多边形内角和说课稿(优质21篇)

时间:2025-08-16 作者:LZ文人

教案模板是教师在备课过程中为了更好地组织教学内容和教学步骤而设计的一种书面材料,它可以起到指导和辅助教师授课的作用。我想我们需要一份教案模板了吧。希望以下的教案模板范例能够帮助大家更好地进行教学设计。

多边形内角和说课稿(优质21篇)篇一

从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。

学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。

【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想

【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。

【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

【教学重点】多边形内角和及外角和定理

【教学难点】转化的数学思维方法

本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。

【课堂组织策略】利用学生的好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。

【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。

整个教学过程分五步完成。

1,创设情景,引入新课

首先解决四边形内角的问题,通过转化为三角形问题来解决。

2,合作交流,探索新知。

更进一步解决五边形内角和,乃至六边形,七边形直到n边形的内角和,都能用同样的方法解决。学生分组讨论。

3,归纳总结,建构体系。

多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。

4,实际应用,提高能力。

5,分组竞赛,升华情感

四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。

板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理

本节课在知识上由简单到复杂,学生经历质疑,猜想,验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。

多边形内角和说课稿(优质21篇)篇二

各位领导,各位老师大家下午好,很高兴有机会参加这次教学研究活动。

我的教学设计是华师大版七年级数学(下)第八章第三节"多边形的内角和与外角和"。根据新的课程标准,我从以下七个方面说一下本节课的教学设想:

从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。

学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。

【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想。

【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。

【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

【教学难点】转化的数学思维方法。

本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。

【课堂组织策略】利用学生的好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。

【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。

整个教学过程分五步完成。

1,创设情景,引入新课。

首先解决四边形内角的问题,通过转化为三角形问题来解决。

2,合作交流,探索新知。

更进一步解决五边形内角和,乃至六边形,七边形直到n边形的内角和,都能用同样的方法解决。学生分组讨论。

3,归纳总结,建构体系。

多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。

4,实际应用,提高能力。

5,分组竞赛,升华情感。

四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。

板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理。

本节课在知识上由简单到复杂,学生经历质疑,猜想,验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。

多边形内角和说课稿(优质21篇)篇三

各位评委、各位老师:

大家好!我是来自钱场中学的陈芬老师。我说课的内容是人教版义务教育课程标准实验教科书,七年级数学(下)第七章第三节《多边形的内角和》。

下面,我从以下几个方面对本节课的教学设计进行说明。

一、教材分析。

1、教材的地位和作用。

本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,环环相扣,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。通过这节课的学习,可以培养学生探索与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的思想方法。

2、教学重点和难点。

二、教学目标分析。

2、数学思考:能感受数学思考过程的条理性,发展能力推理和语言表达能力,并体会从特殊到一般的认识问题的方法。

3、解决问题:让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。

4、情感态度:让学生体验猜想得到证实的.成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造。

三、教法和学法分析。

本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:

1、教学方法的设计。

我采用了探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展。

利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用。

我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。

四、教学过程分析。

1、本节教学将按以下六个流程展开。

多边形内角和说课稿(优质21篇)篇四

学生已经学完三角形的内角和,对内角和的问题有了一定的认识,加上八年级的学生好奇心、求知欲强,互相评价、互相提问的积极性高、因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,所以把这节课设计成一节探索活动课是切实可行的。

本节课是《义务教育课程标准实验教科书》北师大版八年级上册第四章第六节《探索多边形内角和与外角和》的第一课时、本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神、在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力。

【知识与技能】掌握多边形内角和定理,进一步了解转化的数学思想。

【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。

【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

【教学难点】多边形定义的理解。多边形内角和公式的推导。转化的数学思维方法的渗透。

本节课分成七个环节:

第一环节:创设现实情境,提出问题,引入新课。

第二环节:概念形成。

第三环节:实验探究。

第四环节:思维升华。

第五环节:能力拓展。

第六环节:课时小结。

第七环节:布置作业。

1、多媒体展示蜂窝,教师结合图片让学生发现生活中无处不在的多边形。

2、工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角?

1、通过现实情境的展示,调动学生的情绪,激发起进一步学习的兴趣。

2、把学生的注意力自然的引入研究方向,为课题的研究做铺垫。

1、借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的元素。

2、教师再给出严格规范的定义,特别借助学具说明“在平面内”的必要性、此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形。

1、对于边角这些能在图形中识别而又不要求学生掌握的描述性定义,采取学生类比三角形的表示方法来归纳,渗透类比的数学思想。

2、借助于自制的直观教具,说明多边形定义中“在平面内”这一条件,易于学生理解,化解了难点。

(以四人小组为单位展开探究活动)。

提出问题:三角形的内角和为180°,那么多边形的内角和是多少度呢?从四边形开始研究。

要求:先独立思考再小组合作交流完成)。

(师巡视,了解学生探索进程并适当点拨)。

(生思考后交流,把不同的方案在纸上完成)。

多边形内角和说课稿(优质21篇)篇五

我说课的内容是人教版七年级(下)册第七章第三节《多边形及其内角和》的第二课时,我将在新课程理念的指导下从以下七个方面进行说课。

一、教材分析。

多边形的内角和是在三角形内角和知识基础上的拓广和发展,是从特殊到一般的深化,是后面学习多边形镶嵌的基础,也是今后学习空间几何的基础,学好多边形内角和的内容,为学生认识探索客观世界中不同形状物体存在的一般规律打下基础,对发展学生的空间观念和几何直觉有很大的帮助。

二、学情分析。

1、我所任教的班级,大部分学生来自农村,由于自小独立性较强,具有较强的理解能力和应用能力,喜欢合作讨论,对数学学习有较浓厚的兴趣。大部分学生学习习惯和学习方式较好。

2、本节课让学生通过实验探索多边形内角和公式。在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割“多边形为三角形”这一过程会是学生学习的难点,在探究的过程中教师要想办法把难点分散,有利于学生对本课知识的学习和掌握。

三、教学目标分析。

新的课程标准注重学生经历观察、操作、猜想、归纳等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点、难点。

【知识与技能】。

【数学思考】。

(1)通过测量,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

(2)通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

【解决问题】。

通过探索多边形内角和公式,让学生尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。

【情感态度】。

1、通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。

2、体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。并在探索过程中激发、培养学生的爱国主义热情。

基于以上教学目标,我确定以下教学重难点:

因此,本节课我借助课件辅助教学,可以更好的突破重难点,增强直观效果,丰富学生的感性认识,提高课堂效率。

四、教法和学法分析。

本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:

1.教学方法:

整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。

2.学习方法:

利用学生的好奇心设疑,解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

五、说教学流程。

1、环节一:创设情景、引入新课。

情景:请学生观察“上海世博园”的宣传视频。

从“情境认知理论”得知:图文加情境能有效提高课堂教学效率,而图文和情境并用可使效率提高到300%。通过观看上海世博园视频,能激发学生的爱国主义热情,并引导学生大胆提出问题,对建筑物的外观抽象成已知的三角形、长方形、正方形等多边形。提出问题:三角形的内角和是多少?设计这个问题的目的是因为探索多边形内角和与边数关系的根本方法是把多边形转化为多个三角形,因此唤醒学生已有知识“三角形内角和等于180°”有助于解决后面的问题。接下来提出问题,正方形、长方形的内角和是多少?学生回答后进入新课内容,根据三角形的内角和是个确定值,引导学生猜想任意四边形的内角和是多少?唤醒学生已有知识,将有助于本堂课问题的解决,也为后面习题作铺垫。

2、环节二:合作交流、探索新知。

活动1:

猜一猜:围绕“任意四边形的内角和等于多少度?”这一问题引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度。

