米的圆吗?(参考用工具:绳子、粉笔)。
问题3、车轮都做成圆的,车轴装在哪里?为什么?(参考用工具:自行车)。
课下每个同学选择一个自己最感兴趣的课题来研究。
学完这节课,同学们还有什么想法吗?圆里面藏着无穷无尽的奥秘,等待着同学们去研究和发现!愿我们的学习和生活都像圆那样完美!
六年级数学圆的认识教案(汇总12篇)篇二
1、给合生活实际,通过观察、操作等活动认识圆,认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。
2、通过观察、操作、想象等活动,发展空间观念。
圆的特征的认识及空间观念的发展。
课件。
教学过程:
一、观察思考。
1、(呈现教材套圈游戏中的第一幅图)这些小朋友是怎么站的?在干什么?你对他们这种玩法有什么想法吗?(从公平性上考虑)得到:大家站成一条直线时,由于每人离目标的距离不一样导致不公平。
2、(呈现教材套圈游戏中的第二幅图)如果大家是这样站的,你觉得公平吗?为什么?得到:大家站成正方形时,由于每人离目标的距离也不一样导致也不公平。
3、为了使游戏公平,你们能不能帮他们设计出一个公平的方案?(学生思考)学生想到圆后,出示第三幅图,提问:为什么站成圆形就公平了呢?(每人离目标的距离都一样)。
4、上面我们接触了三种图形-----直线、正方形、圆。其中圆是有点特殊的,你能说说圆与正方形等图形的不同之处吗?举出生活中看到的圆的例子。
二、画圆。
1、你们谁能画出圆来吗?动手试一试。
2、谁来展示一下自己画的圆,并说说你是怎样画的?画的时候要注意什么?其他同学有想法可以补充。
3、思考:以上这些画法中有什么共同之处?注意的问题你是怎么想到的?(固定一个点和一个长度,引出圆心和半径)。
三、认一认。
1、教师边画圆边讲概念。(概念讲解一定要结合图形,并要举一些反例)强调:圆心是一个点,半径和直径是线段。
3、
四、画一画,想一想。
径呢?(放动画)。
2、以点a为圆心画两个大小不同的圆。
3、画两个半径都是2厘米的圆。
五、应用提高。
讨论:圆的位置和什么有关系?圆的大小和什么有关系?
六、作业。
1、教材第5页练一练。
2、在平面上先确定两个不同的点a和b,再画一个圆,使这个圆同时经过点a和点b(就是这两个点都在所画的圆上),这样的圆能画几个?(提高题)。
训练学生的观察能力,发现问题的能力。
不直接说出圆,把思考的空间留给学生。
在画图中体会圆的特征。
思考共同之处时再一次体会圆的特征。
通过正反例的练习,加深对半径和直径的理解。
动手操作,理解画圆的关键是定圆心(位置)和半径(大小)。
巩固提高,满足不同学生要求。
圆的认识(一)。
圆(本质特征):圆上各点到定点(半径)的距离都相等。
圆的画法:
圆的相关概念:圆心,半径,直径。
同一个圆中,有无数条半径,它们都相等;同一个圆中有无数条直径,它们也都相等。
在学生已认识圆的基础上,深入的了解圆的各部份名称。学生对圆心与圆。
的半径的作用能理解,掌握了本课的重点内容。
六年级数学圆的认识教案(汇总12篇)篇三
(一)教师提问:我们已经学过哪些平面几何图形?
长方形、正方形、平行四边形、三角形和梯形
(二)谈话引入:今天我们继续学习一个新的几何图形.
(一)圆的形成过程
2.教师提问
(1)明明拉着绳子围着教师走动,他的位置发生了变化,但是有一点是没有变的,你知道吗?(明明和教师的距离没有变化)
(2)老师的位置在哪里?(引出圆心)
(二)联系实际
生活中的圆形物体处处可见,你能举一些例子吗?
(三)画圆
1.介绍圆规的历史.
2.教师介绍画圆步骤
(1)把圆规的两脚分开,定好两脚间的距离;
(2)把有针尖的一只脚定在一点上;这个点就是圆心,用字母o来表示.
(3)把装有铅笔尖的一只脚旋转一周.
3.教师强调
(1)圆规两脚距离不能变;
(2)重心放在针尖一脚上;
(3)起点和终点要重合.
4.学生练习
(1)学生在教师的带领下画圆
(2)学生自己练习画圆
(3)学生按要求画圆(两脚间距离为3厘米)
(四)认识半径、直径和两者间的关系.
