教学计划的编写应充分考虑学生的特点和需求,确保教学目标明确、教学内容合理、教学过程有序,以实现优质教学的目标。在下面的范文中,我们可以看到不同年级和学科的教学计划设计。
解决问题的策略教学设计(通用17篇)篇一
教具:2张表格纸,画好表格的小黑板。
学具:直尺,课堂练习本。
教学过程:
一、导入新课。
二、创设情景,讲授新知。
2、教学例3。
4、大家都认为,可以按3人间由少到多的顺序来列举,也可以按2人间由少到多的顺序来列举。我们先按3人间由少到多的顺序来列举,为了方便记录和观察,我们可以先画个表格。(出示表格)。
提问:这样2人间怎样安排?符合题目要求吗?
谈话:你们会这样列举了吗?接下去应该怎样想?在小组里讨论。注意:组内每个人至少要说一种。指名说答案,教师板书。
解决问题的策略教学设计(通用17篇)篇二
1、从解决简单的实际问题的过程中,体会用“一一列举”策略的特点和价值,能不遗漏,不重复找到符合要求的所有答案。
2、通过反思和交流,进一步积累解决问题的经验,发展思维的条理性和严密性,从而使学生获得解决问题的成功体验,树立学好数学的自信心。
体会策略的价值,感受策略带来的好处,使学生能主动运用所学的策略解决问题。
在学习过程中,能主动反思自己的解题过程提升对策略的认识。
一、导入。
出示草原牛羊成群图。
二、探究策略。
1、初次探究。
小黑板出示:用18根1米长的栅栏围成一个长方形的羊圈。
问:根据这句话的信息你想采用什么方法来帮牧民叔叔呢?
2、进一步探究。
问:你能把符合要求的长和宽可能性一一列举出来吗?
学生填写第63页的表格。
3、体会列表的特点。
问:反思一下刚才的思考过程,你有什么体会?
板书:有序(有条理)一一列举不遗漏不重复。
让学生再次说说应该怎样有条理地思考。
出示:像这样有条理的把可能性一一列举出来,从而找到问题的答案,这种解决问题的策略就叫列举。在列举时要注意按照一定的顺序,这样才能做到不重复、不遗漏。
4、进一步引导。
这几种围法中牧民叔叔会喜欢那种呢?为什么呢?
出示:周长相等的长方形,长和宽的差越大,面积就越小;长和宽的差越小,面积就越大。
三、体会策略中的技巧。
出示例题2。
读题后问:“最少订阅1本,最多订阅3本”是什么意思?
小组讨论并集体交流。
展示不同的思考方法:
(1)用1、2、3代表不同的杂志。
(2)用a、b、c代表不同的杂志。
(3)用甲、乙、丙代表不同的杂志。
(4)用(0、00、000)代表不同的杂志……。
3+3+1=7种。
(有一定的规律列举,不重复,不遗漏。)。
四、巩固练习。
问:根据题意你想到了什么?用什么策略解决这个问题?
交流,说出列举思考的过程。
五、交流中总结收获。
这节课你最大的收获是什么?“一一列举”对我们解决生活问题有什么好处?
六、课堂练习。
做练习十一的第1—3题。
解决问题的策略这一单元是采用列表的方法收集,整理信息,并在列表的`过程中寻求解决实际生活问题的有效方法。体会解决问题的策略常常是多样的,同一个问题可以用不同的策略,从不同的角度去分析。例1利用学生对长方形与它的长和宽关系的已有认识,要求学生找出用18根1米的栅栏围成长方形的各种方法,在寻找策略中体会“一一列举”的特点和价值。例2是在例1的基础上启发学生用“一一列举”的策略解决实际问题时,要不重复、不遗漏地进行思考过程。在探讨中让学生积极参与,感受解决问题的策略是在具体生活中的运用,从而激发学生主动运用所学到的策略解决简单的实际问题的兴趣。
解决问题的策略教学设计(通用17篇)篇三
1、引导学生经历解决问题的过程,能有序、有效地思考、分析数量关系,初步学会用假设的策略解决含有两个未知数的实际问题。
2、能对解决问题的过程进行反思,初步感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
能有序、有效地思考、分析实际问题中的数量关系。
感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
课件、导学单、教具。
一、复习铺垫。
1、出示下面的问题,让学生列式解答。
把720毫升果汁倒人9个同样的小杯子里,正好倒满。平均每个杯子的容量是多少毫升?
数量关系:个小杯的容量=720毫升。
口头列式解答。
提问:和第1题相比,这道题难在哪里?(第1题是把720毫升果汁倒入一种杯子里,可以直接用除法计,这一道题是把720毫升果汁倒入两种杯子里,题中有两个未知数量。)。
3、揭示课题:这道题可以怎样解答呢?今天我们就来研究解决这样的实际问题的策略。(板书课题:解决问题的策略)。
二、探索策略。
1、教学例1。
(1)理解题意。
谈话:请同学们先观察题中的条件和问题,想一想,根据题意,你。
能找到怎样的数量关系,和小组里的同学说说你是怎样理解这些数量关系的。
揭示:6个小杯的容量+1个大杯的容证=720毫升。
大杯的容量x=小杯的容量小杯的容量x3=大杯的容量。
(2)确定思路。
谈话:我们知道,在遇到比较复杂的问题时,要想办法把复杂的问题转化成简单的问题。你有办法把这个问题变得简单吗?请先联系刚才理解数量关系式想一想,再和同学说说你准备怎样解决这个问题。
反馈:请把你的解题思路分享给大家。
学生想到的思路可能有以下几种,结合学生的交流,分别作如下引导:
思路一:假设把720毫升果汁全部倒入小杯。
问:把720毫升果计全部倒入小杯,1个大杯要换成几个小杯?把大杯换成小杯后,正好倒满多少个小杯?先画线段图分析。
思路二:假设把720毫升果汁全部倒入大杯,6个小杯换成几个大杯?把小杯换成大杯后,正好倒满多少个大杯?先画线段图分析。
思路三:列方程解。
小结:根据题中的数量关系,同学们想到了解决问题的.不同思路。上面的'几种思路都是抓住哪一个数量关系展开思考的?像这样通过假设把复杂问题转化为简单问题的方法,也是常用的解决问题的策略。(板书:假设)。
(3)列式解答并检验。
谈话:选择一种方法完成解答,并检验解题的过程和结果。
完成解答后,让学生说说列式、检验的方法和结果。
(4)回顾反思。
(5)教学第二种思路。
学生独立思考,列式计算,教师巡视。
指名交流解题时的思考过程,以及列式计算的过程和结果。
(6)比较和回顾。
提回:通过解答上面的问题,你有哪些收获和体会?
让学生先在小组里说一说,再组织全班交流。
2、完成“练一练”。
(1)出示题目,提问:要求桌子和椅子的单价、可以怎样进行假设?让学生按自己的思路完成解答,教师巡视。
(2)让不同思路的学生展示自己解题的过程。
三、巩固练习。
完成练习十一第1—3题。
四、课堂总结。
今天这节课我们学了什么?你有哪些收获和体会?还有什么疑问?
解决问题的策略教学设计(通用17篇)篇四
教学内容:教科书第65~67页例题和“想想做做1~4”
教学目标:
知识与技能目标:能根据解决问题的需要,初步学习用列表的策略收集和整理信息,对表格中的信息进行分析,认识其中的数量关系,学会从问题入手和从条件入手,找出解答问题的方法,使问题得到解决。
数学思考与解决问题目标:培养学生主动运用有关策略解决问题的意识,培养有条理和富有个性地思考,并清楚地表达解决问题的大致过程。
情感与态度目标:充分体会有关策略在解决问题过程中的价值,乐于和同学交流自己解决问题的一些策略,能自觉运用策略解决问题,获得克服困难及运用策略解决问题的成功体验。
教具准备:多媒体课件,三角板(画线用),文字贴图。
教学过程设计:
课前欣赏:播放《曹冲称象》flash影片,感受策略。(在黑板上贴课题)。
一、创设情境,感受用策略解决问题的魅力。
1.承接故事情境,感受策略的作用。
(1)看了故事你想说什么?