议一议:你是怎样得到的?你能找到几种方法?这个环节学生可能出现“度量”、“剪拼”、“作辅助线”等等甚至更多的方法。为此我又抛出问题:五、六、七边形的内角和怎么求?你发现了什么?通过这个问题让学生自然过渡到用作辅助线的方法求多边形的内角和,同时也要告诉学生在测量和剪拼活动中可能会产生误差,由此感受到作辅助线在解决几何问题中的必要性。这一环节要给予学生充分的探究时间,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。

针对不同层次的学生,要适当的引导学生利用作辅助线的方法把多边形转化为三角形,鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。然后让学生表达自己解决问题的方法,并用电脑演示四边形分割成三角形的多种方法让学生体验数学活动充满探索,体验解决问题策略的多样性。

想一想:这些分法有什么异同点?学生积极思考,大胆发言,教师给予适当的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形分割的关键在于公共点的选取,并演示公共点在图形内、外、顶点处。利用三角形内角和求得四边形内角和,这是数学学习中的一种常用转化的思想方法。

活动2:

做一做:选一种你喜欢的上述分割的方法,类比求四边形的内角和方法求五边形、六边形、七边形等的内角和,让学生再一次经历转化的过程,加深对转化思想的理解,通过增加图形的复杂性,再一次经历转化的过程,加深对转化思想方法的理解,体会由简单到复杂,由特殊到一般的思想方法。

多边形内角和说课稿(优质21篇)篇六

知识技能。

数学思考。

1、通过动手实践、实验、测量、推理等数学活动,探索多边形的外角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

2、利用多边形内角和与外角和公式解决实际问题,让学生体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、经历多边形外角和的探索过程,让学生逐步从实验几何过渡到论证几何。

解决问题。

通过探索多边形外角和的过程和复习多边形内角和公式,尝试从不同的角度寻求解决问题的方法并能有效地解决问题。

情感态度。

通过观察、猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

重点。

(1)多边形的外角含义;。

难点。

教学流程安排。

活动流程图。

活动内容和目的。

活动一:创设情景,引入新课:。

问题:将一块正六边形纸片如图(1)所示,。

思考:?ga1h等于多少度?

活动二:。

问题:清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。

(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?

(2)他每跑完一圈,身体转过的角度之和是多少?

(3)在上图中,你能求出?1+?2+?3+。

4+5等于多少吗你是怎样得到的。

设计意图:学生亲自动手将一块正六边形纸片如图(1)所示,做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面),在活动中体会多边形内角、多边形内角和,提高学生学习热情。

设计意图:通过观察、猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的`确定性,尝试从不同的角度寻求解决问题的方法并能有效地解决问题,提高学生学习积极性,让学生逐步从实验几何过渡到论证几何。

活动四:。

练习1:一个多边形的外角都等于60°,这个多边形是_______边形;。

练习2:一个多边形的内角都等于120°,这个多边形是_______几边形;。

练习3:阅读材料:多边形边上或内部的一点与多边形各顶点的连线,将多边形分割成若干个小三角形,图(1)给出了四边形的具体分割方法,分别将四边形分割成了2个、3个、4个小三角形;请你按照上述方法将图(2)中的六边形进行分割,并写出得到的小三角形的个数,试把这一结论推广至n边形。

图(1)。

图(2)。

活动五:。

小结、布置作业。

设计意图:通过探索多边形外角和的过程和复习多边形内角和公式,发展学生的推理能力,让学生逐步从实验几何过渡到论证几何。

设计意图:综合运用新旧知识解决问题。

设计意图:回顾全节内容,巩固、提高……。

多边形内角和说课稿(优质21篇)篇七

我说课的内容是人教版七年级(下)册第七章第三节《多边形及其内角和》的第二课时。我将在新课程理念的指导下从以下七个方面进行说课。

多边形的内角和是在三角形内角和知识基础上的拓广和发展,是从特殊到一般的深化,是后面学习多边形镶嵌的基础,也是今后学习空间几何的基础,学好多边形内角和的内容,为学生认识探索客观世界中不同形状物体存在的一般规律打下基础,对发展学生的空间观念和几何直觉有很大的帮助。

1、我所任教的班级,大部分学生来自农村,由于自小独立性较强,具有较强的理解能力和应用能力,喜欢合作讨论,对数学学习有较浓厚的兴趣。大部分学生学习习惯和学习方式较好。

2、本节课让学生通过实验探索多边形内角和公式。在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割“多边形为三角形”这一过程会是学生学习的难点,在探究的过程中教师要想办法把难点分散,有利于学生对本课知识的学习和掌握。

新的课程标准注重学生经历观察、操作、猜想、归纳等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点、难点。

【知识与技能】。

【数学思考】。

(1)通过测量,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。

(2)通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

【解决问题】。

通过探索多边形内角和公式,让学生尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。

【情感态度】。

1、通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。

2、体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。并在探索过程中激发、培养学生的爱国主义热情。

基于以上教学目标,我确定以下教学重难点:

【教学重点】。

【教学难点】。

探究多边形内角和时,如何把多边形转化成三角形。

因此,本节课我借助课件辅助教学,可以更好的突破重难点,增强直观效果,丰富学生的感性认识,提高课堂效率。

本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:

1、教学方法:

根据本节课的教学目标、教材内容以及学生的认知特点,我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。

2、学习方法:

利用学生的好奇心设疑,解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

1、环节一:创设情景、引入新课。

情景:请学生观察“上海世博园”的宣传视频。

从“情境认知理论”得知:图文加情境能有效提高课堂教学效率,而图文和情境并用可使效率提高到300%。通过观看上海世博园视频,能激发学生的爱国主义热情,并引导学生大胆提出问题,对建筑物的外观抽象成已知的三角形、长方形、正方形等多边形。提出问题:三角形的内角和是多少?设计这个问题的目的是因为探索多边形内角和与边数关系的根本方法是把多边形转化为多个三角形,因此唤醒学生已有知识“三角形内角和等于180°”有助于解决后面的问题。接下来提出问题,正方形、长方形的内角和是多少?学生回答后进入新课内容,根据三角形的内角和是个确定值,引导学生猜想任意四边形的内角和是多少?唤醒学生已有知识,将有助于本堂课问题的解决,也为后面习题作铺垫。

2、环节二:合作交流、探索新知。

活动1:

猜一猜:围绕“任意四边形的内角和等于多少度?”这一问题引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度。

议一议:你是怎样得到的?你能找到几种方法?这个环节学生可能出现“度量”、“剪拼”、“作辅助线”等等甚至更多的方法。为此我又抛出问题:五、六、七边形的内角和怎么求?你发现了什么?通过这个问题让学生自然过渡到用作辅助线的方法求多边形的内角和,同时也要告诉学生在测量和剪拼活动中可能会产生误差,由此感受到作辅助线在解决几何问题中的必要性。这一环节要给予学生充分的探究时间,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。

针对不同层次的学生,要适当的引导学生利用作辅助线的方法把多边形转化为三角形,鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。然后让学生表达自己解决问题的方法,并用电脑演示四边形分割成三角形的多种方法让学生体验数学活动充满探索,体验解决问题策略的多样性。

想一想:这些分法有什么异同点?学生积极思考,大胆发言,教师给予适当的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形分割的关键在于公共点的选取,并演示公共点在图形内、外、顶点处。利用三角形内角和求得四边形内角和,这是数学学习中的一种常用转化的思想方法。

活动2:

做一做:选一种你喜欢的上述分割的方法,类比求四边形的内角和方法求五边形、六边形、七边形等的内角和,让学生再一次经历转化的过程,加深对转化思想的理解,通过增加图形的复杂性,再一次经历转化的过程,加深对转化思想方法的.理解,体会由简单到复杂,由特殊到一般的思想方法。

议一议:

问题1:对比上面探究四边形内角和的过程,你能得出五边形的内角和?六边形的内角和?

问题2:能否采用不同的分割方法来解决这些问题?