1.认识半径:教师在圆内画一条线段,线段的一个端点在圆心,另一个端点在圆上.
(1)教师说明:这样的线段叫圆的半径,用字母r表示
(3)学生反馈:你画了几条?长度呢?如果还有时间你还能画多少条?
(4)教师小结并板书:所有的半径都相等.
教师追问:你圆中的半径和老师黑板上画的圆的半径为什么不相等呢?
(5)补充板书:在同圆或等圆中,所有的半径都相等.
2.认识直径:教师示范画直径
(1)观察:什么叫直径?直径有多少条?长度呢?
(2)教师小结并板书:在同圆或等圆中,所有的直径都相等,直径用字母d表示.
3.用彩色笔标出下面各圆的半径和直径.(出示图片:练习)
4.半径与直径的关系
教师提问:在同圆或等圆中,半径和直径有什么关系?
六年级数学圆的认识教案(汇总12篇)篇四
1.通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径和直径的关系。
2.进一步理解轴对称图形的特征,体会圆的对称性。
3.在折纸找圆心、验证圆是轴对称图形等活动,发展空间观念。教学重难点:
理解同一个圆的半径都相等,同一个圆里半径和直径的关系,并体会圆的对称性。
在折纸的过程中体会圆的特征。
教具、学具。
教学圆规多媒体课件。
圆纸片、直尺、圆规。
1.引导学生开展折纸活动,找到圆心。
(1)自己动手找到圆心。
(2)小组内汇报交流找圆心的过程,并说出这样做的想法。
引导生回答:对折的折痕就是直径,两条直径相交于一点,这一点就是圆心。
1.在折纸中发现圆是对称图形。
请同学们拿出几个圆,一起折一折吧,你发现了什么?与同伴交流。引导生回答:将圆对折,正好完全重合,圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴;在同一个圆中,直径的长度就是两条半径长的和。
2.引导学生用字母表示一个圆的直径与半径的关系。
引导生回答:d=2r或r=d/2。
设计意图:引导学生通过折纸活动进一步理解同一个圆的半径都相等的特征,以及圆的轴对称性和同一个圆里半径和直径的关系。
四、抽象概括,总结提升。
1.说一说学过的图形中哪些是轴对称图形?你能画出它们的对称轴吗?正方形:4条。
长方形:2条。
等腰三角形:1条。
等边三角形:3条。
圆:无数条。
完成课本第七页“试一试”
设计意图:引导学生对已学过的轴对称图形进行整理,进一步理解轴对称图形的特征,在对比中发现这些轴对称图形的不同点,突出圆具有很好的轴对称性。
2.要求学生剪出书本第7页“做一做”的三幅图,沿中心点a转动,同学们发现了什么?
设计意图:引导学生在活动中体会图形的旋转对称性,以及圆是一个任意旋转对称图形。
五、巩固应用,拓展提高。
1.练一练第一题,学生在书上填写,集体交流。
设计意图:通过计算,引导学生进一步巩固了圆的直径与半径的关系。
2.练一练第二题,学生在书上填写,集体交流。
设计意图:引导学生根据图形的特征分析图形之间的关系,提高学生的识图和分。
析能力。
3.练一练第三题,学生画出对称轴,集体交流。
设计意图:引导学生根据图形的特征画出对称轴,进一步体会轴对称图形的特征。
4.全课总结。
(1)同学们,通过本节课的学习,你有哪些收获?
(2)教师总结:通过这节课的学习,同学们知道了圆是轴对称图形,是世界上最美的图形,那么,用圆还可以设计许多更美丽的图案,有兴趣的同学下课之后可以去收集一些,或者自己设计一些,这节课上到这,下课!