(2)过渡语:要称出那头大象的重量,大人们都束手无策,七岁的曹冲却想出了那么妙的解决办法,用称出与大象相同重量的一船石头的重量来求出大象的重量,真了不起!老师佩服得五体投地,真想送他一个美名“小小策略家”。
问:那你知道什么叫策略吗?你还在哪里见过或者使用过策略呢?
问:今天我们要学习什么?
师:对,今天我们要像曹冲一样巧妙地运用策略来解决问题。
过渡语:解决什么问题呢?我们也找头大象来称称他的重量好不好?这是不可能的。我们就解决一个身边的数学问题吧。
二、探究新知,初步理解列表的策略。
1.生活中的难题(课件)。
以动画图片的方式呈现情境:元旦快到了,为了使庆祝元旦的活动更有意义,固城中心小学五年级四个班准备分别在本班举行一次“我是环保小卫士”演讲比赛。瞧,四位班长正在买奖品呢。五(1)班买了9本笔记本用去36元;五(2)班要买11本笔记本;五(3)班用52元买笔记本。五(4)班要买8支钢笔。
2.从图上你获得了哪些数学信息?
问:你可以提出哪些数学问题呢?(课件依次出示三个问题)。
问:这些问题现在都能解决吗?(为“五(4)班要买8支钢笔共要多少元”打下伏笔。)。
(生广泛发言,教师及时肯定和评价)。
3.第一个问题能解决吗?
图中有那么多信息怎么办?(张贴:整理信息)。
四人小组交流:你已经了解了哪些整理信息的方法呢?
师:整理信息的方法是多样的。你们平时经常用这些方法整理信息吗?
4.师生共同完成列表整理信息。(在黑板上列表。)。
过渡语:老师今天要教一种新的整理方法,你们想学吗?
(1)图中的信息都要整理吗?(张贴:有用信息)。
板书:五(1)、五(2)。
(2)整理的时候把这些信息全部抄下来吗?
先引导学生呈现纯文字的简化整理。
如:五(1) 9本36元。
五(2) 11本 ?元。
问:这样整理怎么样?
师:如果再给他们加上点线框,就形成了一份表格了。感觉怎么样?(更清楚了,在学生的回答中张贴“有条理”)。
5.课件出示列表,并指出这样的整理叫“列表整理”。(张贴:列表)。
读表:你能从这张表格中了解到哪些信息?
比较:这张表与上面的情境图相比,哪个更有条理?
6.比较各种整理方法。
过渡语:同学们说了许多整理信息的方法,老师课前也准备了一下,想看吗?课件依次呈现预设的四种整理:
学生可以边看,边将看到的信息或者自己的感受与同桌交流。
比较:如果让你选择,你会把最喜欢的一票投给谁呢?为什么?
先在四人小组内交流,再汇报。
引导学生理解,这几种整理方法都比较清楚,但列表更简单些。
过渡语:看样子,列表整理信息既清楚又简单,那么我们就根据列表中的数据来解答题目吧。
7.分析数量关系及解答。黑板上。
(1)学生根据表格说一说解答思路。
问:要解决这个问题,根据表格我们可以怎么想?
适时的明确学生是“从条件想起”的或“从问题想起”的。并张贴纸片。
(2)完成计算,一生板演。
汇报时,追问:每一步分别求的是什么?这个结果对不对呢?
三、明理内化,初步运用列表的策略解决问题。
你认为表格的第一列应该填什么?(五(1)和五(3))课件出示。
接下来会填吗?同桌商量一下。
学生在训练卡上填表整理,并解答。学生汇报做法,课件验证。
2.整合、简化。(课件呈现两张表格)。
(1)师:观察比较两个表格,你能发现什么?
为什么两个表格中都有“五(1)买本子的信息”?
(讨论后汇报,只有通过这个信息才能知道本子的单价)。
(2)解决这两个问题我们用了两个表格,多麻烦,能不能将两个表格合并成一个表格呢?需要设计几列几行?为什么?每一行分别填什么?(课件依次呈现)。
(3)师讲解:如何不考虑班级,而将研究的注意力放在数量与总价的关系上,这张表还可以简化成下面的形式。
出示箭头简化后的表格。
感觉怎么样?
这里面的数据会填写吗?
观察这个表格,你还想说什么?
3.小结全课:回顾一下,刚才我们是怎么解决这两个问题的?
根据学生的回答分别贴出板书:列表整理信息、分析数量关系、解答并检验。
四、巩固提高。
1.完成书本p66页的第一题。
2.完成书本p67页的第二题。
书本上两题,视时间而定,一般只完成第一题(字典摞起之高)。
3.问题三:五(4)班买8支钢笔一共用去多少元?(有问题,但无条件。)。
(2)学生自主列表整理并解答。
(3)展示3位学生不同的列表及做法。后组内四人交流、修正。
4.开放题:根据所求问题自主选择有用的信息解答并展示。
具体设计如下:
学校要购买物品,商场里正在播放信息。(课件播放)。
四人小组,每个组为学校解决一个问题,认真读一读,想一想你需要哪些信息?等老师播放信息。
课件:体育组买6个足球的钱,可以买几个篮球?
学校买7张办公桌共用去多少元?
买来的扫帚每班发3把,可以发给24个班,如果每班发4把,可以发给几个班?
学校用124元可以买多少个黑板擦?
足球:每个56元椅子:3把100元。
拖把:一把39元粉笔:20盒46元。
排球:每个42元扫帚:3把10元。
篮球:每个48元办公桌:2张300元。
计算器:一个24元黑板擦:10个20元。
学生根据课件中滚动的信息搜集相关信息列表。生独立完成,汇报。
五、全课总结:
(1)通过今天的学生你有什么收获?
(2)你认为用列表的策略来解决问题有什么好处?
(3)列表的策略对解决其他问题也同样有效吗?
解决问题的策略教学设计(通用17篇)篇五
1、正确、流利、有感情地朗读课文。
2、了解作者是怎样写荷花的。
3、理解课文内容,激发学生热爱大自然的感情,陶冶审美情趣。教学重点、难点:
1、学习第二自然段,品味词句;体会“我”忽然觉得自己仿佛就是一朵荷花时眼前出现的景象。
2、想象荷花图片,用生动优美的语言描绘荷花。
教学准备:小黑板。
教学时间:二课时。
第二课时。
教学过程:
一,直观激趣,进入课文情境。导语:今天我们将继续学习叶圣陶爷爷写的--齐读课题《荷花》。想不想亲眼看看荷花?看之前,老师有个小小的建议,你可以指指点点,可以和身边的伙伴讨论交流,看完后,请你描述一下你最喜欢的那朵荷花。
1、看挂图。
2、描述自己最喜欢的那朵荷花。
二、读悟结合,突破重点,学习第2小节。是啊,这么多的荷花,一朵有一朵的姿势,看看这一朵很美,看看那一朵也很美,眼前的这一池荷花简直就是一大幅画,叶圣陶爷爷笔下的这幅画是什么样的呢?还是让我们一起来读读课文吧。
1、自由读第2小节,划出你认为最美的句子,多读几遍,说说自己的感受。
三、以演促读,读中想像,学习第4小节。
过渡:听着听着,想着想着,我忽然觉得自己仿佛就是一朵荷花……配乐范背第四自然段,美吗?想读吗?那就美美地读吧,可爱的荷花仙子们。
1、指名个别读。
2、数人齐读,边听边配以动作。
1、说说画家是谁?
