教学工作计划可以帮助教师更好地组织教学内容和教学活动,提高学生的学习效果。掌握好教学工作计划的编写方法,可以提高课堂教学的效果和学生的学习成绩。
最优三的倍数特征的教案(通用17篇)篇一
课堂总会有生成,不管一节课的教学步骤设计的有多严密、多紧凑,课堂教学中总会有新的问题产生,反思本节课的教学有成功也有不足:
1、导入部分。
不足之处:
应该说导入部分形式单一,显得过于死板,如果通过一个小游戏,让学生考考老师,用教师的准确判断激发学生学习本课内容的兴趣,由此引出课题,从而调动学生学习的积极性,把探索的问题抛给学生,激起学生探索的欲望,进而引导学生说出更大的数字,此时教师仍然能准确判断,于是让学生更为佩服老师,想进行探究的欲望会更浓,接下来的探究过程便水到渠成,课堂气氛也会因此而高涨。
成功之处:
探索5的倍数的特征,先引导学生找出2的倍数,并指导找的方法,然后发现、总结2的倍数的特征。这样学生有了一个探索方法,引导学生总结探究方法后,我便放手让学生自己去探索5的倍数的特征了,在合作交流中学生体会到了学习数学的快乐,同时也给了学生一个自主探索的空间,一个交流互动的平台,也使他们获得了学习数学的成功体验。
不足之处:
课堂生成教师要及时准确地把握,并注意语言的艺术性,教师必须进入状态,与学生融为一体。
3、教具学具的使用方面。
成功之处:
我利用百数表,把1-100的数字中5的倍数,2的倍数通过让学生用不同的`符号标出,给学生的感观一个有力的冲击。2、5的倍数的特征变得更直观,更明显,学生的印象会更深刻。
不足之处:
点找的很准确,应用合理。但现在想想,如果把这个百数表制成课件,用多媒体演示出来,而且让2和5的倍数用颜色标出,并在变色闪烁的过程中有声音的提示效果或许会更好些。
教学后的思考:
(1)是否需要验证发现的规律(2、5的倍数的特征),在哪个环节验证效果好。
(2)如何强化学生的知识,使重点更为突出,学生有眼前一亮的感觉。
(3)备学生很重要。
在探究的过程中,课堂气氛没有预想的那么好,在练习中学生才开始活跃起来。也许在对数学活动的探索中,学生不够自信,只是试着说。教师需要做些什么,得以改变学生的状态。
文档为doc格式。
最优三的倍数特征的教案(通用17篇)篇二
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。
教学过程:
一、提出课题,寻找3的特征。
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l3、l6、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)。
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)。
二、自主探索,总结3的特征师:
先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)(如下图)。
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9是3的倍数。
生2:我发现不管横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜想是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的'数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
全班齐读书上的结论。
三、巩固练习:
完成p19做一做。
四、课堂小结:
这节课你有什么收获。
最优三的倍数特征的教案(通用17篇)篇三
1、经历探索3倍数的特征的过程,理解3倍数的特征,能判断一个数是不是3的倍数。
2、发展分析、比较、猜测、验证的能力。
发展分析、比较、猜测、验证的能力。
我们研究了2、5的`倍数的特征,那么3的倍数有什么特征呢?引导学生提出猜想。学生可能会猜想:个位上能被3整除的数能被3整除等,老师引导学生进行讨论、研究。
让学生在100以内的数表中找出3的倍数,用自己的方式做记号,并观察、思考3的倍数有什么特征。在此基础上引导学生将3的倍数每个数位的各个数字加起来再观察,逐步引导学生发现规律,从而归纳出3的倍数的特征。
引导学生归纳3的倍数的特征:每个数位的各个数字加起来是3的倍数。
试一试:尝试用3的倍数特征来判断一个数是不是3的倍数。
三、练一练:
第2题:
让学生准备几张卡片:3、0、4、5边摆边想,再交流讨论思考的过程。
(1)30、45、54(2)30、54(3)30、45(4)30。
四、实践活动:
让学生运用研究3的倍数的特征的方法去研究9的倍数。让学生经历涂、画、想等过程,使学生获得真实的体验。
3的倍数的特征:这个数各位数字之和是3的倍数。
最优三的倍数特征的教案(通用17篇)篇四
一、填空。(共50分,每空1分)。
1、自然数中,是2的倍数的数叫做,0也是(),不是2的倍数的数叫做()。
2、个位上是()的数是2的倍数;个位上是()或()的数是5的倍数;个位上是()的数同时是2和5的倍数。
3、一个数()上的数的()是3的倍数,这个数就是3的()。
4、把列数归类。
921162815303370581255011081010863。
2的倍数:(),5的倍数:()。
即是2的倍数,又是5的倍数的数有:()。
3的倍数:(),9的倍数:()。
既是3的倍数也是9的倍数:(),2、3和5的倍数:()。
5、想一想。
(1)29---39之间所有的偶数是()。
(2)自然数1----100内,偶数有()个,奇数有()个。
(3)100后面的5个连续偶数是(),(),(),(),()。
(4)自然数375(),当()里填()时,它就是2的倍数也是5的倍数。
6、一个两位数,分别除以2或5都余1,这个数最小是()。
7、在()里填入恰当的数。
(1)是2的倍数:5(),9(),2()。
(2)是5的倍数:8(),7(),6()。
(3)既是2的倍数,又是5的倍数:4(),()0。
(4)是3的倍数:9,10(),21()。
8.给2的倍数:43252380.