我们的发现:
1.圆有无数条对称轴,对称轴是直径所在的直线。
2.同一个圆里所有的半径都相等。
3.同一个圆里d=2r或r=d/2。
1.教学反思:回味课堂,我感觉亮点之处有:
(1)引导学生在实践活动中探索,发现,验证。多次折纸的过程增加了学生学习的趣味性,第一次折纸学生利用经验很容易找到圆心,如果引导学生说一说为什么“对折再对折”就可以找到圆心学生很难说清楚。教学中通过多次折纸观察思考,找到答案。交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。操作中体会交流,体会圆的特征,发展空间观念。
(2)有效练习,提高课堂教学效率。由于轴对称的内容是以前学过的知识,个别学生已经忘记了,不理解轴对称的含义,对于画对称轴,学生掌握得层次不齐,需要进一步练习巩固,练习的第三题有效的巩固了轴对称的知识。
2.使用建议。在学生交流对“同一圆中直径和半径关系”的发现时,除了折纸的方法,也可以鼓励学生结合圆规画图的过程说明自己的发现。另外,个别学生不理解轴对称的含义,所以做“试一试”的题目会有困难,注意个别指导。
六年级数学圆的认识教案(汇总12篇)篇五
《圆的认识》一直是小学高年级数学的教学内容,几乎所有小学数学教学领域的名师大家都用过这节课来“吟诗作画”,各领风骚;后生新秀们更是频频用这节课来“小试牛刀”,异彩纷呈。
我在欣赏品味之余,发现我们对于“圆的认识”这节课教学内容的处理,主要存在以下三个问题:第一,注重组织学生通过折叠、测量、比对等操作活动来发现圆的特征,不重视通过推理、想象、思辨等思维活动来概括出圆的特征;第二,注重让学生学会“用圆规画圆”,不重视让学生思考“为什么用圆规可以画出圆”;第三,注重数学史料的文化点缀,不重视数学史料文化功能的挖掘。
我思考——“圆的认识”这节课究竟要讲什么?
我思考……。
经过一段时间的慎思明辨,我认识到“圆”这一节课应该讲的有价值的东西实在是太多,有舍才有得,一课一得足矣!
【教学目标】。
1.认识圆的特征,初步学会画圆,发展空间观念。
2.在认识圆的过程中,感受研究的一般方法,享受思维的乐趣。
【教学过程】。
一、情景中创造“圆”
1.课件创设问题情景。
2.学生表达自己的想法。
3.展示学生的作品。
二、追问中初识“圆”
1.结合学生作品,追问:是什么?为什么?
2.课件动画演示。
3.研讨圆的特征。学生说,古人说。
4.质疑古人说法。“大方无隅”。
三、画圆中感受“圆”
1.画一个直径为4厘米的圆,并标上半径、直径。
2.从不圆中,感悟圆的画法。
3.追问“为何这样做?”
四、球场上解释“圆”
1.出示篮球场。
2.播放篮球开赛录像。
3.探讨大圆的画法。
4.追问大圆的画法。
五、回归情景突破“圆”
1.出示爱因斯坦的名言:“我没有什么特别的才能,不过喜欢寻根刨底地追究问题罢了。”
2.追问中提升认识。
六、课后延伸研究“圆”
1.依一天时间顺序,配乐出示各种各样的圆。
2.让学生选择感兴趣的追问研究。
【试教后的反思】。
非常成功,非常享受!已经拖课了,学生还是不愿意下课。
师父张兴华满意地对我们几个徒弟说:“应龙的这节课,我就七个字——浑然大气铸成圆!”
认识决定行为。已有的会成为包袱。备课时,我就觉得半径、直径不要像原来那样教,一问学生“这是一个多大的圆”,学生就会说出“半径、直径”。课堂事实也是这样,就让自己不再思考了。试教后一反思,才发现“宝物在哪儿呢?”是个更妙的问题,首先是回答了探讨的问题,其次是凸显了圆心定位置,半径定大小。现在想来,这样问,味道好极了!
正像电影《阿甘正传》中,阿甘妈妈对阿甘说的:“要想往前走,就得甩掉过去。”是啊,我今天的教法不就是想“甩掉过去”吗?但甩掉别人的过去容易,甩掉自己的过去就难了。否定别人容易,否定自己难。我是这样,听课老师会不会也是这样,而不肯接受我这节课呢?应该坦荡荡,何必长戚戚,“我的地盘我作主”,30年后再说吧。哦,我不该这样想,数学研究者往往是孤傲的,认为只有自己发现的“1”才是对的,我应该再思考,再否定自己,就像硬汉海明威说的“比别人优秀并无任何高贵之处。真正的高贵在于超越从前的自我”。
顿悟:几何画板上显示“正多边形和圆的关系”应该从正六边形开始,这样暗合了刘徽割圆术也是从正六边形开始的,并且解决了几何画板上正三角形不正、看着不舒服的问题,还解决了与前面研究正三角形、正方形、正五边形、正六边形“一中同长”重复的问题。哈哈,反思真好!
课上学生画出的“不圆”的资源化运用,感觉真好:有方法上的启迪、情感上的善意、借走橡皮的回应,那意境真有林黛玉说的“留得残荷听雨声”的美妙。
…………。
整体感受——在学生需要教的时候再教,效果就是好。看来我说“教是因为需要教”,没错!