2、展示数幅各色荷花图片,引导学生说说你还有哪些好办法来夸夸荷花,夸夸大自然。
3、交流。
五、抒情表达、总结课文。
1、师:让我们再一次有滋有味全神贯注地看看这美丽、动人的荷花。边看边想,你打算用怎样的语言来赞美这美丽的荷花、动人的荷花。可按句式:“荷花!”。例如:荷花!你美丽动人的形象将永远留在我的心里。
将本文的word文档下载到电脑,方便收藏和打印。
解决问题的策略教学设计(通用17篇)篇六
教学目标:
1、知识与技能。
使学生在解决实际问题的过程中初步学会从条件出发展开思考,学会用列表的策略找到解决问题的思路,并能根据具体问题确定合理的解题步骤,从而有效地解决问题。
2、过程与方法。
使学生在对解决实际问题过程的不断反思中,感受解决问题策略的价值,发展分析、归纳和简单推理的能力。
3、情感、态度、价值观。
使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
重点难点:
会用列表法或列式的方法解决实际问题。
教具学具:
课件、打印好的表格。
教学过程:
一、教学新课。
1、谈话导入,揭示课题。
(1)师:同学们在日常生活中有没有遇到困难?
生:遇到过。
师:你们是怎样解决的?
生:想办法。
师:对,你们真爱动脑筋!今天我给办法取个新名字:策略。
ppt出示三(1)班英语两次单元考试成绩分数图片,让同学们在较短时间内找到宗加豪同学两次考试成绩。学生紧张寻找终于找到。最后ppt出示通过表格做好全班同学的成绩,找到宗加豪的名单,就出现他的两次成绩了。
提问:老师是怎样做到的?你得到什么启发?
2、解决问题,学习策略。
(1)课件出示情境图:1、mike哭泣的照片:俺的试卷、、、、、、这次就考这么点,回到家,俺的屁股、、、、、2、mike考的31分试卷。3、陈老师上课图片:没关系的,第一次考的少,以后每次比上一次多考5分,你一定会考及格的,甚至是优秀的(80分)。
要求:小组讨论,说出你的思路与方法。
(3)你会用列表法或列式法计算出答案吗?
同学们自主交流,分组合作。老师巡视指导,小组选代表回答。
列表法。
第一次第二次第三次第四次第五次。
31分。
列式法。
第二次31+5=36(分)。
第三次36+5=41(分)。
第四次41+5=46(分)。
第五次46+5=51(分)。
(4)问题2:迈克第几次能考试及格,分数是多少?
举手汇报,交流方法。
发问:如果没有前面的表格作铺垫,你能不列表很快算出第几次及格,及格时的分数吗?
学生自主探究,小组交流。
(5)问题3:从陈老师对迈克教诲中,我们悟出什么样的学习道理?
人文教学,各抒己见,鼓励成绩薄弱同学树立学习信心,提高后进生的学习积极性。
(6)小结。
二、巩固练习。
(1)先提出合适的问题,再列式解答。
一列火车2小时行驶100千米。
师:你能提出什么样的问题?
a你是怎样列表的?
指名回答。老师出示自己的表格。
2小时100千米。
5小时。
b你是如何求出5小时行驶多少千米的?说出你的思路?
a你是怎样列表的?
指名回答,老师出示自己做的表格。
第一天第二天第三天第四天。
32个。
c提问:这是一种怎样的解题方式。
引导:从后往前,一步步计算,像我们走路倒退差不多啊。(学生可能回答不那么准确,可能有部分学生回答“倒推”。)。
a你会列表格吗?点名回答,出示老师表格。
第一堆第二堆第三堆。
72包。
b师:本题的问题是什么?生:求第三堆水泥的包数。师:题目中的条件有哪些?生:第二堆是第一堆的2倍,第三堆再用去12包就与第二堆同样多。师:你能直接求出第三堆码?生:不能。要求出第二堆。师:怎样求出第二堆?生:根据条件列式:722=144(包)师:那第三堆再用去12包就与第二堆同样多是怎样理解的?生:第二堆得包数加上12就是第三堆的数量。列式:144+12=156(包)。
c你会填表了吗?
三、归纳小结。
通过这节课的学习,你学会了什么?
四、作业。
迈克需要通过几次考试才能考到优秀(80分及80分以上)?如果考到100分呢?
(提示:还能通过列表法解决吗?如果列表,那么表格要列多长呢?)。
板书设计。
列表法。
第一次第二次第三次第四次第五次。
31分。
列式法。
第二次31+5=36(分)。
第三次36+5=41(分)。
第四次41+5=46(分)。
第五次46+5=51(分)。
解决问题时,可以列式计算,也可以列表找出答案。
课后反思。
1、用列表法解决问题能使信息显得很有条理,让学生在解决问题的过程中,体会列表的价值,能寻找数量间的关系,从而提高学生解决问题的能力。
2、教学重点在于进一步学会用列表收集和整理信息的方法解决实际问题,而难点就在于怎样正确地运用列表的方法来整理较复杂的信息。
3、由于本题的侧重点如何通过列表法整理数学信息,理清数量关系。由于侧重点、以及时间关系本节课没有传授如何列表,而是老师打印好的表格,没有锻炼学生的动手能力。
解决问题的策略教学设计(通用17篇)篇七
教学目标:
1、梳理以前学习过程中的解决问题的策略---画图。
2、能积极尝试从数学角度运用所学知识和方法寻求解决问题的策略。
教学重点和难点:
结合具体情境体会画图的重要性。
教学过程:
自学导航:人们在解决问题时,使用一定的策略是非常重要的,今天我们就总结一下我们常用的解题策略--画图。
我们可以通过画图列举出所有搭配方法,试一试。
(画图有利于我们列举出所有的可能)。
二、数的认识我们也是从图画上理解。
(1)。
(2)数的运算:
(3)变化的量之间的关系。
说一说公共汽车从解放路到商场之间,行驶的时间与速度之间的关系。
(画图能帮助我们直观的理解所学内容)。
(画图能帮助我们分析数量之间关系,有利于用算术方法解决问题。)。
综上三个方面,画图有助于学生对问题的直观理解,可以帮助学生找到解决问题的思路,学生画的图只要能有效的帮助解决问题即可。
作业设计。
板书设计:
1、画图有利于列举出所有情况。
2、画图能帮助我们直观理解所学内容。
3、画图有利于我们分析数量之间的关系。
课后记:
教学目标:
1、梳理在以前学习过程中用到的解决问题的策略,如画图、列表、猜想与尝试、从特例开始寻找规律。
2、能积极尝试从数学的角度运用所学知识和方法寻求解决问题的策略,体会解决问题策略的多样性。
教学重点和难点:
列举教材中使用以上策略的例子。
教学准备:
投影片。
自学导航:
一、列表法。
(1)学校组织了足球、航模和电脑兴趣小组,淘气,笑笑和小明分别参加了其中一种。笑笑不喜欢踢足球,小明不是电脑兴趣小组的,淘气喜欢航模。画一表来帮忙,把信息记录下来,并进行推理。
足球航模电脑。
淘气。
笑笑×。
小明。
(2)下表是小明体重的变化情况。
年龄出生时6个月1周岁2周岁6周岁10周岁。
体重/千克3.57.010.514.021.031.5。
说一说小明10周岁前体重是如何随年龄增长而变化。
(列表可以帮助我们整理信息,进行推理;也能帮助我们分析两个量之间的关系,寻找规律。)。
二、猜想与尝试。
(1)鸡图同笼,有20个头,54条腿,鸡、兔各有多少只?