活动3:

尝试完成第五列n边形的探究。

但是学生有可能出现其它的解决问题的办法,比如:由四边形内角和求五边形内角和,由五边形内角和再求六边形内角和,依次类推,边数每增加1条内角和就增加180°。但是这种方法给活动3公式的得出带来困难。所以教师要因势利导,给学生正确的评价。在探索的过程中再一次培养学生的推理能力和表达能力,以及选择解决问题的最佳方法的能力。

练一练:为了使学生达到对知识的巩固与应用,我特地设计了一组(5个)即时抢答题,通过这些题目学生当堂训练、独立计算,并根据学生都喜好竞赛的特点,采用抢答式完成。运用所学公式解决问题并巩固、理解、记忆公式。

抢答:

(1)过一个多边形一个顶点有10条对角线,则这是边形。

(2)过一个多边形一个顶点的所有对角线将这个多边形分成五个三角形,则这是边形。

(5)一个多边形的内角和等于720度,那么这个多边形是边形。

3、环节三:例题讲解,知识巩固。

在此,我设计了2个例题,并对教科书上的例题作了较小的改动,书上的例1简略讲解,这个例题就是对四边形的内角和的简单应用,对于学生来说比较简单;对于例2我把书后面的85页习题第9题变成例题,这一道题目具有较好的典型性,特别是知识间的融会贯通,主要要求学生掌握:三角形、五边形的内角和,正五边形等相关知识。

4、环节四:分组竞赛、情感升华。

(1)智慧大比拼。

内容:p87的练习分成2类。

通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。

(2)拓展探究。

小组合作探究,引导学生分析可能的每一种截取情况,根据不同截法得出不同结论。鼓励学生积极参与思考、大胆尝试、主动探讨、勇于创新。让学生深刻的感受到合作交流的重要性,体会成功的喜悦。

(3)情系世博。

引导学生利用多边形的内角和公式解释小明的设想能否实现。让学生感受到数学的趣味性,以及与实际生活之间的密切联系,并激发学生的爱国之情。

5、环节五:畅所欲言、分享成果。

请学生谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给学生正确地评价自己和他人表现的机会,这也是给教者本身一个反思提高的机会。通过这个环节使学生这节课所学的知识系统化,从感性认识上升为理性认识。

6、环节六:布置作业、课后提升。

(1)习题7。3第2题、第4题。

(2)选做题:用另外两种作辅助线的方法证明多边形内角和定理。

采用分层布置作业,让不同水平的学生得到不同的发展,培养学生的思维灵活性及成就感,从而贯彻因材施教的原则。

评价学生,不仅仅是一个手段和结果,它对学生的人格、个性的发展有着极其重要的作用。新课程对课程的评价应把握形成性、发展性评价和终结性评价相结合,在实践中我打算在课堂上从以下几个方面进行评价:

1、评价在学习中各种能力〈如表达、想象、动手、思维、自学能力等〉的发展情况。

2、评价学习过程中的创新表现。

3、评价在学习过程中对身边事物、社会现实的关注程度。

评价必须最大限度地考虑最终结果,要以培养学生的荣誉感、自尊心和进取心为目的,使其产生获取成功的动力。

最后,我的板书设计力求简洁明了,便于学生观察比较、归纳总结,并体现教师的示范作用,突出本堂课的重难点,及主要的思想方法。

板书设计:

以上是我对本节课的设计说明,从说教材、说学情、说教法、说学法、说教学程序上说明这节课“教什么”和“怎么教”,并且阐明了“为什么要这样教。我的说课到此结束,谢谢大家。

多边形内角和说课稿(优质21篇)篇八

从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些“想一想”“试一试”“做一做”等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。

二,学生情况。

学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。

三,教学目标及重点,难点的确定。

【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想。

【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。

【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

【教学难点】转化的数学思维方法。

四,教法和学法。

本次课改很大程度上借鉴了美国教育家杜威的“在做中学”的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”及初一学生的特点,我确定如下教法和学法。

【课堂组织策略】利用学生的'好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。

【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。

五,教学过程设计。

整个教学过程分五步完成。

1,创设情景,引入新课。

首先解决四边形内角的问题,通过转化为三角形问题来解决。

2,合作交流,探索新知。

更进一步解决五边形内角和,乃至六边形,七边形直到n边形的内角和,都能用同样的方法解决。学生分组讨论。

3,归纳总结,建构体系。

多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。

4,实际应用,提高能力。

5,分组竞赛,升华情感。

四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。

多边形内角和说课稿(优质21篇)篇九

今天我说课的题目《多边形及其内角和》,这是我在进行完这节课的教学后结合着课堂进行情况以及我对《新课程标准理》的理解从以下几个方面进行的反思。

《多边形的内角和》选自人教版八年级上册的第十一章第三节,《多边形内角和》是本章的一个重点,是三角形有关知识的拓展,是以后学平面镶嵌的基础,多边形内角和公式的运用还充分体现了图形与客观世界的联系。在内容上,起着承上启下的作用,是在学生学习了一元一次方程、三角形内角和知识和多种平面几何图形的基础上进行的,目的是使学生进一步了解多边形的性质,感受图形世界的现实性和丰富多彩,同时在教学中渗透类比,转化等思想方法培养学生用联系的变换的观点思考问题。

1、我所任教的班级,大部分学生来自农村,基础知识参差不齐,但从小独立性较强,性格活泼,喜欢合作讨论,对数学学习有较浓厚的兴趣。经过了一年的小组合作方式的磨合,大部分学生已经养成了良好的学习习惯,具有一定的理解能力和归纳能力。

2、学生已经学习了三角形的内角和,这为本节课的学习打下了一定的基础。八年级学生好奇心比较强,观察能力、动手能力、自主探究能力都得到一定的训练,所以在探究任意四边形内角和时学生采用了测量、拼图、折纸、分割的方法,但是把多边形转化为三角形这一过程是学生学习的难点,所以在探究的过程中注重了把难点分散,有利于学生对本课知识的学习和掌握。

根据《新课程标准》的要求,本节内容的特点以及学生的情况,我确定以下教学目标和重、难点。

【知识与技能】。

认识多边形,了解多边形的定义,多边形的顶点、边、对角线、内角及外角等概念;探索并掌握多边形内角和定理与外角和公式,在理解的基础上运用其解决简单的实际问题。

【数学思考】。

学生通过猜想、动手实践、合作交流,归纳等活动探索多边形的内角和公式与外角和公式,激发学生兴趣、调动学生积极性、鼓励学生的的创造性思维,感受数学思考过程的条理性。

【问题解决】。

通过探索多边形的内角和获得分析问题和解决问题的一些基本方法,并体验解决问题方法的多样性,发展创新意识,渗透转化思想在数学学习中的应用。

【情感态度】。

在数学学习过程中,体验学习的快乐、获得成功的喜悦,激发对图形学习的好奇心,形成积极参与数学活动、主动与他人交流合作的意识。

【教学难点】探究多边形内角和时,如何把多边形转化成三角形。

在这节课的教学中我结合了学生的实际情况和教学目标,借鉴了美国教育学家杜威的“做中学”的教育理论,运用了如下的教学方法。

1.教学方法:

根据新课成标准,教师教学应该以学生的认知发展水平和已有的经验为基础、面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能,体会和运用数学思想和方法,获得基本的数学活动经验。整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,合作者,而学生才是学习的主体。

2.学习方法:

学生的学习应当是一个生动活泼的、主动的和富有个性的过程。所以利用学生的好奇心设疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,在学生在经历观察、实验、猜测、推理、验证等活动过程中,体会了数学学习方法,体验到了自主探索和合作交流快乐,更好更准确的理解和掌握了本节课的内容。

环节一:创设情景、引入新课。

问题情景:将一张正方形卡片剪一刀,剩下的卡片是什么图形呢?