自己以前也教过《圆的认识》,为什么没有今天这么享受呢?莫名地,我想起《老子》第四十五章:“大成若缺,其用不弊。大盈若冲,其用不穷。大直若屈,大巧若拙,大辩若讷。……”这几句话的意思是:完全做成的东西,看上去好像缺了些什么,但用起来却一点也不差。完全装满水的容器,看上去好像是空的,但用起来却一点也不少。非常直的东西看上去却好像是弯的,大的机巧看上去倒好像很笨拙,特别善辩的人看上去倒好像不会说话。
那,我“成”在哪呢?在没有增加新知识点的情况下,上得学生不愿意下课。让学生体验到不同现象背后的本质是一样的,让学生体验到认识事物“特征”的价值,让学生认识圆的“规矩”的同时感受了研究问题的“规矩”,让学生体验到追问“为什么”是一件很有意味的事情……爱因斯坦曾经说过这样的话:“用专业知识教育人是不够的,通过专业教育,学生可以成为一种有用的机器,但不能成为和谐发展的人。要使学生对价值(社会伦理准则)有了理解并产生出热烈的情感,那才是最基本的。”
哈哈哈,现在的我真是在理想“圆”里!
为什么今天的我能这么上、敢这么上?课程改革的深入,百花齐放的氛围……大抵还源于自己对自己和他人教育实践的过程和结果的意义和价值的哲学之思。
“花未全开月未圆”,大成“有”缺。革命尚未成功,同志仍需努力!
拖课了,总是不好,如何在40分钟内和学生交流?要舍什么?
整理:云山 雪燕子。
【教学目标】。
1.认识圆的特征,初步学会画圆,发展空间观念。
2.在认识圆的过程中,感受研究的一般方法,享受思维的乐趣。
【教学过程】。
师生问好。
一、情景中创造“圆”
师:同学们请看题目:
生思考。
师:有想法,你的桌子上有张白纸,上面有个红点,你们找到了吗?
生:找到了。
师:那个红点代表的是小明的左脚,如果用纸上的1厘米代表实际距离的1米的话,能把你的想法在纸上表示出来吗?想,开始。
学生动手实践,师巡视。
生思考。
师:好,很多同学都想好了,我们来看屏幕。红点代表小明的左脚,[课件演示:在红点右侧找出一距离红点3米的点]刚才我看到,很多同学都找到了这个点,找到的同学举手。
生纷纷举手。
生:认识,圆。
二、追问中初识“圆”
师:那宝物可能在哪里呢?
生:在圆的范围内,在圆的这条线上。
生:可以这样对小明说:“以你的左脚为圆心,画一个半径为3米的圆。在这个圆的周厂上取任意一点,这个地方也许就是埋宝物的地方”。
生:3米。
生:不行。
师:为什么不行?
生:如果只告诉左脚是圆心的话,那圆可以无限延伸。就没法掌握圆的周长是多少。
师:那个圆可以无限延伸。我理解他的意思了,你理解了吗?
生:理解了。
师:也就是说圆的半径没定,圆的大小没定。对不对。
生:对。
生:不行,那样圆的位置就可以无限延伸,。
师:除了说“以左脚为圆心,半径为3米的圆上”还可以怎么说?生活中听说过吗?
生:也可以说直径是6米。
师:同意吗?
生:同意。
师:可以说:以左脚为圆心,直径为——”
生:6米。
师:对。这个“直径:也能表达圆的大小。[板书:直径]。
师:为什么 宝物可能所在的位置会是一个圆呢?
生:因为在一个圆内,所有的 半径都相等。
师:哦,他说了这个。什么 宝物可能所在的位置会是一个圆呢?
生:因为以他的左脚为圆心,他可以随便走一圈,就变成圆了。
生:我觉得圆有无数条半径,无数条直径。
生:圆心到圆上任意一点的距离都是相等的。
生:它既没有棱也没有角。
师:同意吗?同意的请点点头,她说圆没有棱也没有角,对吗?
生:对。
师:没有棱是什么意思?
生:没有棱是说它没有边,它不象正方形有4条边。
师追问:那它是没有边吗?
生:不是,有边。
师:有边,几条边?
生:1条。
师:那你们说圆的边和我们以前学过的图形有什么不同?
生:以前学过的图形的边是直线,而圆的边是曲线构成的。
师:同意?
生:同意。
师:看来我们从角来看,圆是没有角的。从边上来看,圆有没有边?
生:有!
师:有,几条边?