头/个鸡/只兔/只腿/条。
20101060。
2011958。
…………。
(2)。
长方体的体积 正方体的体积 猜想圆柱体的体积公式,
v=sh v=sh 并验证你的猜想。
(第1题培养学生对数的感觉和估计的能力,使学生经历建立假设、检验假设的过程,发展自己的判断能力;第2题引导学生了解归纳和类比是获取猜想的重要方式。)。
三、从特例开始寻找规律。
答案是9+8+7+6+5+4+3+2+1=45(场)。
(这种策略体现了数学中把复杂问题转化为简单问题的“退”的思路。)新课标第一网。
四、教师鼓励学生对教材中使用以上策略的例子进行总结,进一步理解各种策略的作用。教师一定要重视此活动,并组织学生进行交流。
作业设计。
板书设计:
一、列表法。
二、猜想与尝试。
三、从特例开始寻找规律。
解决问题的策略教学设计(通用17篇)篇八
教学目标:
1、使学生在解决实际问题的过程中初步学会从条件出发展开思考,分析并解决相关问题。
2、使学生在对解决实际问题过程的不断反思中,感受解决问题策略的价值,发展分析、归纳和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
用从条件想起的策略解决问题。
教学难点:
策略的体验和理解。
教学过程:
分了五个环节。
第一部分是导入,先出示一个条件,让学生初步体验只有一个条件无法求出问题,接着提供两个条件,让学生选择一个能解决问题的条件,让学生进一步体会只有两个相关联的条件才能解决问题。
第二部分是教学例题,感悟策略。出示例题后重点让学生理解“以后每天都比前一天多摘5个”,用自己的话来说说,从两个角度提炼出了数量关系,然后说解题思路,主要讲清楚根据哪两个条件求出什么,再根据哪两个条件什么。完成填表和列式后沟通了两者的关系,最后总结得出解决问题时我们紧紧抓住条件在思考。揭示课题。
第三环节是变式沟通,形成策略。通过两个变式的教学,让学生加深对策略的感知。接着安排了皮球那道题目,学生对条件的理解是比较困难的,所以我安排了一个动画,帮助学生理解。四个题目结束后,安排了回顾反思,这一环节是新教材比较强调的,让学生在回顾反思中提炼出解决问题的`经验。
第四环节是练习巩固,运用策略。选取了想想做做第一题的第一小题,让学生根据条件提出不同的问题,再解答,最后在分析中提炼出解决问题的第三个小窍门。紧接着请学生独立完成想想做做第4题,第5题。第5题的设计主要考虑到一是学生对游戏比较感兴趣,二是国际象棋是我们学校的特色,三是培养学生估算的能力,四是增加学生的课外知识。
第五环节是课堂总结,交流收获。回顾学习了什么内容,以及解决问题时是怎样一步步分析的。
解决问题的策略教学设计(通用17篇)篇九
1、使学生在解决实际问题的过程中初步学会从条件出发展开思考,分析并解决相关问题。
2、使学生在对解决实际问题过程的不断反思中,感受解决问题策略的价值,发展分析、归纳和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
用从条件想起的策略解决问题。
策略的体验和理解。
分了五个环节。
第一部分是导入,先出示一个条件,让学生初步体验只有一个条件无法求出问题,接着提供两个条件,让学生选择一个能解决问题的条件,让学生进一步体会只有两个相关联的条件才能解决问题。
第二部分是教学例题,感悟策略。出示例题后重点让学生理解“以后每天都比前一天多摘5个”,用自己的话来说说,从两个角度提炼出了数量关系,然后说解题思路,主要讲清楚根据哪两个条件求出什么,再根据哪两个条件什么。完成填表和列式后沟通了两者的关系,最后总结得出解决问题时我们紧紧抓住条件在思考。揭示课题。
第三环节是变式沟通,形成策略。通过两个变式的教学,让学生加深对策略的感知。接着安排了皮球那道题目,学生对条件的理解是比较困难的,所以我安排了一个动画,帮助学生理解。四个题目结束后,安排了回顾反思,这一环节是新教材比较强调的,让学生在回顾反思中提炼出解决问题的.经验。
第四环节是练习巩固,运用策略。选取了想想做做第一题的第一小题,让学生根据条件提出不同的问题,再解答,最后在分析中提炼出解决问题的第三个小窍门。紧接着请学生独立完成想想做做第4题,第5题。第5题的设计主要考虑到一是学生对游戏比较感兴趣,二是国际象棋是我们学校的特色,三是培养学生估算的能力,四是增加学生的课外知识。
第五环节是课堂总结,交流收获。回顾学习了什么内容,以及解决问题时是怎样一步步分析的。
解决问题的策略教学设计(通用17篇)篇十
教学目标:
1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值。
2、在对解决实际问题过程的不断反思中,感觉“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
教学重点:让学生体会替换策略的优越性。
教学难点:对替换前后数量关系的把握。
教学过程:
一、创设情景导入:
有谁带了钢笔吗?
老师真是健忘啊,今天忘了带钢笔,谁能借老师用一下?
要不这样吧,有谁愿意让老师用一枝铅笔来换你的钢笔?(学生困惑)。
(严肃,让学生觉得真换)。
怎么啦?(学生说说)。
是啊!
那你倒是说说看希望老师拿几枝铅笔,你才肯和我交换?
为什么?(老师:成交!)。
用铅笔换钢笔依据。
板书:十枝铅笔---------换(黄色粉笔写)---------一支钢笔(价格相当)。
那你说说看为什么非要老师用十支铅笔才肯换呢?
(引导学生说出价钱差不多)。
紧接板书:价格相当。
十枝铅笔和一支钢笔价格相当,这正是公平交换的前提和依据。
板书:依据。
二、温故知新:
课件打开到曹冲称象图片。
(他用什么替换了什么?)。
你能联系上面情节讲一讲它替换的依据是什么呢?
(鼓励性评价:真聪明)。
石头和大象的重量相同作为替换的依据。
那曹冲是怎样来保证石头和大象的重量相同呢?
板书:一堆石头---------替换----------一头大象(重量相同)。
曹冲称象的故事给了我们这样一个启示:替换确实是一种解决问题的行之有效的方法。今天我们就来继续学习解决问题的策略之。。。对,替换。
板书:添上----替换两字。
三、协作创新。
曹冲是三国时期的人物,谈到三国,大家一定都知道赤壁大战吧。这场著名的战斗主要是在水上进行的。
三国时期的水上兵器比较多,有走舸,艨艟,斗舰和楼船等等。
(简略介绍其中的走舸和楼船。)。
题目看不清楚的话,可以拿出老师发给你们的纸,上面也有。
生一起读题。
你知道了哪些信息?
这道题目能用“替换”的策略解决吗?
接下来请同学们按照题目下面的要求,来亲身体验一下替换。
同桌合作:
1用什么替换什么?(把题目中替换的双方圈一圈)。
2替换的依据是什么?(在题目关键句的下面画一画)。
3替换前后的数量关系各是什么?(分别把替换前后的数量关系写一写,也可以用图画或者线段图表示)。
小组交流:
知道怎么替换了的同学请举手。
你们在替换的时候,有没有想到替换有什么好处啊?
请你在四人小组里面和同学交流一下。看看同学们是不是想的都和你一样?
1替换有什么好处?
2你替换的.方法和其他同学完全一样吗?