做一做:让学生拿出准备好的纸片和剪刀动手操作,并让学生展示自己剪出的图形。学生展示以下几种图形?(图)同时老师指出这些图形就是我们今天要研究的多边形。(意图是:通过动手操作,激发了学生的兴趣,学生体会到了图形之间具有一定的联系,顺理成章引出本节课的学习内容,符合学生的心里特征和认知规律,调动学生积极性,发展学生的创新意识。为整堂课的学习打下了基础)然后让学生自学多边形的定义,边,[x10]顶点,对角线,和内角,外角的概念以及凸多形的知识。

问题:三角形内角和是多少?(设计这个问题的目的是:因为探索多边形内角和的根本方法是把多边形转化为多个三角形,因此唤醒学生已有知识“三角形内角和等于180°”有助于解决后面的问题。),那么我们剪出的图形内角和是多少呢?与三角形有什么联系呢?(设计这个问题的目的是:使学生的兴趣转化为期待,进入下一个环节。)。

环节二、动手操作、激发欲望。

活动1:做一做:让学生用剪出的多边形纸片探四边形内角和。

(这一个环节我采取了小组合作的方式,给了学生充分的探究时间,鼓励学生积极参与,合作交流,学生在探究过程中采用了测量、拼图、折纸和做辅助线等多种方法,同时告诉学生测量、剪拼等活动可能会产生误差,由此让学生感觉到做辅助线在解决几何问题中的必要性。)。

针对不同层次的学生,,适当的引导学生利用作辅助线的方法把多边形转化为三角形,鼓励学生寻找多种分割方法,深入领会转化的本质——将四边形转化为三角形问题来解决。然后让学生自己到黑板上展示自己的解决办法[x14]。

想一想:这些分法有什么异同点?学生积极思考,大胆发言,教师给予适当的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形分割的关键在于公共点的选取,并演示公共点在图形内、边上、顶点处。同时指出求多边形的内角和的方法[x15]是一样的,都是把多边形转化为三角形。

(这些活动的设计意图是:让学生通过猜想、动手操作、合作交流等数学活动获得知识,真正体会“做中学”的快乐,激发学生的学习兴趣、调动学生积极性、引发学生的数学思考,鼓励学生的的创造性思维,培养学生良好的数学学习习惯,并让学生在学习过程中,体验获得成功的乐趣,激发对图形学习的好奇心,形成积极参与数学活动、主动与他人交流合作的意识。)。

活动2:让学生利用方法1填表:

图形。

能分成三角形的个数。

(在教学过程中并没有告诉学生结论,而是采用让学生探索归纳、化未知为已知,自己去尝试从而培养学生的创新能力。)。

环节三:巩固新知、知识共享。

例题展示:

例2:一个正多边形的一个内角为150°,你知道它是几边形吗?

例3:一个多边形的内角和等于它的外角和的3倍,它是几边形?(设计这些例题的目的是巩固和应用内角和与外角和公式)。

小试牛刀(这里利用学生喜欢竞赛的特征,我采用了分组展示,分组计分的形式,这样能够激发学生的学习兴趣,并能培养学生的合作意识和团队精神)。

(3)一个多边形的每个外角都等于60°,它是边形。

环节四:回归情景、能力提升。

将一个六边形截去一个三角形后,内角和是多少呢?这一环节我仍然采用的小组合作的形式,让学生动手画图,合作交流,分组展示。

(学生通过课前的动手活动对问题情景中的问题已经得到解决办法,类比四边形学生通过动手操作,合作交流,互相验证得出六边形的解决方法,设计这道题的意图是:渗透类比思想在数学学习中的运用,体会数学学习方法的重要性。)。

环节五:畅所欲言、分享成果。

请学生谈谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,通过这个环节使学生这节课所学的知识系统化。

最后用多媒体展示多边形图片结束本节课。(目的是让学生感受现实中多边形的丰富多彩和给我们的生活带来的美感)。

多边形内角和说课稿(优质21篇)篇十

学生已经学完三角形的内角和,对内角和的问题有了一定的认识,加上八年级的学生好奇心、求知欲强,互相评价、互相提问的积极性高、因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,所以把这节课设计成一节探索活动课是切实可行的。

二、教学任务分析。

本节课是《义务教育课程标准实验教科书》北师大版八年级上册第四章第六节《探索多边形内角和与外角和》的第一课时、本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神、在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力。

三、教学目标。

【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的`思想和方法。

【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

四、教学重难。

【教学难点】多边形定义的理解;多边形内角和公式的推导;转化的数学思维方法的渗透。

五、教学过程设计。

本节课分成七个环节:

第一环节:创设现实情境,提出问题,引入新课;

第二环节:概念形成;

第三环节:实验探究;

第四环节:思维升华;

第五环节:能力拓展;

第六环节:课时小结;

第七环节:布置作业。

第一环节创设现实情境,提出问题,引入新课。

1、多媒体展示蜂窝,教师结合图片让学生发现生活中无处不在的多边形。

2、工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角?

目的:

1、通过现实情境的展示,调动学生的情绪,激发起进一步学习的兴趣。

2、把学生的注意力自然的引入研究方向,为课题的研究做铺垫。

第二环节概念形成。

1、借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的元素。

2、教师再给出严格规范的定义,特别借助学具说明“在平面内”的必要性、此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形。

目的:

1、对于边角这些能在图形中识别而又不要求学生掌握的描述性定义,采取学生类比三角形的表示方法来归纳,渗透类比的数学思想。

2、借助于自制的直观教具,说明多边形定义中“在平面内”这一条件,易于学生理解,化解了难点。

多边形内角和说课稿(优质21篇)篇十一

各位领导,各位老师:

    大家下午好,很高兴有机会参加这次教学研究活动。

我的教学设计是华师大版七年级数学(下)第八章第三节"多边形的内角和与外角和"。根据新的课程标准,我从以下七个方面说一下本节课的教学设想:

从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。

学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。

新的课程标准注重学生所学内容与现实生活的联系,注重学生经历观察,操作,推理,想象等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点,难点。

【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想。

【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。

【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。

【教学难点】转化的数学思维方法。

本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。

【课堂组织策略】利用学生的好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。

【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。

整个教学过程分五步完成。

1,创设情景,引入新课。

首先解决四边形内角的问题,通过转化为三角形问题来解决。

2,合作交流,探索新知。

更进一步解决五边形内角和,乃至六边形,七边形直到n边形的内角和,都能用同样的方法解决。学生分组讨论。

3,归纳总结,建构体系。

多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。

4,实际应用,提高能力。

"木工师傅可以用边角余料铺地板的原因是什么"这既是对本节所学知识在现实生活中的应用,又是本章第一节的延伸,同时也为下节打下了一个铺垫。

5,分组竞赛,升华情感。

四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。

板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理。

本节课在知识上由简单到复杂,学生经历质疑,猜想,验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。

多边形内角和说课稿(优质21篇)篇十二

教学目标。

知识与技能。

掌握多边形内角和公式及外角和定理,并能应用.

过程与方法。

2.经历探索多边形内角和公式的过程,尝试从不同角度寻求解决问题的方法.训练学生的发散性思维,培养学生的创新精神.

情感态度价值观。

通过猜想、推理等数学活动,感受数学充满着探索以及数学结论的确定性,提高学生学习数学的热情.

重点。

多边形内角和说课稿(优质21篇)篇十三

本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

二、教学目标。

2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点。

多边形内角和说课稿(优质21篇)篇十四

二、教学目标。

2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法。

五、教具、学具。

教具:多媒体课件。

学具:三角板、量角器。

六、教学媒体:大屏幕、实物投影。

七、教学过程:

(一)创设情境,设疑激思。

师:大家都知道三角形的内角和是180o,那么四边形的内角和,你知道吗?

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360o。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360o。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

方法1:把五边形分成三个三角形,3个180o的和是540o。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180o的和减去一个周角360o。结果得540o。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180o的和减去一个平角180o,结果得540o。

方法4:把五边形分成一个三角形和一个四边形,然后用180o加上360o,结果得540o。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720o,十边形内角和是1440o。

(二)引申思考,培养创新。

师:通过前面的讨论,你能知道多边形内角和吗?