10、把下列数按要求填入圈内。
二、直接写得数。(共10,每小题1分)。
2÷3=0.36÷4=8.1÷9=2.25÷1.5=1.8÷6=。
0.5×2=1.25×0.8=2.5×0.4=x×x=0.6x―0.13x=。
三、判断。(共20分,没小题2分)。
1、个位上是3、6、9的数就是3的倍数。()。
2、既是2的倍数,又是3和5的倍数的数一定是偶数。()。
3、用1、3、5组成的所有的三位数,一定都是3的倍数。()。
4、凡是3的倍数的数,一定是9的倍数。()。
5、541至少加上2是3的倍数,至少减去1就是5的倍数。()。
6、大于2的所有的偶数都是合数。()。
7、除2以外,所有的质数都是奇数。()。
8、6的所有倍数都是合数。()。
9、一个数是9的倍数,这个数一定也是3的倍数。()。
10、连续的两个自然数相加的'和一定是奇数。()。
四、对号入座。(共6分,每小题2分)。
a、40b、45c、60。
2、一个奇数()的结果是偶数。
a、加上5b、乘5c、除以5。
3、下面几个数中,既是2的倍数,又是5的倍数的数是()。
a、95b、90c、98。
五、拓展习题。(共14分)。
1、从2、6、0、7、5这五个数中选出三个数组成一个三位数,使它既是3的倍数,又是2和5的倍数。(4分)。
2、我是一个两位数,同时是2和5的倍数,十位与个位上的数字之和是6,我是多少?(5分)。
3、我是一个三位数,百位上的数字是最小的奇数,个位上的数字是最小的自然数,十位上的数字是比4大的偶数,我可能是多少?(5分)。
最优三的倍数特征的教案(通用17篇)篇五
兴趣是学好数学的动力源泉。为了使学生产生探究的意识,激发学习兴趣,形成最佳的学习心理状态,我充分利用小学生好奇心强这一心理特点,创设了“猜一猜”的游戏情境:让学生出题,随意说一个数,老师迅速地说出该数是不是3的倍数,以此来调动学生学习的积极性。
本设计在教学3的倍数时,先让学生运用已经学过的2和5的倍数的特征的知识进行知识迁移,对3的倍数的特征进行初步的猜想。再由猜想与验证的不一致,激起学生探究新知识的兴趣。接着根据学生提出的探究3的倍数的特征的方法,让学生以小组合作的形式,探究3的倍数的特征。通过这样一个过程,培养学生的推理能力,充分体现学生的主体地位。
教师准备 ppt课件 计数器 记录表
学生准备 百数表 计数器教学过程
师:用5,6,7组成一个没有重复数字的三位数,使这个数是2的倍数。说说什么样的数是2的'倍数。
师:能组成既是2的倍数又是5的倍数的数吗?为什么?
师:同学们,我们已经知道要判断一个数是不是2或5的倍数,只需观察这个数的个位即可。那么你们能通过观察发现3的倍数的特征吗?今天我们就一起来探究3的倍数的特征。(板书课题:3的倍数的特征)
设计意图:创设问题情境,既可以巩固已学知识,又可以引导学生积极主动地投入到3的倍数的特征的教学过程中来,有利于学生轻松、愉快地学习新知。
(学生可能会说个位上是3,6,9的数是3的倍数)
师:大家同意他的猜想吗?他的猜想到底对不对呢?我们一起来探究一下。
课件出示百数表。
师:在百数表中找出3的倍数。用自己喜欢的方法圈一圈。
(1)引导学生先横着看,再竖着看,学生找不到3的倍数的特征。
(2)引导学生斜着看,先看第一斜行的3,12,21。
学生分组讨论这3个数有什么特征。
汇报交流:第一斜行3的倍数各位上的数相加,和是3。
(3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?
设计意图:先让学生从第一斜行开始思考3的倍数的特征,能使教学难点化整为零,易于逐个突破。
(1)在计数器上分别拨出几个3的倍数:12,42,45,75,87,看看各用了几颗珠子。
学生以小组为单位,用计数器拨出3的倍数,并填写记录表。
:一个数各位上的数的和是3的倍数,这个数就是3的倍数。 (2)思考:观察这些3的倍数,它们十位与个位上的数的和与3有着怎样的关系?学生分组讨论后得出结论。
最优三的倍数特征的教案(通用17篇)篇六
1.让学生产生探究的兴趣。
兴趣是学好数学的动力源泉。为了使学生产生探究的意识,激发学习兴趣,形成最佳的学习心理状态,我充分利用小学生好奇心强这一心理特点,创设了“猜一猜”的游戏情境:让学生出题,随意说一个数,老师迅速地说出该数是不是3的倍数,以此来调动学生学习的积极性。
2.让学生发现学习的方法。
本设计在教学3的倍数时,先让学生运用已经学过的2和5的倍数的特征的知识进行知识迁移,对3的倍数的特征进行初步的猜想。再由猜想与验证的不一致,激起学生探究新知识的兴趣。接着根据学生提出的探究3的倍数的特征的方法,让学生以小组合作的形式,探究3的倍数的特征。通过这样一个过程,培养学生的推理能力,充分体现学生的主体地位。
课前准备。
教师准备ppt课件计数器记录表。
学生准备百数表计数器教学过程。
教学过程。
创设情境。
师:用5,6,7组成一个没有重复数字的三位数,使这个数是2的倍数。说说什么样的数是2的倍数。
师:能组成既是2的倍数又是5的倍数的数吗?为什么?