结合课件画面讲解,板书。
一艘楼船--替换--5艘走舸(每条走舸乘坐的士兵数量是楼船上士兵人数的1/5)。
课件展示:
替换前。
(10走舸与1楼船横排,出示数量关系:10艘走舸和1艘楼船上一共装了105名士兵)。
替换后。
(15走舸,出示数量关系:15艘走舸一共装了105名士兵)让学生计算。并讲一讲过程(数量关系)。
(注重:有什么不同的见解):还有其他的替换方法吗?(课件要可以在两种方法间自由切换)。
两种方法都讲解完后,让学生说说替换的好处。
四、巩固立新:
俗话说得好:兵马未动,粮草先行。
请学生说说如何替换?
板书:一条运粮船----------替换----------(一辆马车+15袋)。
让学生在自备本上用自己喜欢的方式画一画。
实物投影展示替换方法。(最好选文字和图画各一份)。
数学是需要简洁和凝练的,看赵老师怎么来做。。。
强调计算的时候是个倒推的过程,是先减还是先除,不能忘记什么?
课件演示思考过程。
同桌之间互相说说:替换前后的数量关系分别是什么?
学生自己列算式解答。
请学生说说替换的好处。
五、博古通今:
学校阅览室为了让大家能阅读三国的故事,进了3套《四大名著》和8本《三国演义》,一共花费了410.4元。每本《三国演义》比每套《四大名著》便宜31.2元。分别求《三国演义》和《四大名著》的单价。
学生独立完成。
让一学生上黑板进行板演(力求作出示意图)。
全班交流。
引导学生把四大名著换成三国演义。
并让学生体会把三国演义换成四大名著虽然也可以计算,但是比较繁琐。
六、自编自演:
大家家里都买过名著没有?小红她也想买些书来阅读,所以她就把平时的零花钱都放到储蓄罐里储存起来。
请大家开动脑筋,根据5角硬币1元硬币储蓄罐三个词语,抽象出一道可以用替换策略解决的应用题。(可适当加上数据条件)。
七、课堂小结:
今天我们学习了什么?你准备以后经常使用这个策略吗?说说原因。对于这个策略,你有什么要提醒在座的各位同学的呢?经验也可以。
解决问题的策略教学设计(通用17篇)篇十一
进一步积累解决问题的经验,增加解决问题的策略意识,获得解决问题的成功体验。
教学过程:
一、积累铺垫。
4.从图中你能求出什么?
二、初步感知。
2.审题激需:你能想个办法让大部分同学都能理解题意顺利闯关呢?(画图)。
4.现在图有了,你能根据图来求出原来操场的面积吗?
(1)学生尝试,教师巡视。(2)讨论交流:
三、再次体验。
四、深入体验。
(一)第四关:
1.引入:应用画图的策略,我们来闯第四关。
2.分层出示:
到底增加了多少?学生解答后交流。(交流“整体”和“分块”两种思路)。
3.反思小结:从用经验猜测,到画图验证,最后到解决问题,你有什么启发吗?
(二)第五关:
1.引入:第四关我们都闯过了,下面我们要挑战——第五关!
(1)审题后问:与第四关有什么区别?(一个是“同时”,一个是“或者”)。
五、全课总结。
解决问题的策略教学设计(通用17篇)篇十二
本次微课《解决问题的策略》主要以ppt的形式,以教师讲解和展演学生常见作品的方式,将画线段图的策略潜移默化地教给学生,并通过提问和线段图的分析引导学生学会根据直观图去分析数量之间的关系,通过微课的形式帮助学生提高分析和解决问题的能力。
学生能够根据波利亚四部曲完整地解决一道实际问题。
学生会画线段图,并能够根据线段图解决简单的实际问题。
该微课主要帮助学生通过分析题目中的条件和问题,正确地画出相应的线段图,并能根据线段图清楚地分析数量之间的关系,找到解决问题的思路,从而顺利解决问题。
在三年级学习了从条件出发和从问题出发的策略去解决问题,在四年级上学期学习了解决问题的一般步骤的策略,而本节课是用画图的策略解决实际问题,画图是一项重要的策略,在今后的学习中会用画图的策略来分析较为复杂的数量关系,并解决较为复杂的实际问题。
《解决问题的策略》这一节课的重难点就在于两方面:一是能正确应用画图的方法整理条件和问题;二是能借助直观图示分析数量之间的.关系,并能够解决较为复杂的实际问题。
学生的学习难点就在于这节课的重难点,而微课将这两个方面的重难点进行了详细讲解,又给了学生思考的过程,学生可以一边思考一边学习,学生试着画图和试着说说想法,并与正确的讲解进行对比找到自己的问题所在。这节微课对于这节课的重难点来说还是很有针对性的。
一,出示例题,理解题意。
2.提问:根据这两个条件,你想解决什么问题(ppt:解决问题)?
【设计意图】1.学生需要独立思考出从屏幕中可以知道什么条件?
2.独立思考根据这两个条件可以求出什么问题?
二,根据题意和观察线段图,分析数量之间的关系。
2.请学生自己画一画线段图,提示学生思考两个问题。
3.教师在ppt上展示了一些同学们常见的线段图画法,并让同学们思考最欣赏哪一副线段图。
4.教师完整地介绍线段图的画法,并由ppt进行展示。
5.根据线段图,说说题目中的条件和问题。
6.谈话:现在你能观察自己的线段图,想办法解决这个问题吗?自己思考一下。
7.教师介绍三种解决问题的思路,并通过ppt进行演示。
9.谈话:的确,从图上直观、清楚地看到了数量之间的关系,确定了解决问题的思路。这也是我们在解决问题时常用到的一种策略。
【设计意图】:1学生根据自己的已有知识经验,画出本题目的线段图。
2.通过观察教师展示的学生作品和介绍画线段图的方法,进行互学,想一想自己所画线段图的问题,并观察介绍者所画线段图的方法。体会线段图能够直观地表示出条件和问题。
3.根据所画出的线段图,分析数量关系,找到方法,并根据教师的ppt展演,进行思考,理解三种解决问题的方法。
4.通过观察对比解决问题的三种线段图,让学生体会和发现都要把他们的邮票转换成同样多。
三,解答并检验。
【设计意图】:帮助学生养成解决问题的完整性,形成良好的学习习惯。
四。回顾解题过程。
1.师:同学们我们解决了一道题目,回顾一下刚才的解题过程,说一说你有什么体会?(用ppt展示解题的过程)。
2.回忆:大家可以回忆一下,在我们以前的学习中,曾经运用过哪些画图的策略?
【设计意图】:通过ppt回顾整个解决问题的过程,让不同层次的学生对题目都能再次回顾,通过体会让不同的学生都能感受到画图的重要性。
学习指导。
请在预习苏教版小学数学四年级下册《解决问题的策略》第一课时时使用本微视频,初步掌握画线段图并分析数量关系的方法;也可以在学习过本课时,但还没有掌握的情况下,继续重新学习微课,从而达到掌握的目的。
配套学习资料。
制作技术介绍。
所需要的软件为:录屏工具软件;制作的简要流程为:先制作相应的片段ppt,并设计好相应的教案,在此基础上提前邀请一些学生试着画一画本节课例题中的线段图,将典型的学生所画的线段图进行展示;利用录屏工具软件进行录制。
解决问题的策略教学设计(通用17篇)篇十三
教学目标:
1、使学生在解决简单实际问题的过程中,进一步体会用画图和列表的方法整理相关信息的作用,感受画图和列表是解决问题的一种常用策略。会用画线段图、直观示意图或列表的方法整理简单实际问题所提供的信息,会通过画线段图、直观示意图或列表的过程分析数量关系,寻找解决问题的有效方法。
2、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的自信心。
教学重点:会用画线段图、直观示意图或列表的方法整理简单实际问题所提供的信息。
教学难点:会通过画线段图、直观示意图或列表的过程分析数量关系,寻找解决问题的有效方法。
教学资源:实物投影仪。
教学过程:
一、游戏导入:
二、新知探究。
1、出示题目:指名读题目,并要求说说知道了些什么,还想到些什么?