思考:(1)多边形内角和与三角形内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180o的和,五边形内角和是3个180o的和,六边形内角和是4个180o的和,十边形内角和是8个180o的和。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

(三)实际应用,优势互补。

(2)一个多边形的内角和是1440o,且每个内角都相等,则每个内角的度数是()。

(四)概括存储。

学生自己归纳总结:

2、运用转化思想解决数学问题。

3、用数形结合的思想解决问题。

(五)作业:练习册第93页1、2、3。

文档为doc格式。

多边形内角和说课稿(优质21篇)篇十五

教学手段。

利用学生剪纸、投影仪进行教学。

教学过程:

一、引入:

1、出示多媒体投影片或出示事物图:正方形石英钟、五边形(广场图)、六变形螺母、八边形。

2、给出多边形概念:多边形的顶点、边、内角和、对角线及其有关概念。

2、学生讨论:在剪纸及画图活动中充分的探索、交流、体会,先独立思考,然后小组讨论、交流,发表不同见解。探索五边形内角和的不同方法:(学生可能得出如图一、图二、图三中的不同方法)。

(1)量出每个内角度数然后相加为540°;

(5)六边形可怎样剪成三角形求内角和?n边形呢?

2、多边形定义:在平面内,内角都相等,边也相等的多边形是正多边形。

3、填表:

3

4

5

6

8

n

多边形内角和说课稿(优质21篇)篇十六

有幸聆听了宋老师执教的《简单多边形的面积》一课,听课后让我感觉自己要学的还很多。简单多边形的面积计算概念比较抽象,是对学过的基本平面图形面积的整合。本节课宋老师为学生提供了充足的自主学习的空间和时间,设置了“平面图形面积复习”、“组合图形面积学习”、“知识的应用与拓展”三个板块,从学生实际出发,创造性地使用教材,注重发展学生的个性,培养学生的能动性。在我们华杰学校新课改背景下,在“学生是课堂的主人”的课堂教学中,本课教学中,宋老师更多地体现为:引导者——给学生的学习提供明确的导航目标,组织者——为学生提供各种便利与支持,使学生能够比较轻松地完成学习任务。听课后我个人认为主要有以下几方面的亮点:

组合多边形的面积计算,需要在长方形、正方形、平行四边形、三角形和梯形面积计算的基础上进行。宋老师在学习新知之前,放手让学生引领复习,这样的设计,既激发了学生的学习兴趣,又能体现从学生的已有经验和知识背景,找准新知的最佳切入点,为知识的迁移做好铺垫。

各个小组的展示使学生主动参与学习活动,不但能使学生主动获取知识,促进知识的意义建构,更能培养学生的参与意识和创新精神。在教学“简单多边形的面积计算”时,宋老师先留给学生充分的时间和空间,让学生在自己动手、动脑的基础上,再引导学生交流、验证自己的想法,看看自己没想到的方法有哪些,根据自己的能力有选择地学习其它方法,一步步激发学生创造的欲望:我有不同的分割法。这样有序的学习,不仅发展了学生的智能,而且提高了学生的素质。

宋老师让学生自主选择求组合图形的面积,自主选择图形的分割法或拼补法,让学生经历组合图形面积计算的探究过程,通过宋老师的点拨概括,培养了学生分析、解决实际问题的能力,学生的学习过程积极主动。

数学与人类的生活息息相关,它来源于生活,又应用于生活。本节课中,宋老师紧密联系学生的实际经验,通过让学生计算学校的草坪和所住的小区平面图的面积,激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣,也培养了学生提出问题,解决问题的能力。

思考:

1.全课宋老师都没有引导学生比较分割图形越简洁,其解题方法也将越简单的,同时又要考虑分割的图形与所给的条件的关系,有些分割后的图形难于找到相关的条件,那么这样的分割方法就是失败的。其实这就是在交给学生解决问题的方法和策略怎样是简洁高效的。

2.新课例题与拓展题区别不大,是不是应该让学生采用自己喜欢的方法求组合图多边形的面积,一节课就2道题目是不是有些不合适。

多边形内角和说课稿(优质21篇)篇十七

设计理念:。

一教材分析:。

从教材的编排上,本节课作为第三章的第三节。从三角形的内角和到四边形的内角和至多边形的内角和,环环相扣。同时,对今后学习的镶嵌,正多边形和圆等都是非常重要的。知识的联系性比较强。因此,本节课具在承上启下的作用,符合学生的认知规律。再从本节的教学理念看,编者从简单的几何图形入手,蕴含了把复杂问题转化为简单问题,化未知为已知的思想。充分体现了人人学有价值的数学,这一新课程标准精神。

二、学情分析:。

三、教学目标的确定:。

3、通过探索多边形内角和公式,让学生逐步从实验几何过渡到论证几何。

四、重难点的确立:。

既然是多边形内角和具有承上启下的作用。因此确定本节课的重点是探究多边形的内角和的公式。由于七年级学生初学几何,所以学生在几何的逻辑推理上感到有难度。所以我确定本节课的难点是探究多边形内角和公式推导的基本思想,而解决问题的关键是教师恰当的引导。

多边形内角和说课稿(优质21篇)篇十八

4、培养学生合作、表达等能力情感。

教学重点与难点:多边形内角和与外角和特点是重点。

利用化归思想归纳多边形内角和与外角和特点是难点。

教学过程:

一、创设情境。

师出示一个三角形,问:这是什么图形?它是怎样定义的?

生:三条线段首尾顺次连接而成的图形。

师:以次类推,你能告诉我什么样的图形叫做四边形?五边形?……n边形呢?

这些图形我们都叫做多边形。

师:屏幕上的这一类多边形我们称为凸多边形,还有一类如:

我们叫做凹多边形,不在我们今天的研究范围之内。

二、探究新知。

1、 确立研究范围。

生1:它的角。

师:那么今天我们不妨先来研究一下多边形的角。(出示课题:多边形的内角和与外角和)。

多边形内角和说课稿(优质21篇)篇十九

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用,数学教案-多边形的内角和。

难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点。

2.教法建议

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题,初中数学教案《数学教案-多边形的内角和》。

教学目标:

1.使学生掌握四边形的有关概念及四边形的内角和定理;

2.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力;

3.通过推导四边形内角和定理,对学生渗透化归转化的数学思想;

4.讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想.

教学重点:

四边形的内角和定理.

教学难点:

四边形的概念

教学过程:

(一)复习

在小学里,我们学过长方形、正方形、平行四边形和梯形的有关知识.请同学们回忆一下这些图形的概念.找学生说出四种几何图形的概念,教师作评价.

(二)提出问题,引入新课

利用这些图形的定义,你能在下图中找出长方形、正方形、平行四边形和梯形吗?教师说完就打开多媒体课件.(先看画面一)

问题:你能类比三角形的概念,说出四边形的概念吗?

(三)理解概念

1.四边形:在平面内,由不在同一条直线的四条线段首尾顺次相接组成的图形叫做四边形.

在定义中要强调“在同一平面内”这个条件,或为学生稍微说明一下.其次,要给学生讲清楚“首尾”和“顺次”的含义.

2.类比三角形的边、顶点、内角、外角的概念,找学生答出四边形的边、顶点、内角、外交的概念.

3.四边形的记法:对照图形向学生讲明四边形的记法与三角形不同,表示四边形必须按顶点的顺序书写,可以按顺时针或逆时针的顺序.

练习:课本124页1、2题.

4.四边形的分类:凸四边形、凹四边形(不必向学生讲它的概念),只要学生会辨认一个四边形是不是凸四边形就可以了.

5.四边形的对角线:

(四)四边形的内角和定理

定理:四边形的内角和等于 .

注意:在研究四边形时,常常通过作它的对角线,把关于四边形的问题化成关于三角形的问题来解决.