生:一条边。
生:是曲线的。
师:是曲线的。其他的是直线或者说是线段围成的。
生:圆心。
师:同长,什么同长?
生:半径。
师:半径同长,有人说直径也同长。同意古人说的话吗?
生:同意。
师:“圆,一中同长也”。难道说正三角形,正四边形正五边行不是“一中同长”吗?
认为是的举手,认为不是的举手 。为什么不是呢?
生:这些图形中心到角的距离比到边的距离要长一些。上前面指着说。
师:这些图形是不是一中同长?
生:不是。
生:3条。
师:正方形呢?
生:4条。
师:正五边行呢?
生:5条。
师:正六边行?
生:6条。
师指圆:
生:无数条。
师:无数条?[板书]为什么是无数条?
生:圆心到圆上的半径都相等。所以有无数条。
师:我们解决的是什么问题?
生:我们解决的问题是相等的半径有无数条。
师:为什么有无数条?
生:圆心到圆上的距离都相等。
师:圆周上有多少个点?
生:无数个。
生:无数个。
生:认同。
生读。
师:圆有什么特点?
生:一中同长。
师:我们来看小明的宝藏在什么范围?我们第2个问题解决完了吗?
三、画圆中感受“圆”
1从不圆中,感悟圆的画法。
师:孩子们,想自己画一个圆吗?画圆用什么?
生:用圆规。
师:古人说:没有规矩,不成方圆。大家看,规就是圆规、矩就是带着直角的尺。规是用来画圆的,矩是用来画方的。
师:既然大家都回会画?画一个半径为4厘米的圆。
(生自己画圆)。
师:画好了吗?
(展示学生的作品,学生此时的作品都不怎么标准)。
师:从这些圆里,我们是否可以想象,它们是怎样创造出来的?
师:看来画圆并不是一件很容易的事,小组里交流一下,怎样画圆才能标准?
(生小组交流)。
师:大家交流完了,好了。那现在你们说一下是怎么画的?
生:用圆规。
师:了解圆规的发展,现在圆规的优点在哪里?
师:用这样的圆规画圆,手必须拿着哪,圆规就不动了?
生:拿着圆规的头,不能捏着它的两条腿。
师:对,就是拿住圆规的头,而不能捏着它的两条腿。
*(课件出示:再画:一个直径是4厘米的圆)。
生画,师巡视。
师:哎呀,老师在巡视时,我发现你们画的较规范的圆,大小不一样,为什么?
生:这里要我们画的是直径4厘米的圆。
师:你知道什么是直径吗?顾名思义,它和半径是什么关系?
生:直径是半径的2倍。
师:订好距离,就是圆的半径。
师:孩子们,谁愿意上来画一画。这个机会老师留着了。
师:展示画圆,故意出现破绽一:没有“圆”上?破绽二:没有画完?
生:两脚之间距离变化了;粗细不均匀;
师:你们真仔细,我把汗都画出来了。
2标上半径、直径。
师:学生标直径和半径;你说在画半径时特别注意什么?
生:在画半径时特别注意对齐圆的圆心,画完后表上字母r;
师:半径有两个端点,一个端点在(圆)上,另一个端点呢?
生:圆心;
师:再画一条直径;刚才他画的时候你注意到了吗?应该特别注意什么?那位戴眼镜的小伙子。
生:一定得通过圆心。
师:直径用字母d表示,数学上就是这么规定的。d和r是什么关系?
生:2倍,d=2r。
师:画圆是怎样画的?
生:圆规画长是半径。
师:为什么这么做呢?先确定圆心,半径长度。
生:圆心到圆上的距离就不相等了。
师:圆的特点:圆一中同长。知道圆的特点太重要了。
四、球场上解释“圆”
1.出示篮球场。
师:是什么?中间是什么?中间为什么是个圆?不知道篮球比赛是怎么开始的,不能回答这个问题,我们一起来看。
2.播放篮球开赛录像。
师:为什么中间要是个圆呢?
生:刚开始比赛要往对方场地传球,这样中间画圆比较公平。
师:队员在圆上,球在中心。圆一周同长,比较公平。
3.探讨大圆的画法。
师:这个圆怎么画?
生:先找到圆心,两点间距离固定好,再画。
师:大圆,再大,超大呢?没有圆规可以画?
生:用大拇指当圆心,用食指画。
师:画大圆?
生:确定圆心半径再画。
师:这个大圆,没有圆规怎么画?
生自由交流。
4.追问大圆的画法。
师:不是没有规矩不成方圆吗?怎么没有圆规也能画圆?