师:同学们,我们已经知道要判断一个数是不是2或5的倍数,只需观察这个数的个位即可。那么你们能通过观察发现3的倍数的特征吗?今天我们就一起来探究3的倍数的特征。(板书课题:3的倍数的特征)。
设计意图:创设问题情境,既可以巩固已学知识,又可以引导学生积极主动地投入到3的倍数的特征的教学过程中来,有利于学生轻松、愉快地学习新知。
探究新知。
(学生可能会说个位上是3,6,9的数是3的倍数)。
师:大家同意他的猜想吗?他的猜想到底对不对呢?我们一起来探究一下。
课件出示百数表。
师:在百数表中找出3的倍数。用自己喜欢的方法圈一圈。
2.观察百数表中圈出的3的倍数,你们发现了什么?
(1)引导学生先横着看,再竖着看,学生找不到3的倍数的特征。
(2)引导学生斜着看,先看第一斜行的3,12,21。
学生分组讨论这3个数有什么特征。
汇报交流:第一斜行3的倍数各位上的数相加,和是3。
(3)第二斜行是否也有这一特征呢?第三斜行呢?第四斜行呢?
设计意图:先让学生从第一斜行开始思考3的倍数的特征,能使教学难点化整为零,易于逐个突破。
3.操作验证。
(1)在计数器上分别拨出几个3的倍数:12,42,45,75,87,看看各用了几颗珠子。
学生以小组为单位,用计数器拨出3的倍数,并填写记录表。
总结:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
(2)思考:观察这些3的倍数,它们十位与个位上的数的和与3有着怎样的关系?学生分组讨论后得出结论。
最优三的倍数特征的教案(通用17篇)篇七
4、从课堂教学结构反思,课堂结构紧凑、合理,合理地安排教学活动,各部分衔接自然、流畅,时间长短适当,教学重点、难点突出,合理高效的教学结构安排并能恰当的组织材料,学习重点、难点。
5、从课堂的随机生成反思,对后进生解题的生成优待学习改进。
整节课实际就是让学生经历“观察——操作——讨论——验证得出结论——解决问题”的探究过程,实现课程、师生、知识等多层次的互动。整个教学力求把知识的传授、思维的训练、学习方法的指导、学习能力的培养、数学思想方法的渗透有机融为一体,同时还要充分发挥学生的主体作用,让学生在活动中学习数学,使学生真正感受到学习数学的乐趣。密切联系学生的生活实际,比如:让学生写电话号码,列举生活中的数等,使学生真正领略到数学就在我们身边,生活中处处有数学。反思本节课的教学,我也发现有许多环节处理极不得当,有待进一步改进。如学生提出最小的偶数是什么?其实我们没有必要在这个问题上花很多的时间,因为小学阶段我们只在0除外的自然数范围内研究倍数和因数。所以我们现在只能在这个范围内说最小的偶数是2。其他也不适于多说,以免让学生混乱。
我们知道,一个数的倍数有无数个,如果随机给你一个数,有没有更好的方法来判断是不是2、5的倍数呢?有,如果这节课认真听,你肯定能掌握其中的奥秘。由此引出课题,这样不但大大地调动了学生学习积极性,而且顺其自然地把探索的问题抛给了学生,激起了学生探索的欲望。二是紧密地联系学生的生活。本节课我充分利用了与学生生活密切联系的学号,使学生明白数学来源于生活,生活即是数学。我安排了“请学号是2的倍数的同学举起左手”、“请学号是5的倍数的同学举起右手”的练习,以及判断自己的学号“是不是2或5的倍数”的练习,这些练习内容使枯燥的数字练习变得生动了。这即巩固了学生对奇数和偶数意义的理解。又让学生对规律的运用更加灵活了,学生非常喜欢这样的形式。真正也让学生体会到了“数学源于生活,生活即数学”。
不足之处是:在如何有效地组织学生开展探索规律时,我认为猜想可以锻炼孩子们的创新思维,但猜想必须具有一定的基础,需要因势利导。在开展探索规律时,我先组织让学生猜想秘诀是什么?由于学生缺乏猜想的依据,因此,他们的思维不够活跃,甚至有的学生在“乱猜”。这说明学生缺乏猜想的方向和思维的空间,也是教师在组织教学时需要考虑的问题。
最优三的倍数特征的教案(通用17篇)篇八
这部分内容是在学生掌握了倍数概念的基础上进行教学的。它是学好找因数、求最大公约数和最小公倍数的重要基础,还有利于学习约分、通分知识。因此,掌握能2.5的倍数的特征,对于本单元的内容具有十分重要的意义。
所谓预习就是学生在学习新知识前,通过自学对新知识有初步的认识,形成一定的知识表象,或激活一定的前期经验和已有知识基础。通过预习,学生可以复习、掌握一些旧有的知识,初步认识知识的构架和网络,为完成由旧到新、由浅入深、由简单到复杂、由具体到抽象的知识迁移奠定基础。也就是说,课前预习起到了一个承前启后的作用,为掌握新知识做好知识方面的准备。
通过预习,给学生提供了一个培养自学能力的舞台。预习时学生会努力搜集已有的知识和经验来理解、分析新知识,这个过程正是在锻炼学生自主学习、提出问题和分析问题的能力。久而久之,学生的自学能力将逐步提高。