(五)应用、反思

例1 已知:如图,直线 ,垂足为b, 直线 , 垂足为c.

求证:(1) ;(2)

证明:(1) (四边形的内角和等于 ),

练习:

1.课本124页3题.

小结:

知识:四边形的有关概念及其内角和定理.

能力:向学生渗透类比和转化的思想方法.

作业: 课本130页 2、3、4题.

多边形内角和说课稿(优质21篇)篇二十

过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。

情感态度与价值观目标:养成实事求是的科学态度。

教学重点:多边形的内角和公式

教学难点:多边形内角和公式

讲解法、练习法、分小组讨论法

结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、

生成新知、深化新知、巩固新知、小结作业。

1. 导入新知

首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的

内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。

通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。

2. 生成新知

接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此

得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。由此生成我们的新知识:多边形的内角和公式180*(n-2)。

验证:七边形验证

在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。

3. 深化新知

再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求

内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。

本环节的设计主要是对多变形内角和的一个深入了解,给学生一个内化的过程,同时引导学生不要将知识学死了,要活学活用,从多个角度来思考问题,解决问题。

4. 巩固提高

我们说数学是来源于生活,服务于生活的一门学科,所以在接下来的巩固提高环节,

我讲引领学生用我们所学过的多边形的内角和公式来解决生活中的实际问题。

我会在ppt上播放一个蜂巢的图片,然后提出一个问题,蜂房是几边形?每个蜂房的内角和是多少?由此来引发学生思考运用我们本节课所学习的知识来解决问题,对多边形的内角和公式进一步巩固提高。

5. 小结作业

先让学生思考一下我们本节课学习了什么知识点,然后找一位同学来总结一下我们本节课所学习的知识点。对本节课学习内容有了一个回顾之后,让学生做一下练习题1、2题,以此来进一步提升学生运用知识的能力。