2、引导学生认识到,当题目中的信息比较多时,可以用适当的方法把题目中的条件和问题进行整理,这样有利于更清楚地分析数量关系,确定解题思路。
3、学生尝试整理信息。
你能将题目中的这些信息整理出来吗?你打算用什么方法?(学生讨论)。
4、汇报交流:1、列表整理;2、画图整理。
5、学生整理,教师巡视。
三、.师生交流。
1、分别展示学生的整理方法,并让学生说说自己的想法。
3、解答:根据整理的结果,可以怎样列式计算。
4、比较两种解法有什么联系?
四、试一试。
1、出示第1题:让学生先独立画图整理条件和问题,再独立进行解答。
2、出示第2题:让学生先独立画图整理条件和问题并进行解答,
再评议订正并说说画图整理的方法有什么好处?
五、巩固反思。
1、做“想想做做”的第1题。
(1)出示题目,让学生先独立画图整理条件和问题,再独立进行解答,最后集体交流。
2、做“想想做做”的第2题。
(1)先帮助学生理解183元是购买8瓶墨水和9枝钢笔的钱,要从183元中去掉8瓶墨水的钱就是9枝钢笔的钱。
(2)再让学生独立解答,最后交流反馈。
3、做“想想做做”的第3题。
(1)先引导学生画一个椭圆形跑道直观图,帮助学生理解跑道长应等于小张和小李所跑的路程之和。再让学生尝试画出线段图并解答。
五、总结质疑。
1、这堂课你有些什么收获?2、作业:想想做做第3~5题。
第二课时。
教学目标:
1、使学生在解决简单实际问题的过程中,进一步体会用画图和列表的方法整理相关信息的作用,感受画图和列表是解决问题的一种常用策略。会用画线段图、直观示意图或列表的方法整理简单实际问题所提供的信息,会通过画线段图、直观示意图或列表的过程分析数量关系,寻找解决问题的有效方法。
2、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的自信心。
教学重点、难点:
会用画线段图、直观示意图或列表的方法整理简单实际问题所提供的信息,并能正确解答。
教学资源:小黑板等。
教学过程:
一、复习导入:
1、同学们,还记得上课我们学习了什么知识吗?
二、新知探究。
1、出示题目:指名读题目,并要求说说知道了些什么。
2、讨论:打算用怎样的策略去解决这个问题?
3、学生尝试整理信息,教师巡视指导。
4、汇报交流:1、列表整理;2、画图整理。
分别将两种方法展示在黑板上,然后提醒学生画图时线段长度的比例应大致符合实际情况,并标出相应的已知条件;列表整理时提醒学生可以通过简单的计算,把扩建后的操场的长与宽直接填在表中,以有利于更好地把握主要数量关系。
5、学生纠正。
6、解答:通过刚才的整理,你现在能快速、准确地解答这道题目了吗?(学生独立解答)。
7、反馈交流答案。
三、试一试。
1、出示题目,指名读题后讨论用怎样的方法来解决?为什么?
2、引导学生说出用画出示意图的方法。然后指导学生画出示意图,再让学生结合示意图独立解答。
3、反馈交流答案。
四、巩固应用。
1、做“想想做做”的第1题。
(1)出示题目,让学生先独立画图整理条件和问题,再独立进行解答,最后集体交流。
2、做“想想做做”的第2题。
(1)先让学生画出长增加6米后的示意图,理解此时面积增加了48平方米,而48正好是原长方形的宽余的乘积,由此可以求出原长方形的宽,再用同样的方法求出长方形的长,最后计算出原来实验田的面积。
(2)再让学生独立解答,最后交流反馈。
3、做“想想做做”的第3题。
(1)先引导学生理解红花与谎话的摆法,四条边共可摆36盆,但由于4个顶点处被多计算了一次,所以红花的盆数是32盆。同样的道理,可以算出黄花的盆数是40盆。
(2)学生独立解答并交流答案。
五、总结质疑。
1、这堂课你有些什么收获?2、作业:想想做做第1~3题。
第三课时。
教学内容。
第103页例题通过场景图提供相关信息,启发学生根据解决问题需要采用不同的策略收集和整理信息,在此基础上用不同方法解决问题。
教学目的与要求。
教学目标。
1、使学生在解决简单实际问题过程中,体会用画图和列表方法整理相关信息的作用,感受画图和列表是解决问题的一种常用策略。
2、是学生积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学自信心。
教学重点与难点。
学习用画线段图和列表方法解决有关行程计算的实际问题。
教具学具。
投影仪、小黑板。
教学过程。
一、创设情境。
投影出示p103例题。
小组合作,讨论、交流。
联系现实场景,说说能知道些什么?还能想到些什么?
二、探索研究。
1、小组探讨:怎样用适当的方法把题中的条件和问题进行整理,更有利于分析数量关系,确定解体思路?教师巡视,给与恰当指导。
2、教师强调画线段图的方法。
(1)、让线段图正确反映小发明家、学校、小芳家的相对位置关系。
(2)、能在图中看出小明、效仿各自行走的速度和时间以及所需要解决的问题。
(3)、能从图中直观分析数量之间的关系。
3、小组汇报整理的方法,投影出示:
(1)、画图整理:
(2)、列表整理。
小明家到学校每分走70米走了4分。
小芳家到学校每分走60米走了4分。
4、根据整理结果,小组交流、探讨:
应先算什么、再算什么,教师鼓励学生富有个性解决问题。
学生汇报,教师投影展示:
704+604 (70+60)4。
=280+240 =1304。
=520(米) =520(米)。
答:他们两家相距520米。
5、比一比,两种解法有什么联系?
6、小结,通过例题的学习,你有哪些收获?
三、拓展延伸:
1、完成“试一试”
第1题,让学生根据题意先画图整理条件和问题,再独立进行解答。
第2题,让学生在列表整理的基础上,指导学生分析数量关系,明确解题思路。
2、完成“想想做做”中题目。
第2题,教师帮助学生理解题目意思,再引导学生通过思考和计算,填出括号里的数字。
第3题,教师先画一个椭圆形跑道直观图,帮助学生理解“跑道长应等于小张和小李所跑的路程之和”。
学生尝试画线段图表示题中的数量关系。
第4题,重点引导学生先列表整理条件再独立解答。
第5题,第(2)小题根据题意,师生合作化出相应线段图,然后再解答。
四、作业。
想想做做1、5题。
第四课时。
教学内容。
第106页例题主要通过解决有关面积计算的问题,让学生自主运用画图或列表的策略解决问题,并体会相同的策略可以有不同操作形式。
教学目的与要求。
1、使学生会通过画线段图,直观示意图或列表的过程分析数量关系,寻找解决问题的有效方法。
2、使学生积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验。
教学重点与难点。
重点学习用画直观示意图和列表的方法解决有关面积计算的实际问题。
教具学具。
投影仪、小黑板。
教学过程。
一、创设情境。
投影例题:学生读题,讨论用怎样的策略去解决问题。
二、探索研究:
小组合作,探讨、交流。
教师提示:画出的操场示意图中线段长度的比例大致符合实际情况,在图中应标出相应的已知条件。
1、小组汇报解决策略,教师投影展示。
列表:
长 宽 面积。
原来 50米 40米 ?平方米。
现在 ?米 ?米 ?平方米。
画图:如图书p106。
2、想想,要求操场的面积增加了多少平方米,可以先算什么,再算什么?再小组里说说自己的想法再解答。
板书:(50+10) (40+8) 50 40。
=60 48 =(平方米)。
=2880(平方米)。
2880-=880(平方米)。
或50 8+(40+8 10)。
=400+480。
=880(平方米)。
答:操场的面积增加了880平方米。
3、小结:通过例题的学习你有哪些收获?