生:规矩不一定单独指圆规,指的应该是画图的工具。我们可以用不同的工具来画。
师:我们这句话还是对的。
五、回归情景突破“圆”
1.出示爱因斯坦的名言:“我没有什么特别的才能,不过喜欢寻根刨底地追究问题罢了。”
2.追问中提升认识。
生:地下。
师:拿西瓜说事。我们就想到球了,球也是一中同长。圆和球有什么不同?
生:圆是平面图形,球是立体图形。
六、课后延伸研究“圆”
依一天时间顺序,配乐出示各种各样的圆。
六年级数学圆的认识教案(汇总12篇)篇六
义务教育课程标准北师大版试验教材六年级上册第一单元第6、7页圆的认识二。
1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。
2、进一步理解轴对称图形的特征,体会圆的特征。
3、在折纸找圆心、验证圆是轴对称图形等活动中,发展空间观念。
1、圆的特征。
2、同一个圆里半径与直径的关系。
1、三角尺、直尺、圆规。
2、教学课件。
教 学过程
教学过程说明
1、折一折。
每人准备一个圆,请同学们想办法找出圆心。
2、小组活动:剪几个圆,折一折,你发现了什么?
小组交流。
3、汇报:沿着任意一条直径对折,都能完全重合。
4、小结:圆是轴对称图形,直径所在的直线是圆的对称轴。
圆有无数条对称轴。
在同一个圆里,直径的'长度是半径的2倍,可以表示为d=2rr=d/2。
1、说一说学过的图形中哪些是轴对称图形?分别有几条对称轴?
正方形:4条
长方形:2条
等腰三角形:1条
等边三角形:3条
圆:无数条
2、要求学生剪出书本第7页做一做的三幅图,沿中心点a转动,同学们发现了什么?
1、练一练第一题。
学生在书上填写,集体交流。
2、练一练第二题。
学生在书上填写,集体交流。
3、练一练第三题。
学生画出对称轴,集体交流。
4、练一练第四题。
学生实际测量,集体交流。
5、练一练第五题。
学生在书上填写,集体交流。
使学生通过折纸活动进一步理解同一个圆的半径都相等的特征,以及圆的轴对称性和同一个圆里半径和直径的关系。
引导学生整理已学过的轴对称图形。
让学生在活动中体会图形的旋转对称性,以及圆是一个任意旋转对称图形。
通过练习,进一步巩固所学知识。
学生在掌握圆的特征的基础上,进一步认识圆,知道圆是一个轴对称图形,而且有无数条对称轴。
存在问题:对于画对称轴,学生掌握得层次不齐。需要进一步练习巩固!
六年级数学圆的认识教案(汇总12篇)篇七
1.使学生在观察、画图、讨论等活动中感受并发现圆的基本特征,知道圆的圆心、半径和直径的含义;会用圆规画指定大小的圆;能用圆的知识解释一些日常生活现象。
2.使学生在活动中进一步积累认识图形的经验,增强空间观念,发展数学思考。
3.使学生进一步体验图形与生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
六年级数学圆的认识教案(汇总12篇)篇八
教学目标:
1、使学生认识“”“”和“=”这三种符号及其含义,同时知道这三种符号的读法和作用。
2、使学生知道用“大于、小于、等于”来描述5以内数的大小,建立符号感。
3、培养学生互相谦让、团结友爱的良好品德。
4、培养学生初步判断、分析及处理问题的能力。
教学重、难点:
学生认识“”“”和“=”这三种符号及其含义,知道用“大于、小于、等于”来描述5以内数的大小,建立符号感。
教具、学具准备:
投影仪;9只小猴、4个梨、3个桃、2根香蕉;1—5数字卡片;学具盒。
教学过程:
一、复习旧知。
(一)认读1—5各数。
(二)排序。
教师在黑板上摆上3、1、5、2、4。让学生按从小到大的顺序排列。
二、探究新知。
(一)观察主题图,回答问题。
要求:看图听故事。
教师讲故事:有几只猴子到山上玩耍。他们又是玩水又是捉迷藏,玩得可高兴了!到了中午,他们又累又渴,于是他们跑到山上采了许多水果,来到草地上吃。同学们,你们能猜出猴子他们采了什么水果吗?(激发学生的学习热情。)。
学生回答后,教师再出示主题图。师:“同学们,你们猜对了吗?”“你们再仔细看一下,猴子采了哪些水果?分别是多少?用哪一个数字表示?”