这节课是先安排学生进行预习后再进行的,因为是刚开始实施预习后的课堂教学,所以之前我已经给学生安排了具体的预习步骤。所以探究新知识的时候我从学生已掌握的知识点切入,让学生说出预习之后,所获得的知识。从而让学生自主学习、自主探究。讲完所有内容之后再进行反馈,让孩子们对自己昨天预习的内容进行修正,再进行自我评价,肯定学生学习的效果,从而提高学生预习的积极性。
知识目标:1,使学生掌握2,5的倍数的特征。
2,使学生知道奇数,偶数的概念。
能力目标:1,会判断一个数是不是2,5的`倍数。
2,能举出生活中的数,再判断是奇数还是偶数。
3,培养类推能力及主动获取知识的能力。
情感目标:培养学生预习的积极性。
教学重点:掌握2,5的倍数的特征及奇数,偶数的概念。
教学难点:1,掌握既是2的倍数,又是5的倍数的特征。
2,利用所学知识解决生活中的数学问题。
由于2.5的倍数的特征学起来易懂,因此在教学本课时,主要采用如下的教法和学法:
1,布置预习,引导探究。
先给学生布置一些预习任务,让孩子们先对这节课所学的内容有一定的了解,再带着问题听这节课。上课的时候再学生已有的知识基础上加以引导,探究这节课所学的内容。
2,加强练习,强化反馈。
学生汇报完所预习内容之后,让学生对自己的预习成果有一个反馈,让学生初步掌握预习方法。因为预习之后初步掌握了一些知识,课上再对这些知识进行探究,所以一些基础性的练习题就没有安排,练习题的难度稍微设计得高了,考虑到今后学习的需要,要求学生能够熟练运用能2.5的倍数的特征,因此在本课中设计了“生活中的数学”、“闯关我能行”等练习,来巩固新知识。
1,走进课堂,汇报总结。
因为是预习后的课,所以我直接问“昨天老师布置了预习作业,你都学会了什么”从孩子们掌握的知识切入,进行新授。让学生总结出2.5的倍数的特征,奇数与偶数的概念,以及既是2的倍数,又是5的倍数的特征。
二,尝试练习。
检验学生预习效果,这是数学预习不可缺少的过程。数学学科有别于其他学科的一大特点就是要用数学知识解决问题。学生经过自己的努力初步理解和掌握了新的数学知识,要让学生通过做练习或解决简单的问题来检验自己预习的效果。既能让学生反思预习过程中的漏洞,又能让老师发现学生学习新知识时较集中的问题,以便课堂教学时抓住重、难点。因为是预习之后的课,所以练习题的难度比较高,安排了不同难度的练习题来巩固新知识。
三,设置下节课预习任务。
设置下节课的预习任务,是进行下节课内容的铺垫,让孩子们按着一定的方案有计划、有目标地对下节课进行预习,以便下节课的教学活动。
最优三的倍数特征的教案(通用17篇)篇九
首先对学生进行一个简单地复习,主要是检查学生对因数和倍数的掌握情况,然后再教学2和5的倍数特征,教学时教师从学生已有的生活经验和知识基础出发,让学生在情境中通过观察、归纳、概括得2和5的倍数的特征,其次在介绍奇数和偶数时,提醒学生注意“0”是一个特殊的数,0是2的倍数,也是偶数。
二、教案。
授课人。
孔水兰。
学科。
数学。
学校。
宁墩中心小学。
课题。
教学。
目标。
1、让学生通过探索2、5的倍数的特征过程,掌握2、5倍数的特征,并会正确的判断一个数是否是2、5的倍数。
2、理解奇数、偶数的意义,能正确判断一个数是奇数还是偶数。
3、通过学习,培养学生观察与分析能力,提高学生的思维水平。
教学重点。
教学难点。
能灵活地写出一个符合要求的数。
教具学具。
单号入口、双号入口卡片,1~50的数字卡片、小黑板。
教学方法。
谈话、观察、比较、归纳。
教师活动。
学生活动。
设计意图。
一、 复习导入。
教师:1、什么叫因数?
什么叫倍数?
2、下面各组数,谁是谁的因数;谁是谁的倍数?(小黑板出示)。
(1)12和6 (2)28和7。
(3)13和1。
二、探索新知。
1、情境引入。
提问:(1)大家喜欢看电影吗?
(2)从这幅图中你看到了什么?
(3)电影院的入口处分别有什么?
提示?
(4)座号是多少的应该从双号入口进?
(2)结合学生回答,板书:
2×1=2 2×6=12 。
2×2=4 2×7=14。
2×3=6 2×8=16。
2×4=8 2×9=18。
2×5=10 2×10=20……。
3、教学奇数、偶数。
教师:一个数是不是2的倍数,还有很多知识,你们想知道吗?请打开书第17页自学。
提问:你们从书上还知道了些什么?
(1)教师:指名说说5的倍数(从小到大的顺序)。
(2)板书:
5、10、15、20、25、30……。
(3)出示课本第18页的表格。
(4)归纳:各位上是0或5的数,是5的倍数。
(5)练习。
布置教材第18页“做一做”
三、 拓展练习。
按下面的要求用0、3、4组成三位数。(小黑板出示)。
(1)2的倍数。
(3)既是2的倍数,又是5的倍数。
四、全课小结。
教师:通过这节课的学习,你都有哪些收获?
五、 作业 。
教材第20页第1~3题。
个别学生回答。
指名回答。
观察课本第17页的情境图,然后回答教师的提问。
(1)学生观察板书,探索2的倍数的特征,然后得出结论。
(2)学生说数、验证、同桌交流。
学生看第17页自学。
说说什么是偶数?什么是奇数?