三、拓展应用:
1、完成“试一试”
指导学生根据题意画出直观示意图,启发学生把图中“小路”适当分成几部分,分别算出面积后再求和;也可启发学生用外围大正方形面积减去里面的草坪面积,从而求得小路面积。
2、完成“想想做做”
第2题,让学生画出长增加6米后的示意图,理解面积增加了48平方米,而48正好是原长方形的宽与6的乘积,由此可以求出原长方形试验田的宽。再用同样的方法求出长方形试验田的长,最后计算出原来试验田的面积。
第3题,分别引导学生理解红花与黄花的摆法,红花应沿里面的正方形边摆,每边能摆9盆,四条边共可摆36盆,但由于4个顶点处各被多计算了一次,所以红花的盆数是32。同样的道理,可计算处黄花的盆数是40,红花和黄花一共要放72盆。
四、作业。
想想做做第1题。
解决问题的策略教学设计(通用17篇)篇十四
p63~64例题和试一试、p65“想想做做”
(1)让学生学习有画图和列表的方法收集、整理信息,并在画图和列表的过程中分析数量关系,寻找解决问题的有效方法。
(2)使学生在自主探索合作交流中体验成功的`愉悦,进一步树立学习数学的自信心,发展对数学学习的积极情感,提高主动学习和独立思考的积极性。
无
一、导入新课
(学生说出不同的方法)哪些方法可取,比较好?
遇到问题如何解决,就要找到解决问题的策略,今天这节课学习“解决问题的策略”(板书课题)
二、新授
1、出示场景
(1)说一说图中提供了哪些信息。
(2)根据提供信息,你能提出哪些问题?
2、出示问题:
(1)小华买5本需要多少元?
(2)小军用42元可以买多少本?
解决问题的策略教学设计(通用17篇)篇十五
教学目标:
1.进一步学会用“替换”“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2.在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3.进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
灵活运用多种解题策略解决稍复杂的实际问题。
教学过程:
一、揭示课题。
谈话:前几节课,我们学习了新的解题策略,你能举例说明吗?(请几位学生交流。)今天这节课,老师准备了一些实际问题,请同学们灵活运用我们学过的解题策略来解决这些稍复杂的实际问题。(板书课题)。
二、基本练习。
6.1元钱买4分一张和8分一张的邮票共20张,应买4分邮票多少张?
小结:运用“替换”或“假设”的策略解决问题后都应该及时进行检验。
三、拓展练习。
鼓励学生用自己理解的方法来解决这些问题,解答后给学生充分的时间进行交流,教师及时评价学生。
四、全课总结。
谈话:今天我们综合运用一些策略来解决实际问题。你们又有什么新的收获吗?
五、布置作业:
解决问题的策略教学设计(通用17篇)篇十六
教学内容:课程标准实验教科书苏教版六年级上册教材第89~90页例一、练一练和练习十七第一题。
教学目标:
1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值。
2、在对解决实际问题过程的不断反思中,感觉“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
教学重点:让学生体会替换策略的优越性。
教学难点:对替换前后数量关系的把握。
教学准备:
课前学生自学《曹冲称象》,并分组,准备大量铅笔约20支。
课前给学生合作要求纸。正面题目1和要求,反面自编题目。
打开课件。
教学过程:
一、创设情景导入:
有谁带了钢笔吗?(学生举手)。
老师真是健忘啊,今天忘了带钢笔,谁能借老师用一下?
要不这样吧,有谁愿意让老师用一枝铅笔来换你的钢笔?(学生困惑)。
(严肃,让学生觉得真换)。
怎么啦?(学生说说)。
是啊!
那你倒是说说看希望老师拿几枝铅笔,你才肯和我交换?
为什么?(老师:成交!)。
用铅笔换钢笔依据。
那你说说看为什么非要老师用十支铅笔才肯换呢?
(引导学生说出价钱差不多)。
紧接板书:价格相当。
十枝铅笔和一支钢笔价格相当,这正是公平交换的前提和依据。
板书:依据。
二、温故知新:
课件打开到曹冲称象图片。
(他用什么替换了什么?)。
你能联系上面情节讲一讲它替换的依据是什么呢?
(鼓励性评价:真聪明)。
石头和大象的重量相同作为替换的依据。
那曹冲是怎样来保证石头和大象的重量相同呢?
板书:添上----替换两字。
三、协作创新。
曹冲是三国时期的人物,谈到三国,大家一定都知道赤壁大战吧。这场著名的战斗主要是在水上进行的。
三国时期的水上兵器比较多,有走舸,艨艟,斗舰和楼船等等。
(简略介绍其中的走舸和楼船。)。
题目看不清楚的话,可以拿出老师发给你们的纸,上面也有。
生一起读题。
你知道了哪些信息?
这道题目能用“替换”的策略解决吗?
接下来请同学们按照题目下面的要求,来亲身体验一下替换。
同桌合作:
1用什么替换什么?(把题目中替换的双方圈一圈)。
2替换的依据是什么?(在题目关键句的下面画一画)。
3替换前后的数量关系各是什么?(分别把替换前后的数量关系写一写,也可以用图画或者线段图表示)。
小组交流:
知道怎么替换了的同学请举手。
你们在替换的时候,有没有想到替换有什么好处啊?
请你在四人小组里面和同学交流一下。看看同学们是不是想的都和你一样?
1替换有什么好处?
2你替换的方法和其他同学完全一样吗?
结合课件画面讲解,板书。
一艘楼船--替换--5艘走舸(每条走舸乘坐的士兵数量是楼船上士兵人数的1/5)。
课件展示:
替换前。
(10走舸与1楼船横排,出示数量关系:10艘走舸和1艘楼船上一共装了105名士兵)。
替换后。
(15走舸,出示数量关系:15艘走舸一共装了105名士兵)。
让学生计算。并讲一讲过程(数量关系)。
(注重:有什么不同的见解):还有其他的替换方法吗?(课件要可以在两种方法间自由切换)。
两种方法都讲解完后,让学生说说替换的好处。
四、巩固立新:
俗话说得好:兵马未动,粮草先行。
请学生说说如何替换?
板书:一条运粮船----------替换----------(一辆马车+15袋)。
让学生在自备本上用自己喜欢的方式画一画。
实物投影展示替换方法。(最好选文字和图画各一份)。
数学是需要简洁和凝练的,看赵老师怎么来做。。。
强调计算的时候是个倒推的过程,是先减还是先除,不能忘记什么?
课件演示思考过程。
同桌之间互相说说:替换前后的数量关系分别是什么?