教师根据学生的回答,相应在黑板上贴出水果图,并标上数字。
(二)引导学生学习“”“”和“=”。
1、教学“=”(猴和桃比)。
(1)师:“如果每只猴子吃1个梨,够不够?”教师用一一对应的方法竖排出来,说出谁多谁少。教师出示相应图片及数字。
(2)教师说明:当桃和猴谁也不多,谁也不少时,我们就说3只猴和3个桃相等。(板书:“=”),等号是两条一样长的线,请学生跟读“3等于3”。
(3)师:“同学们看看,等号两边的数有什么有趣的地方?你们还能举出其它例子吗?”
2、教学“”(猴和香蕉比)。
(1)师:“如果每只猴子吃1根香蕉,够不够?”教师用一一对应的方法竖排出来,说出谁多谁少。教师出示相应图片及数字。
(2)学生观察得出,猴比香蕉多,也就是32(板书32)。
(3)请学生观察“”,教师用顺口溜帮助学生进行记忆:开口大,朝大数。
(4)师:“你还能举出哪些例子吗?”
3、教学“”(猴和梨比)方法同2。
“尖头小,对小数。”
4、请学生观察三道算式,小组讨论,看有什么发现。学生回答后,教师用顺口溜帮助学生进行记忆:相同数间用等于;开口大,朝大数;尖头小,对小数。
5、发散思维。
看看还有谁和谁能比,几大于几,几小于几?
三、运用知识。
(一)教科书第18页“做一做”第1题。教师读题,请学生听清题意。
1、左图:两边各有几只灯笼,谁多谁少,几大于几?
2、右图:两边各有几只灯笼,谁多谁少,几大于几?
学生独立填写,教师巡视,再拿几个学生的上投影仪上长方体讲评。
(二)游戏:比一比。
1、师:“刚才我们学习了比大小,大家观察一下我们的教室,看一看哪些东西和哪些东西可以比的?谁和谁比?几大于几?”
2、小组游戏:同桌间拿出学具,摆一摆,比一比,谁多谁少,几大于几?
六年级数学圆的认识教案(汇总12篇)篇九
义务教育课程标准北师大版试验教材六年级上册第一单元第6、7页圆的认识二。
1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。
2、进一步理解轴对称图形的特征,体会圆的特征。
3、在折纸找圆心、验证圆是轴对称图形等活动中,发展空间观念。
1、圆的特征。
2、同一个圆里半径与直径的关系。
1、三角尺、直尺、圆规。
2、教学课件。
教 学过程
教学过程说明
1、折一折。
每人准备一个圆,请同学们想办法找出圆心。
2、小组活动:剪几个圆,折一折,你发现了什么?
小组交流。
3、汇报:沿着任意一条直径对折,都能完全重合。
4、小结:圆是轴对称图形,直径所在的直线是圆的对称轴。
圆有无数条对称轴。
在同一个圆里,直径的长度是半径的2倍,可以表示为d=2rr=d/2。
1、说一说学过的图形中哪些是轴对称图形?分别有几条对称轴?
正方形:4条
长方形:2条
等腰三角形:1条
等边三角形:3条
圆:无数条
2、要求学生剪出书本第7页做一做的三幅图,沿中心点a转动,同学们发现了什么?
1、练一练第一题。
学生在书上填写,集体交流。
2、练一练第二题。
学生在书上填写,集体交流。
3、练一练第三题。
学生画出对称轴,集体交流。
4、练一练第四题。
学生实际测量,集体交流。
5、练一练第五题。
学生在书上填写,集体交流。
使学生通过折纸活动进一步理解同一个圆的半径都相等的特征,以及圆的轴对称性和同一个圆里半径和直径的关系。
引导学生整理已学过的轴对称图形。
让学生在活动中体会图形的旋转对称性,以及圆是一个任意旋转对称图形。
通过练习,进一步巩固所学知识。
学生在掌握圆的特征的基础上,进一步认识圆,知道圆是一个轴对称图形,而且有无数条对称轴。
存在问题:对于画对称轴,学生掌握得层次不齐。需要进一步练习巩固!