(1)观察这些数,想一想有什么特征?
(2)学生找出5的倍数。
(3)说一说。
(4)口头回答。
学生尝试做一做,可以同桌交流、讨论。
学生独立完成作业 。
(通过口答练习,让学生对上节课所学过的知识进行复习,使学生进一步理解因数、倍数两个数学概念)。
从贴近学生的生活情境入手,让学生感受数学源于生活,激发学生学习和探索的兴趣。
让学生进行数学思考,自己探索2的倍数的特征。并请同桌说数验证一下,注重了数学归纳。
让学生自学奇数、偶数,培养学生的自学能力。
渗透迁移的数学方法,从探索“2的倍数特征”的方法,迁移到“5的倍数的特征”。经历“猜测—探索—验证—归纳”完成知识的形成过程。
练习设计注重开放性和思考性,有利于知识的巩固和思维的提高。
板书设计:
2的倍数是偶数(0是偶数),不是2的倍数的数是奇数。
个位上是0的数同时是2和5的倍数。
点评:
1、从贴近学生生活的情境入手,激发了学生的学习兴趣。
2、整节课学生通过“观察—猜测—探索—归纳”,完成知识的形成过程,体现了数学思考的严谨性。
3、练习涉及丰富、有层次,满足不同层次的要求,学习效果好。
最优三的倍数特征的教案(通用17篇)篇十
教学目标:知识与能力。
1通过观察、探究、交流等活动,让学生经历发现3的倍数特征的过程。
2、在理解的基础上,掌握3的倍数的特征,并能利用特征进行判断。
教学重点:理解3的倍数的特征。
教学难点:探索活动中,发现规律,并归纳出3的倍数的特征教具准备。
实物投影仪、数字卡片等。学具准备。
一、谈话导入,揭示课题。
我们能不能通过观察个位上的数来确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。
二、探索交流、获取新知。
1、前面我们研究了2和5的倍数的特征,能用你的话说一说他们的特征呢?
2、请你举例说明。(请学生说,教师把学生的举例板书在黑板上。)。
3、说说能同时被2和5整除的数有什。
(一)活动一:复习巩固。么特征?(观察特征。用自己的话说一说。)。
(二)活动二:探索研究3的倍数的特征。
1、在书上第6页的表中,找出3的倍数,并做上记号。(先独立完成,看谁找的快?)。
教师参与到讨论学习中。先独立思考,想出自己的想法。然后与四人小组的同学说说你的发现。
生1:3的倍数个位上的数有0、1、2、3、4、5、6、7、8、9没什么规律。
生2:十位上的数也没有什么规律。生3:将每个数的各个数字加起来试试看。
3、你发现的规律对三位数成立吗?找几个数来检验一下。(1)自己先找几个数试一试。(2)然后在小组内说说你验证的结论。
(三)活动三:试一试在下面数中圈出3的倍数。
65(先自己圈,然后说说你是怎样判断的?)。
(四)活动四:练一练。
1、请将编号是3的倍数的气球涂上颜色。36。
5471。
48(自己独立完成,在小组内说说自己的想法。)。
2、选出两个数字组成一个两位数,分别满足下面的条件。
30。
5(1)是3的倍数。
(2)同时是2和3的倍数。(3)同时是3和5的倍数。(4)同时是2,3和5的倍数。(独立完成,说说你的窍门和方法。)。
(五)活动五:实践活动。
在下表中找出9的倍数,并涂上颜色。(可以在自主实践以后再交流。)。
三、总结。
通过这节课的学习,你有什么收获板书设计:
课题:探索活动。
1、在下面数中圈出3的倍数。
55。
387。
2、选出两个数字组成一个两位数,分别满足下面的条件。3。
5(1)是3的倍数。
(2)同时是2和3的倍数。(3)同时是3和5的倍数。(4)同时是2,3和5的倍数。
最优三的倍数特征的教案(通用17篇)篇十一
片段回放:
(学生发现一个数是不是3的倍数,不能只看它的个位后)。
师:究竟什么样的数才是3的倍数呢?这节课我们就来研究3的倍数的特征。
师:我们先来做个“火柴梗摆数”的游戏(小黑板出示实验表,如后略)。老师报一个数,同学们拿出相应根数的火柴梗,边摆边在表上记录你所摆的数。
(老师报数,学生在数位表上摆数、判断、师生交流,完成下表)。
“火柴梗摆数”实验表。
师:看着这份实验表,你有什么想说的吗?
生:我发现凡是用3根、6根、9根火柴梗摆出来的数字都是3的倍数。凡是用2根、4根、7根、8根火柴梗摆出来的数字都不是3的倍数。
师:真的吗?(学生再补充两个数用计算器验证)还有没有不同的发现?
生:我发现如果3根3根地增加火柴梗,那么原来火柴梗摆出来的数和现在火柴梗摆出来的数,要么都是3的倍数,要么都不是3的倍数。
生:比方说,2根火柴摆出的数都不是3的倍数,那么增加3根火柴,5根火柴摆出来的数也都不是3的倍数。
师:如果原来摆出来的数是3的倍数,那么增加3根火柴后……?
生:摆出来的数应该也是3的倍数。
师:照同学们这样说,接下来用多少根火柴梗摆出来的数应该是3的倍数?