多边形内角和说课稿(优质21篇)篇二十一

把活动2和3中的结论写下来,进行对比分析,进一步猜想和推导任意多边形的内角和,教师作总结性的结论,并且用动画演示多边形随着边数的增加其内角和的变化过程。

活动5、画一个边长为3cm的八边形。

让学生在练习本上画一个边长为3cm的八边形,教师进行评价和展示。

活动6、小结和布置作业。

师生共同回顾本节所学过的内容。

猜你喜欢 网友关注 本周热点 精品推荐
通过教学工作总结,可以发现学生的学习问题和困难,进而针对性地进行教学调整。以下是小编为大家收集的教学工作总结范文,希望能够给大家在写教学工作总结时提供一些参考和
时间过得真快,又到了写月工作总结的时候了,让我们回顾一下过去一个月的工作成果吧。附上几篇月工作总结范文,供大家参考,希望对大家的写作有所帮助和启发。
教师工作总结是我们提高教学质量和水平的有力工具,也是个人的成长和进步的重要依据。以下是小编为大家收集的教师工作总结范文,仅供参考,大家一起来看看吧。
在转专业申请书中,应突出自己的优势和适应能力,以及如何将当前专业的知识和经验应用到目标专业中。范文中的文字表达和语法运用可以提高我们写作的规范性和准确性。
优秀作文是对个人经历和感受的真实表达,它能够帮助他人了解自己的内心世界。这里有一些优秀作文的写作心得和经验分享,希望可以给大家提供一些建议和参考。回去后,我左思
幼儿园教案的编写应注重整体性和系统性,同时也要根据实际情况进行灵活调整。幼儿园教案范文中,教师们注重了情感教育和社会化的培养。1.运用各种感官的感知来初步了解水
读后感是表达自己对作品理解和评价的重要方式之一,可以加深读者对作品的感知和认知。接下来是一些优秀的读后感范文片段,可以用来参考和丰富自己的写作思路。
优秀作文需要思路清晰,观点明确,逻辑严密,语言精准。接下来,小编将向大家推荐一些优秀作文的范文,供大家参考和学习。今天真是个好天气啊!”小猪哥哥说,小猪弟弟也一
写月工作总结可以让我们看到自己在工作中的成长和进步,增强自信心和信心。下面是一些关于月工作总结的范文,希望能够对大家写作有所启发。一年来,在局党组的统一领导下和
实践报告的撰写可以让我们更加深入地思考实践中所涉及的各个方面,从而更好地理解所学知识的应用。接下来,我们将分享一些实践报告的范文,供大家参考和学习。
心得体会是对自己的思考和反思,是对过去的经验和教训的总结,在今后的学习和工作中可以发挥重要的指导作用。在下面的范文中,我们可以看到不同领域和经历的人们是如何总结
一篇优秀作文常常能够引起读者的共鸣,让读者在阅读之后产生思考和反思。接下来是一篇精彩的作文范文,希望能给大家带来一些启示和思考。1945年8月6日,世界上第一颗
活动方案的编写需要与各个部门进行充分的沟通和协作,确保各个环节的顺利衔接。小编整理了一些精心策划的活动方案,供大家学习和借鉴,希望能帮助大家取得更好的活动效果。
时光荏苒,岁月如梭,今天我们欢聚一堂,共同迎接这个特殊的时刻。小编为大家精心挑选了一些值得学习的总结范文,希望能够对大家的写作有所帮助。吉日订良缘,喜气催人醉。
入党是对自己的一种责任和担当,是用实际行动践行共产主义信仰的方式之一。以下是一些党的入党宣誓仪式的经典演讲,希望能给大家提供一些启示和思考。本人叫,性别男,汉族
优秀作文是经过精心构思和严格组织的文字作品,能够引起读者的共鸣和思考。在这里为大家推荐一些优秀作文范文,希望对大家的写作有所帮助。有一天,在花儿国里,传出了一张
每月的工作总结是对自己工作表现的一次全面梳理,可以让我们更加清晰地认识自己的成长和不足。这是一份全面、详实的月工作总结,对于工作绩效评估具有参考价值。
策划方案的关键是要有清晰的逻辑思路和合理的时间安排,以确保各项任务的有序进行。这些策划方案范文可以帮助我们发现和解决自己在工作中遇到的问题和困难。1.通过学唱一
教学工作计划的编制要细致入微,考虑到每个环节的时间和任务安排。范文五:这份教学工作计划根据学生的不同学习风格和兴趣爱好进行个性化教育。活动目标:1、在游戏过程中
毕业典礼是一个交汇的时刻,我们来自不同的地方,学习不同的专业,但我们在这里汇聚,庆祝我们的共同成就。下面是一些毕业典礼的座位安排示意图,大家可以提前了解自己的位
通过教师工作总结,可以发现工作中的问题和不足,并采取相应的措施进行改进和提高。下面是一些教师对自己过去一段时间的工作进行总结和反思的范文,供大家参考学习。
月工作总结可以让我们对自己的工作进行梳理和回顾,发现自己的优点和劣势,进而更好地发挥个人优势,提升工作表现。接下来,为大家整理了一些关于月工作总结的例句,希望对
通过心得体会的写作,我们可以更深入地思考问题,拓宽自己的视野。接下来,小编将分享一些优秀的心得体会范文,希望对大家有所启发。下面是小编为大家整理的,供大家参考。
读后感可以是对作者的语言运用、文学技巧和创作风格等方面的欣赏和思考。以下是小编为大家整理的一些优秀读后感范文,希望能够给大家带来一些启发和参考。让我们一起来欣赏
各镇政府,街道办事处,各成员单位:。20xx年12月1日是第29个“世界艾滋病日”。为进一步宣传普及艾滋病防治知识,依法深入推进艾滋病防治各项工作,为艾滋病防治
根据工作计划进行工作总结,可以及时总结经验,查找问题,进一步完善工作。通过阅读这份幼儿园工作计划范文,我们可以更好地理解如何制定一个完整的工作计划。
一篇优秀作文,既需要思维的敏捷,又需要语言的准确,更需要情感的表达。好的作文范文可以让我们更好地发现和借鉴其中的优点和亮点,让我们的作文更上一层楼。
优秀作文能够引发读者的共鸣,激发他们的思考和想象力。以下是一些优秀作文的好词好句,希望对大家的写作有所启发。无论是身处学校还是步入社会,许多人都写过作文吧,作
在编写工作计划书时,我们需要将工作目标与具体的行动计划结合起来,确保每一步都能够顺利落地并达到预期效果。工作计划书虽然是一份个人的书面材料,但我们也可以借鉴他人
教学工作计划不仅涉及到教师的教学行为,还关乎学生的学习效果和兴趣激发。具体的教学工作计划示例,可以帮助教师更好地把握教学进度。大班幼儿的认知、操作、逻辑思维能力
优秀作文是对学生在语文学习中所表现出的较好的写作能力的总结和概括。优秀作文需要有清晰的思路和条理性。如何写一篇优秀的作文是一个需要认真思考的问题。以下是一些写作
月工作总结是对一个月内工作表现进行概括和总结的一种书面材料,它有助于我们回顾过去的工作成果,分析问题并提出改进建议。以下是小编为大家收集的月工作总结范文,仅供参
每个月的工作总结是对自己工作状态的一种自我追踪,它可以帮助我们持续提升工作表现并实现个人目标。以下是小编为大家收集的月工作总结范文,仅供参考,希望能给大家一些启
辞职报告是离开公司前最后的一份重要文件,它能够明确表达离职的意愿和对公司的感谢。借助以下这些辞职报告的示范,大家可以更好地理解和应用辞职报告的写作技巧。
读书心得是对读书过程中的思考和感悟的总结,它可以帮助我们更好地理解书中的内容。以下是一些读书心得范文的精华,希望能够帮助大家进一步提升自己的写作能力。
安全演讲稿可以提醒和教育听众如何正确应对各种潜在安全威胁。最后,预祝大家在安全演讲中能够取得良好的效果,为提高社会安全水平做出自己的贡献。各位老师、同学:你们好
教学工作总结可以帮助教师发现学生的特点和需求,从而更好地满足他们的学习需求。以下是小编为大家收集的教学工作总结范文,仅供参考,希望能给大家在写教学工作总结时提供
幼儿园工作总结是对我们工作中所取得成绩和遇到的困难进行客观记录和分析的一种方式。以下是小编为大家收集的幼儿园工作总结范文,供大家参考和学习。幼儿园教师的情绪劳动
一篇优秀的作文不仅要有个性和创意,还要有逻辑和条理。请大家参考下面这些优秀作文范文,挖掘自己的写作潜力。虽然已经是深秋了,但是南方依然暖和。周围的树木虽然没有了
心得体会是一个不可或缺的学习和成长的过程,它能帮助我们不断进步。接下来,让我们一起欣赏一些精彩的心得体会范文,一起进步吧!新冠疫情的肆虐,无疑给我们的生活、学习
一个好的培训计划可以提高员工的满意度和忠诚度,增强组织的凝聚力。这是一份经过多次实践和改进的培训计划范文,可作为参考模板。在新的时代背景下,作为新老师我们需要不
结婚是指两个人在法律和社会规范下建立家庭关系的一种方式。以下是一些关于如何处理婚姻中的冲突和不和谐的建议,希望能帮助夫妻解决问题。无论是请事假还是请病假都要注意
在面对复杂的工作任务时,制定一个明确的工作方案可以帮助我们更好地组织和安排工作内容和时间。下面是一些经过实践验证的工作方案,希望能够对大家的工作有所帮助。
演讲稿是一种用于演讲的书面材料,它可以帮助演讲者更好地组织思路和表达观点。以下是小编为大家收集的优秀演讲稿范文,希望能够给大家提供一些写作的启发和思路。
总结心得体会是一个不断提高自己的过程,它可以让我们更加清晰地认识自己的优势和不足。以下是一些精心挑选的心得体会范文,供大家参考和学习。近年来,随着互联网的普及,
在学期总结中,我们可以总结自己在学习中所遇到的困难与挑战,以及如何克服这些困难和挑战的方法和经验。想知道如何写一篇出色的学期总结吗?不妨看看下面小编精心搜集的范
劳动合同是劳动关系成立和发展的基础,合同的签订对于双方都有重要的法律约束力。为了让大家更好地了解劳动合同的撰写方式,我们特意收集了一些优秀的范文。甲方(用人单位
助学金申请书不仅是一份简单的应对文件,更是申请人用文字展示自己价值的良好契机。最后,希望这些范文能够给大家带来启示和帮助,在撰写助学金申请书时更加自信和有力。
读后感是读完一本书或一篇文章后写下的对所读内容的个人感受和理解。小编为大家整理了一些优秀的读后感范文,供大家参考和学习。《秘密》讲述的是一个都市情感故事。情节虽