六年级数学圆的认识教案(汇总12篇)篇十
新课程倡导学生主动参与、乐于探究、勤于动手的学习方式,培养学生收集和处理信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流与合作的能力。本节课本人通过创设宽松、愉悦、民主、和谐的课堂教学氛围,引导学生积极主动参与学习活动。如通过“游戏活动”,让学生在“玩”中学习。如“游戏趣味题”中“教师的评说”,能唤起学生学习的热情。如“自我习作、操作表演、大家共赏”,享受成功的.愉悦,可激发学生探知的欲望。
如让学生剪、折、画、量、议、找……多种感官参与活动,可培养学生的动手、实践能力,学会探索的方法。如通过学生评价教师、学生,师生平等相待,可解放学生的脑、手、眼,让学生大胆地想、放开去说、随心地做,有利于培养学生的创新精神和探究能力。教学中师生互动、生生互动、民主平等、开放自由、心心相映、情感交融……课堂充满了生命活力,这样教学有力地促进了学生学习方式的改变。置身于这样的学习情境之中,真正达到了“让学生享受学习”的意境。
六年级数学圆的认识教案(汇总12篇)篇十一
采用游戏引入的形式,寓教于乐,即感知了圆的形成过程,渗透了集合思想,初步领悟了画圆的要领,同时密切了师生情感。根据几何知识的特点和儿童的认知规律,通过看、想、说、画、议等形式多种感官参与学习的实践活动。不但从感性到理性认识了圆,同时还发展了空间想像力、动手操作能力和口头表达能力。
1.使学生认识圆,知道圆的各部分名称.
2.使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系.
3.初步学会用圆规画圆,培养学生的作图能力.
4.培养学生观察、分析、抽象、概括等思维能力.
理解和掌握圆的特征,学会用圆规画圆的方法.
理解圆上的概念,归纳圆的特征.
一、铺垫孕伏
(一)教师用投影出示下面的图形
1.教师提问:这是我们以前学过的哪些平面图形?这些图形都是由什么围成的?
2.教师指出:我们把这样的图形叫做平面上的直线图形.
(二)教师演示
一个小球,小球上还系着一段绳子,老师用手拽着绳子的一端,将小球甩起来.
1.教师提问:你们看小球画出了一个什么图形?(小球画出了一个圆)
2.小结引入:(出示铁丝围成的圆)这就是一个圆.圆也是一种平面图形,这节课我们就来学习圆的认识.(板书课题:圆的认识)
二、探究新知
(一)教师让学生举例说明周围哪些物体上有圆.
(二)认识圆的各部分名称和圆的特征.
1.学生拿出圆的学具.
2.教师:你们摸一摸圆的边缘,是直的还是弯的?(弯曲的)
教师说明:圆是平面上的一种曲线图形.
3.通过具体操作,来认识一下圆的各部分名称和圆的特征.
(1)先把圆对折、打开,换个方向,再对折,再打开这样反复折几次.
教师提问:折过若干次后,你发现了什么?(在圆内出现了许多折痕)
仔细观察一下,这些折痕总在圆的什么地方相交?(圆的中心一点)
教师指出:我们把圆中心的这一点叫做圆心.圆心一般用字母 表示.
教师板书:圆心
(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?
(圆心到圆上任意一点的距离都相等)
教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母 表示.(教师在圆内画出一条半径,并板书:半径 )
教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?
在同一个圆里可以画多少条半径?
所有半径的长度都相等吗?
教师板书:在同一个圆里有无数条半径,所有半径的长度都相等.
教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径.直径一般用字母 来表示.(教师在圆内画出一条直径,并板书:直径 )
教师提问:根据直径的概念同学们想一想,直径应具备什么条件?
在同一个圆里可以画出多少条直径?
自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗?
教师板书:在同一个圆里有无数条直径,所有直径的长度都相等.
(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的
长度都相等;有无数条直径,所有直径的长度也都相等.
(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?
如何用字母表示这种关系?
反过来,在同一个圆里,半径的长度是直径的几分之几?
教师板书:在同一个圆里,直径的长度是半径的2倍.
六年级数学圆的认识教案(汇总12篇)篇十二
教师:今天老师和大家一起学习一种新的立体图形:圆柱体,简称圆柱。
1、初步印象。
教师:同学们,请你们用眼睛看,用手摸,说一说圆柱与长方体的有什么不同?
(圆柱是由2个圆,1个曲面围成的。)。
2、小组研究:圆柱的这些面有什么特征呢?面与面之间又有什么联系呢?
3、交流和汇报。
(1)关于两个圆形得出:上下2个圆是完全相等的圆,它们都是圆柱的底面。
(2)关于曲面得出:它是圆柱的侧面,如果沿着高展开,可以得到一个长方形或正方形,如果沿着斜线展开可以得到一个平行四边形。展开后的长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
(3)关于圆柱的高:两个底面之间的距离叫圆柱的高。高有无数条。高有时也可用长、厚、深代替。
4、举例说明进一步明确特征。