学生自己列算式解答。
请学生说说替换的好处。
五、博古通今:
学校阅览室为了让大家能阅读三国的故事,进了3套《四大名著》和8本《三国演义》,一共花费了410.4元。每本《三国演义》比每套《四大名著》便宜31.2元。分别求《三国演义》和《四大名著》的单价。
学生独立完成。
让一学生上黑板进行板演(力求作出示意图)。
全班交流。
引导学生把四大名著换成三国演义。
并让学生体会把三国演义换成四大名著虽然也可以计算,但是比较繁琐。
六、自编自演:
大家家里都买过名著没有?小红她也想买些书来阅读,所以她就把平时的零花钱都放到储蓄罐里储存起来。
请大家开动脑筋,根据5角硬币1元硬币储蓄罐三个词语,抽象出一道可以用替换策略解决的应用题。(可适当加上数据条件)。
七、课堂小结:
今天我们学习了什么?你准备以后经常使用这个策略吗?说说原因。对于这个策略,你有什么要提醒在座的各位同学的呢?经验也可以。
解决问题的策略教学设计(通用17篇)篇十七
[教学内容]:
教科书第89—90页的例1、“练一练”、练习十七第1题。
[教材分析]:
本单元主要教学用替换和假设的策略解决实际问题。本单元共安排了2个例题,分3课时进行教学,本节课是其中的第1课时。“替”即替代,“换”则更换,替换能使复杂的问题变得简单。教学要求是,让学生在解决问题的过程中初步体会替换,充实思想方法,发展解题策略。教材安排的例题就是利用“小杯的容量是大杯的1∕3”这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。这是例题的编写意图,也是设计的教学思路。教材要求学生“说说为什么这样替换”,引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。
[教学意图]:
这节课的教学设计,力求体现新课程的理念,给学生自主探索的空间,为学生营造宽松和谐的氛围,让他们学得更主动、更轻松,凸现了内容的情趣化和生活化;在探索的过程中,培养学生的实践能力、创造能力、合作精神,鼓励学生大胆发表自己的意见,最大限度地调动学生学习数学的积极性、主动性和创造性,体现了过程的活动化,达成了预定的教学目的。
[教学目标]:
1、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2、使学学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
〔教学重点〕。
使学生掌握用“替换”的策略解决一些简单问题的方法。
〔教学难点〕。
使学生能感受到“替换”策略对于解决特定问题的价值。
〔教学过程〕。
一、复习导入。
1、说说图中两个量的关系可以怎样表示?
追问:还可以怎么说?
2、下面每个条件中两个量的关系还可以怎样表示?
(1)微波炉的容量是洗衣机的1/10。
(2)每个桌面的面积是教室地面面积的1/60。
指出:两个量的关系,换一个角度,还可以有另外一种表示方法。
3、从图中你可以知道些什么?
(多媒体出示:天平的左边放上一个菠萝,右边放上三个香蕉,天平平衡。)。
提问:现在老师在天平的左边放上两个菠萝,要使得天平平衡,右边可以放些什么?
追问:还可以怎么放?
指出:从这题中,我们可以看出,能把一个物体换成与之相等的另外一个物体。
4、口答准备题:
指出:这两题我们都是用果汁总量去除以杯子总数,就能得出所要求的问题。
二、新授。
(一)教学例1。
1、读题。
谈话:请同学们大声地把题目读一遍!
2、分析探索。
小结:哦!刚才两题是把果汁倒入到一种杯子里,而这题是把果汁倒入到两种不同的杯子里。
追问:那该怎么办?同桌先相互说说自己的想法。
3、交流。
谈话:我们一起来交流一下,该怎么办?
追问:还可以怎么办?
小结:哦!两位同学都是把两种不同的杯子换成相同的一种杯子,这样就可以解决问题啦!同学们可真了不起啊,刚才大家的做法中已经蕴涵了一种新的数学思想方法——替换。(板书:替换)。
4、列式计算。
a:把大杯换成小杯。
提问:把一个大杯换成三个小杯(板书),这样做的依据是什么?
追问:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?(板书)能求出每个小杯的容量吗?每个大杯呢?(板书)。
小结:在用这种方法解的时候,我们是把它们都看成了小杯,所以先求出来的也是每个小杯的容量,然后求出每个大杯的容量。
b:把小杯换成大杯。
谈话:那反过来,把小杯换成大杯呢?(板书)。
提问:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?你又是怎么知道的?
指出:把三个小杯换成一个大杯,再把三个小杯换成一个大杯。
提问:这样做的依据又是什么?
指出:如果把720毫升果汁全部倒入大杯,就需要3个大杯。(板书)。
提问:能求出每个大杯的容量吗?每个小杯呢?(板书)。
5、检验。
谈话:求出的结果是否正确,我们还要对它进行检验。想一想可以怎么检验?
指出:哦!把6个小杯的容量和1个大杯的容量加起来,看它等不等于720毫升。(板书)除此之外,我们还要检验大杯的容量是不是小杯容量的3倍。(板书)总之,检验时要看求出来的结果是否符合题目中的两个已知条件。
6、小结。
指出:解这题的关键就是把两种杯子看成一种杯子。
(二)练习。
谈话:刚才这题同学们想的很好,做的也很棒,接下来还有好多题目,等着大家去完成呢!
1、填空:
想:如果把它们都看成();把()支()换成()支()。
那么用22元钱相当于买了()支()。
想:如果把它们都看成();把()只()换成()只()。
那么全班40人相当于坐在了()只()上。
谈话:同桌先相互说说你的答案。
提问:可以怎么说?还可以怎么说?
指出:解决这样的应用题关键就在于把两种物体看成一种物体。
(三)教学“练一练”
1、出示题目。
谈话:自己先在下面读一遍题目。
2、分析比较。
提问:这题与刚才的例1相比较有何不同之处?
指出:哦!例1中小杯和大杯的关系是用分数来表示的,而这题已知的是一个量比另一个量多多少的差数关系。
提问:那么这题中的大盒还能把它换成若干个小盒吗?那该怎么换?谈话:现在你能做了吗?把它做在草稿本上。
3、学生试做。
4、评讲。
谈话:说说你是怎么做的?
指出:在大盒中取出8个球,就可以换成小盒;另外一个大盒也是这样。
提问:现在这7个小盒中,一共装了多少个球?还是100个吗?几个?指出:算式是100-8×2,所以84÷7算出来的是每个小盒装球的个数。
指出:算式是100+8×5,所以140÷7算出来的是每个大盒装球的个数。
谈话:把大盒换成小盒算出结果的请举手!把小盒换成大盒算出结果的也请举手!看来同学们还是喜欢把大盒换成小盒来计算。
5、检验。
谈话:同桌相互检验一下刚才计算的结果是否正确。
6、小结。
提问:解这题时你觉得哪一步是关键?
指出:哦!还是把两种不同的盒子换成一种相同的盒子,然后再解题。
7、填空。
三、全课总结。
谈话:今天这节课老师和同学们一起学习了解决问题的策略中用替换的方法解决问题。(板书完整课题)。
指出:哦!当把一个量同时分配给了两种物体时,而且这两种物体是有一定关系的时候,我们就能用替换的方法来解题。
追问:那解题时该怎么替换呢?(那在用替换的方法来解题时,关键是什么?怎么来替换?)。
指出:把两种物体看成同一种物体,(板书)求出一种物体的数量后,也就能求出另一种物体的数量。
四、拓展应用,巩固策略。
1、播放达能广告。
同学们,从刚才的广告中你又发现了哪些数学知识呢?
2、让学生说说自己的发现。
3、是啊!在我们每天的生活中蕴涵着丰富的数学知识,只要你做个有心人,你会有更多的收获。课前老师也做了一些调查:
(1)要解决这个问题你准备用什么策略?在替换的过程中还需要用到画图,老师给你们准备了一张图在练习纸二上,画一画来尝试解决这个问题。
学生独立完成。并说出想的过程。
(2)除了把牛奶替换成饼干,还有没有别的不同的方法吗?
(3)说一说这题该怎样检验?
(4)提问:为什么你们都不把饼干替换成牛奶来考虑?
学生交流后小结:在解决实际问题的过程中,一般要选择简洁、容易的方法来解答。
五、机动练习。
附:板书设计。
——替换。
把两种物体看成同一种物体。
1、把大杯换成小杯共需要9个小杯。
720÷(6+3)=80(毫升)验算:240+6×80=720(毫升)。
80×3=240(毫升)240÷80=3(倍)。
2、把小杯换成大杯共需要3个大杯。
720÷(1+2)=240(毫升)。
240÷3=80(毫升)。