实习鉴定可以促使实习生反思和总结实习过程中的成功经验和不足之处,为今后的求职和职业规划提供宝贵的经验教训。以下是一些实习鉴定的写作范文,供大家学习和借鉴,希望能
在服务月期间,我们将积极参与社区服务、环境保护、慈善捐助等活动,用实际行动传递爱与关怀。在下面,小编为大家整理了一些服务月志愿服务项目的详细介绍,希望能够帮助大
幼儿园中班是孩子们在进入小学前的重要阶段,是他们开始接触正式教育的时候。让我们一起来欣赏这些中班总结范文,看看孩子们在幼儿园中班的成长轨迹。活动过程:一、小猴摘
活动方案的调整和改进是不可避免的,要及时根据实际情况进行灵活的调整。这里为大家提供了一些常见活动的方案范文,可以帮助您更好地理解和掌握活动方案的写作技巧。
优秀作文是作者用文字表达自己内心世界的窗口,能够拉近人与人之间的距离。以下是一些经典的优秀作文范文,希望对你的写作有所启发。在暑假里,我和好朋友刘义宁在世界之窗
读后感是读完一本书后,对书中内容进行总结和个人感悟的一种表达形式。小编为大家整理了一些经典的读后感范文,希望大家通过阅读这些范文,能够更好地理解和欣赏作品,同时
申请书的语言要简练、明确,同时要赋予自己独特的个性和魅力。以下是小编为大家收集的申请书范文,供大家参考和借鉴。尊敬的领导:您好!我是20xx级的学生,由于家庭无
党员转正申请书是党员对个人党龄和党龄发展政策的正式申请。为了提高党员转正申请书的质量,小编为大家收集了一些值得借鉴的党员转正申请书范文。敬爱的党组织:我是20_
证券市场是金融市场中的一个重要组成部分,它为买卖证券提供了一个交易平台。接下来,小编将为大家介绍一些证券投资的成功案例,供大家学习借鉴。引导语:述职报告事件材
通过写月工作总结,我们可以更好地规划和安排下一个月的工作,实现持续优秀的表现。以下是小编为大家收集的月工作总结范文,仅供参考,希望能够给大家提供一些写作思路和参
思想汇报是一种反思和总结自己思想和行为的重要方式,它可以帮助我们更好地认识自己。在下面的思想汇报范文中,我们可以看到作者对自己思考和体验的真实表达,希望能给大家
通过月工作总结,我们可以及时调整工作计划和目标,更好地适应工作环境和要求。让我们一起来看看一些成功的月工作总结范文,或许能够给大家带来灵感和启示。在这段日子里,
思想汇报是个人对自己的思想、心态、情绪等进行总结和反思的一种方式。现在,就让我们共同来欣赏一下下面这些令人印象深刻的思想汇报范文吧。敬爱的党组织:_年6月,经过
一个好的策划方案是成功的关键,它能够为我们指明前进的方向和达成目标的步骤。学习优秀策划方案范文可以开阔我们的思维,激发创意和创新能力。近几年,随着国内百货流通业
在写演讲稿时,我们需要注意语言简洁明了,结构严谨合理,以及思路清晰连贯。这是一篇经典的演讲稿范文,作者在这篇演讲中引人入胜、观点明确,值得我们深入学习和研究。
在写作过程中,我们需要注意语言的准确性、修辞的恰当性以及段落的结构合理性。如果你对如何写一篇优秀作文还有疑问,不妨看看以下小编为大家准备的范文,或许能给你一些启
销售工作总结不仅可以总结销售过程中的成功经验,还能够发现销售中存在的问题并提出改进措施。现在,让我们一起来阅读一份详细的销售工作总结范文,看看优秀团队是如何取得
通过总结自己的心得体会,我们可以更好地反思自己的成长和进步。接下来是一些关于心得体会的范文,让我们一起来欣赏和学习。随着现代化建设的不断推进,农村地区的改革和发
优秀作文应该具备独特的创新精神,有新颖的观点和独特的表达方式,能够给人以新鲜感和冲击力。以下是小编为大家整理的一系列优秀作文范文,希望能够给大家一些写作的灵感。
英文的学习可以帮助人们更好地理解和欣赏英语国家的文学作品和影视作品。通过阅读下面这些范文,相信大家会对如何写一篇优秀的英文文章有更清晰的认识和理解。
教学工作计划的制定需要充分考虑学生的学习特点和需求,以及教材的内容和难度。看一下这份教学工作计划的范例,或许可以给你一些灵感和启发。1、通过上网或看书查找资料,
个人总结是对个人学习、工作和生活等方面进行概括和总结的一种重要方式。以下是一些优秀的个人总结范文,希望能够激发大家对自身成长和发展的思考。本学期我担任初三(1)
开学典礼是让学生们迎接新学期、新挑战的良机,鼓励他们积极面对学习和生活。以下是一些开学典礼的精彩瞬间,希望能给大家带来一些回忆和感动。各位老师、同学们:送走炎炎
通过学期总结,我们可以发现自己在学习中的不足之处,从而找到提高的方向和方法。下面是一些学期总结的范文,每一个都蕴含了学生的努力和成长。一、本教材的价值观,基本理
我在努力工作和学习的过程中,意识到了自己的潜力和能力,这让我更加有自信去面对未来的挑战。接下来,小编将分享一些优秀的心得体会范文,希望能给大家一些启发。
读后感是读完一本书或一篇文章后,对其中的情节、人物、主题等进行感知和思考的一种表达方式。以下是一些经典读后感范文,希望能给大家在写读后感时带来一些灵感和启发。
幼儿园工作计划应该具备可操作性和可评估性,方便对工作进行监控和评估。下面是一些优秀的幼儿园工作计划案例,一起来学习借鉴吧。一、加强组织领导、高度重视。各村进一步
在自我介绍中,我们可以适当地展示自己的幽默感和自信心,但也要注意避免过度夸张和炫耀。以下是一些值得参考的自我介绍模板,希望能对你有帮助。是向别人展示自己的一个重
虽然离职是一个痛苦的决定,但这是我职业生涯发展的必然阶段。继续阅读下面的内容,你将会看到一些成功的辞职信样本和范文,让你对写作有更清晰的认识。尊敬的领导:由于我
军训心得体会是在军事训练结束后,对自己在军训期间所体验到的一切进行总结和概括的一种写作材料。以下是小编为大家整理的军训心得体会,供大家在军事训练中提升个人素质。
编写教案时,应注重培养学生的创新意识和实践能力,提高他们的综合素质。接下来是一些初中教案的案例分析,希望可以对大家的教学工作有所启发。1、通过对学生特长的小结和
毕业论文是学生在完成学业的最后阶段所撰写的一篇学术作品,它是对所学专业知识的全面综合和运用的体现。此次收集的毕业论文范文为优秀论文的代表,它们在内容选择、研究设
7.优秀作文的好处不仅仅在于得高分,更能够提高自己的思维能力和表达能力。随后是一些优秀作文的摘抄,希望能够给大家带来一些写作的灵感。渐渐地自己的爱好、自己曾经的
读后感是读完一本书或一篇文章后对所读内容进行思考、感悟的一种表达方式。下面是一些优秀的读后感范文,希望能够给大家提供一些思路和灵感。我读了李绅的`杰出代表作《悯
小班教案可以帮助教师系统地组织和实施教学,提高教学效果和教学质量。小班教案的编写需要遵循一定的原则和方法,以下是小编总结的一些经验和技巧。1.通过活动锻炼腰腹部
读后感是读书过程中的重要环节,可以激发我们的想象力和创造力。小编为大家精心挑选了一些经典的读后感范文,希望可以给大家在写作方面提供一些帮助和指导。《水浒传》中的
学会欣赏和分析优秀作文,可以提升我们的审美情趣和写作能力。以下是小编为大家收集的优秀作文范文,供大家参考和学习。。现在,在北京、天津、上海等城市,都有以张自忠命
通过撰写工作报告,我们可以全面了解工作的进展情况,找出问题所在并及时解决。以下是小编为大家收集的工作报告范文,希望能够给大家一些启发和参考。根据市公司亲情服务工
教学工作计划要注重综合素质的培养,促进学生全面发展。为了帮助大家更好地组织教学工作,小编为大家整理了一些教学工作计划的实用方法和技巧。1、了解饲养宠物的一般常识
作为一种专业性的书面材料,调研报告需要具备客观、全面、准确、可操作性等特点。以下是一些调研报告范文的摘要,大家可以根据自身需求选择进行阅读。主要原因有以下四方面
心得体会是通过文字表达对过去的反思和对未来的期许,是一种个人成长的见证和记录。接下来是一些优秀的心得体会范文,希望可以给大家提供一些写作的灵感和思路。
统计数据反映了社会经济发展的状况和趋势,对于宏观管理和政策制定具有重要意义。统计报告的撰写和展示方式有很多种,可以根据具体情况进行选择。婚姻状况:未婚民族:培训
实习过程中,我学会了如何分析和解决实际问题,这是理论学习无法替代的经验。以下是小编为大家整理的一些实习心得体会,希望对大家写好实习心得有所启发。刚刚写完一个学期
整改报告的撰写应注重数据分析和案例论证,以便更好地展示问题的本质和解决的可行性。下面是一些值得借鉴的整改报告样本,希望能够对您的写作提供一些灵感和思路。
在财务工作总结中,需对目标完成情况、问题和不足、解决措施等进行全面梳理和分析。小编为大家整理了一些财务工作总结的范文,包括财务报告的编写、财务数据的分析和对策的
优秀作文能够通过细腻的描写和真切的情感打动读者的内心。接下来,我为大家带来了一些备受推崇的优秀作文范文,希望能够激励大家写出更好的作品。一、活动目标:1、引导幼
优秀作文通常能够合理运用丰富的词汇和有效的句式,让文章更具魅力和表现力。小编精心搜集了一些优秀的作文范文,供大家参考和学习,希望能够对大家写作时有所帮助。
优秀学生具备积极乐观的心态,面对困难能够坚持不懈,勇往直前。这些优秀学生的故事告诉我们,只要努力和付出,我们都可以成为优秀学生。尊敬的各位领导、老师,亲爱的同学
优秀作文是文字的艺术,能够感染读者的情感,引发共鸣,展现独特的观点和思考。现在,让我们一起来欣赏一些优秀作文范文,感受文字的力量吧。总是说,进入了初中就是开始拼
通过制定教学工作计划,可以提前预设学习目标和教学内容,有利于教师的教学组织和管理。教学工作计划是教师在教学过程中必备的一份规划,以下是小编为大家整理的范文,供大
自我介绍一般包括姓名、年龄、职业或学业背景等基本信息,同时也可以加入一些个人兴趣爱好等细节。为了让大家更好地了解自我介绍的要点,小编为您整理了一些实用的方法和技