生;12根火柴梗。
生:15根火柴梗。
…… ……。
生:只要火柴梗的根数是3的倍数,那么它摆出来的数都是3的倍数。
师:真是这样吗?怎么来验证呢?
生:随便挑一个数做实验试试。
(师生商议后,决定用21根火柴梗在头脑中模拟实验。结果发现21根火柴梗摆出来的数全部是3的倍数。)。
(生面有难色,师指着表中3根火柴梗这一行。)。
生:数字排列的顺序变了;组成数的大小变了,但组数用的火柴梗根数没变,始终是3根。
师:组数用的火柴梗根数没变就是组成的数的什么没有变?
生:火柴梗根数没变,就是组成数的数字之和也没变。
师:其它每行呢?是不是也有这样的规律?
生:是的。
师:那么,怎样判断一个数是不是3的倍数?同学们现在有没有新想法?
生:我觉得一个数是不是3的倍数,应该把这个数各个数位上的数字相加,如果相加的和是3的倍数,那么这个数就是3的倍数。否则,就不是。
生:各位上的数字和是3的倍数,这个数就是3的倍数。
(师板书:各位上的和是3的倍数,这个数就是3的倍数。并在“各位”下用红笔写下“个位”)。
师:“各位”什么意思?能不能换成“个位”?
生:各位是每一位,而个位仅指最后一位,两者的意思完全不同。
(生答略。)。
生:它们的特征都可以看作是它们的倍数?
师:有没有同学理解他的话?(全班同学摇头)你能具体说说吗?
生:0、2、4、6、8是2的倍数,0、5是5的倍数,那么2、5倍数的特征就与3的倍数的特征一样,可以写作:一个数的个位是2或5的倍数,这个数就是2或5的倍数。
师:讲得很好!同学们听懂了没有?(生点了点头)有了这个特征,同学们就可以便捷、快速地判断一个数是不是3的倍数。请同桌同学互相出题,考考你的同桌!
(同学自主出题,同桌相互挑战。教师巡视,组织几个学生汇报后,顺手在黑板上写下63992这个数。)。
师:63992是3的倍数吗?说说你的理由!
生:不是,因为6+3+9+9+2=29,29不是3的倍数,所以63992不是3的倍数。
生:2不是3的倍数,所以63992不是3的倍数。
(其它学生纷纷表示反对。)。
师(面对后一位同学):你能向大家解释你的想法吗?
生:我是这样想的,但不知道对不对?我先用火柴梗在数位表上摆出63992,然后依次在在万位上拿下6根火柴梗,在千位上拿下3根火柴梗,在百位上拿下9根火柴梗,在十位上拿下9根火柴梗,这样就只剩下2根火柴梗。由于3根3根地拿,原来火柴摆出来的数和现在火柴摆出来的数,要么都是3的倍数,要么都不是3的倍数。而2不是3的倍数,所以63992不是3的倍数。
师:有没有同学听清楚他的意思?谁来给同学们再讲一讲?
(同学复述略。)。
…… ……。
评析:众所周知,一个数是不是2、5的倍数,只需看这个数的个位。个位是0、2、4、6、8的数是2的倍数,个位是0、5的数是5的倍数。而3的倍数特征则不然,一个数是不是3的倍数,不能只看个位,只有所有数位上的数的和是3的倍数,那么这个数才是3的倍数。以往教学,教师更多的是看到前后两种特征思维着眼点的不同,因此,教学中往往刻意对比强化,凸显这种差异。
最优三的倍数特征的教案(通用17篇)篇十二
这节课新授知识较为简单,很适合让学生预习。所以课前我印制了百数表让学生圈出5的倍数和2的倍数,并设计了两个问题:1、观察5的倍数,想想这些数有什么特征?2、观察2的倍数,又有什么特征呢?一上课就小组交流这两个问题,同学们兴致高涨,足以看出预习效果是很好的。通过这样的教学,节省了很多时间,课堂作业可以当堂完成。从作业情况来看,大部分同学做得还不错。一小部分同学运用知识的能力欠佳,比如:写出5个奇数是这样写的:5、15、25、35、45.虽然这样写不能算错,但是这些学生可能对5的倍数与奇数的概念有些混淆。
在0、1、5、8,四张卡片中选出两张数字卡片,按要求组成两位数。
1、组成的数是偶数的有()。
2、组成的数是5的倍数的有()。
3、组成的数既是2的倍数、又是5的倍数的有()。
这道题部分同学答案不全,想想还是正常的,其实这道题对于中等以下的学生来说确实有难度的。
最优三的倍数特征的教案(通用17篇)篇十三
在学习这个内容之前,学生已经学习了2、5的倍数的特征。但是3的倍数的特征与钱不同,2、5的倍数的特征是看个数上的数字,而3的倍数的特征不再是看个位上的数字,而是看各位上的数字之和。在学习了2、5的倍数的特征的前提下来学习3的倍数的特征很容易会跟2、5的一样。根据这一初步的认识冲突,在课堂上我采取了以下教学措施。
与教学“2、5的倍数特征”类似,我要求学生课前做好充分的预习工作:在附页的方格纸上写出1-100的数,找出3的倍数并涂上颜色,并观察发现有什么特征,如下:
复习引入,设置悬念。
出示:用3,5,6数字卡片摆成符合要求的三位数依次出示:
摆成2的倍数(学生回答356536并说原因)。
摆成5的倍数(学生回答365635并说原因)。
摆成3的倍数(学生回答563,653,356,536并说原因:个位上是3、6;有学生提出质疑,产生冲突)。
问:个位上是3,6或9的数是不是3的倍数?
学生验证,发现这四个数都不是3的倍数。
问:3的倍数是不是看各位上的数呢它到底有什么特征?
合作探究。
在100以内的数中,任意选取几个3的倍数的数,小组合作完成表格:
3的倍数有。
各数位上,数的和。
和是不是3的倍数。
12。
1+2=3。
是
汇报交流:你发现了什么?
得出结论:一个数各数位上数的和是3的倍数,这个数就是3的倍数。例如:54,因为5+4=9,9是3的倍数,所以54是3的倍数。
1,基础练习:
(1)判断下列数是不是3的倍数(4213426878)。
学生回答:例。
42是3的倍数,134不是3的倍数,
因为4+2=6,6是3的倍数,因为1+3+4=8,8-不是3的倍数。
所以42是3的倍数。所以134不是3的倍数。
(2)师生互动猜数游戏:老师说一个数,学生判断是否为3的倍数;学生说一个数,老师判断;同桌判断,男女生判断。
(3)在下面的方框里填上一个数字,使这个数是3的倍数。
本节课能从认识冲突上找到突破点,再小组合作通过填写表格引导学生去发现3的倍数的特征,学生能够清晰的区分和判别3的倍数,并与2、5的倍数作比较,真正理解和辨别这几个数的倍数的特征,学生的'掌握情况还是不错的。
最优三的倍数特征的教案(通用17篇)篇十四
根据《数学课程标准》(20xx版)中所提出的“教师应当根据课程内容,设计运用数学知识解决问题的活动。这样的活动应体现‘问题情境—建立模型—求解验证’过程,这个过程要有利于理解和掌握相关的知识技能,感悟数学思想、积累活动经验;要有利于提高发现和提出问题的能力、分析和解决问题的能力,增强应用意识和创新意识”。从这一段的描述中我们可以看出,建立模型是数学运用和解决问题的核心。
本节课,我首先设计问题情境,六一儿童节节目交谊舞、圆圈舞叠罗汉舞选人数,学生发现人数必须是2、5、3的倍数,激发探究欲望。再结合导学案,学生观察交流发现5的倍数只要是个位是0或5,从而在心中形成一定的模型,数的倍数的特征首先应看个位。通过验证,发现个位是0、2、4、6、8的数都是2的倍数。新知的形成自然而然。另外,本节里,总结出的2和5的倍数的特征本身也是一个数学模型。学生利用模型,认识奇数偶数、解决日常生活中的有关问题。
其实,每堂数学课均可以形成一个核心的数学模型。数学模型在小学数学课堂上就是师生进行探究的结果,是一种数学知识;数学模型在小学数学阶段是由师生在课堂上构建出的`数学认知结构。因而教师在进行教学设计时要认真思考建模是建立一个什么数学模型。课堂上构建出一个简洁、清晰、应用性强的数学模型,会让学生切切实实感受到数学的简洁美。作为一线教师,理清数学模型在教学中的地位与作用,切实研究好每堂课中所应建立的数学模型,才能有效的设计好整个建模过程,让学生真切的体验数学的魅力。
最优三的倍数特征的教案(通用17篇)篇十五
在学习这个内容之前,学生已经学习了2、5的倍数的特征。但是3的倍数的特征与钱不同,2、5的倍数的特征是看个数上的数字,而3的倍数的特征不再是看个位上的数字,而是看各位上的数字之和。在学习了2、5的倍数的特征的.前提下来学习3的倍数的特征很容易会跟2、5的一样。根据这一初步的认识冲突,在课堂上我采取了以下教学措施。
与教学“2、5的倍数特征”类似,我要求学生课前做好充分的预习工作:在附页的方格纸上写出1-100的数,找出3的倍数并涂上颜色,并观察发现有什么特征,如下:
复习引入,设置悬念。
出示:用3,5,6数字卡片摆成符合要求的三位数依次出示:
摆成2的倍数(学生回答356536并说原因)。
摆成5的倍数(学生回答365635并说原因)。
【设计意图:回顾2,5的倍数的特征】。
摆成3的倍数(学生回答563,653,356,536并说原因:个位上是3、6;有学生提出质疑,产生冲突)。
问:个位上是3,6或9的数是不是3的倍数?
学生验证,发现这四个数都不是3的倍数。
问:3的倍数是不是看各位上的数呢它到底有什么特征?
合作探究。
在100以内的数中,任意选取几个3的倍数的数,小组合作完成表格:
3的倍数有。
各数位上,数的和。
和是不是3的倍数。
12。
1+2=3。
是
汇报交流:你发现了什么?
得出结论:一个数各数位上数的和是3的倍数,这个数就是3的倍数。例如:54,因为5+4=9,9是3的倍数,所以54是3的倍数。
1,基础练习:
(1)判断下列数是不是3的倍数(4213426878)。
学生回答:例。
42是3的倍数,134不是3的倍数,
因为4+2=6,6是3的倍数,因为1+3+4=8,8-不是3的倍数。
所以42是3的倍数。所以134不是3的倍数。
(2)师生互动猜数游戏:老师说一个数,学生判断是否为3的倍数;学生说一个数,老师判断;同桌判断,男女生判断。
(3)在下面的方框里填上一个数字,使这个数是3的倍数。
2,有关于2,5,3的倍数的特征的比较,综合练习。
本节课能从认识冲突上找到突破点,再小组合作通过填写表格引导学生去发现3的倍数的特征,学生能够清晰的区分和判别3的倍数,并与2、5的倍数作比较,真正理解和辨别这几个数的倍数的特征,学生的掌握情况还是不错的。
最优三的倍数特征的教案(通用17篇)篇十六
教学过程:
(一)创设情境;。
生:哪些数宝宝,应该从2的倍数入口进?
师;“2的倍数”,指什么?
师:那么,怎样才能知道一个数是不是2的倍数?
生:用它除以2,只要是整数就可以了!
师:你们同意吗?数学王国有那么多数,我们一个一个的算行吗?
生:不行,太麻烦。如果我们知道2的倍数什么样就行了。
(二)探究新知。
师:怎样得到2的倍数。
生:2×1=2......
师:你能用列举法,有序的找出2的倍数,真不错,我给大家足够的时间,你能把它们都说完吗?(说不完)说不完说明2的倍数是无限的,四年级的知识掌握很牢固,你能找到100及100以内2的倍数吗?(能)那我们就先在1-100这一百个数中进行研究,看看2的倍数究竟有怎样的特征?认真听:(1)用列举法找出100及100以内2的倍数。(2)在百数表中标出100及100以内2的倍数并涂上颜色。任选一种,看哪组找的又对又快!
学生展示交流。
师:你用的哪种方法?
生:第二种。
师:为什么?
生:这种方法简单。
师:仔细观察,100及100以内2的倍数,仔细分析它的个位,再看看十位,有什么特征!
师:你的意思是十位上的数是什么都行,不固定是吗?
生;是,不一定。
师:既然十位上的数是什么都可以,那还用看十位吗?
生:不用。
师:既然不用看十位,那看那一位?
生:个位。
师:你们同意吗?
生:同意。【使学生初步体会2的倍数为什么只看个位,不看十位。】。
师:100及100以内2的倍数,它的个位,有什么特征!
生:个位上都是0、2、4、6、8的数。
师:你能说完整吗?
生:个位上都是0、2、4、6、8的数,是2的倍数。
师;谁能完整的说一遍。
生:个位上都是0、2、4、6、8的数,是2的倍数。
师:这只是我们的猜测,那我们能否举例验证一下?
生:(举例)5124(集体验证)5124÷2=2562。
师:每个同学分别写一个大于100的数,同位交换验证。(找2名学生展示)。
你们举的例子一样吗?(不一样)说明什么?
生:2的倍数的特征:个位是0、2、4、6、8的数。
练习:下列数中,哪些是2的倍数?
师:口55是2的倍数?
生:是。
师:还差一个数呢,你怎么看出来的?
生:只看个位,个位是5,所以不管百位是几,都不是2的倍数。
师:你们有不同意见吗?
生:13口呢?
生:可能是2的倍数,也可能不是。
师:为什么用上“可能”?
师:现在数字爷爷知道谁应该在双数路口也就是2的倍数入口进入,非常感谢大家。谁能在这里进入?(出示课件)。
生:12、2、26、8、58......
2、2的倍数为什么只看个位,认识奇数偶数。
师:课件2643:为什么不让我进入?
生:个位不是2、4、6、8、0,所以不能进入。
学生讨论交流。
师:谁来说一说,为什么不看十位呢?(学生不明白)。
师出事课件 千位 百位 十位 个位。
2 6 4 3。
师:十位的4表示什么?
生1:十位的4表示4个十。
生2:十位的4表示40。
师:40是不是2的倍数?
生:40是2的倍数。
师:十位如果是1呢,是不是2的倍数?
生:十位的1表示10。也是2的倍数。
师:十位是2呢?
生:十位的2表示20。也是2的倍数。
师:十位是3呢?(是)4呢,(是)5呢6、7、8、9呢?
生:不管十位是几都是2的倍数。
师:所以......
最优三的倍数特征的教案(通用17篇)篇十七
根据新课程标准,对于本节课我将以教什么,怎么教,为什么这样教为思路,从教材分析,学情分析,教学方法,教学过程几个方面加以说明,首先谈谈我对教材的理解。
一、说教材。
本节课选自人教版小学五年级下册内容。这部分内容是在学生掌握了倍数概念的基础上进行教学的。它是学好找因数、求公约数和最小公倍数的重要基础,对以后学习约分、通分知识做了一个很好的铺垫,同时对学生的观察能力及自主探究能力的提升有很大作用。因此,掌握2、5的倍数的特征,对于本单元的内容具有十分重要的意义。
二、说学情。
教材是上好一节课的前提,但教学活动的主体是学生,因此,除了对教材理解外还要对所教授的学生很了解。我所教授的五年级学生正处于生长发育阶段,思维还在发展中,好表现,爱思考,对于新的知识感兴趣,但他们自制力差,注意力集中时间段,要在短时间内让他们对本节课的知识掌握有难度,所以老师应该加以正确的引导。
三、教学目标。
基于以上对学情和教材的分析,我确定了本节课的教学重难点。
知识与技能目标:学生掌握2、5的倍数的特征并能够掌握判断方法。
过程与方法目标:通过自主探究,讨论等方法,会判断一个数是不是2、5的倍数。
情感态度与价值观目标:通过学习,增强学习数学的兴趣,养成勤于思考的学习习惯,逐步养成类推能力及主动获取知识的能力。
结合教学目标,我确定本节课的重难点为:
四、教学重难点。
重点:掌握2、5的倍数的特征及奇数、偶数的概念。
教学:掌握既是2的倍数,又是5的倍数的特征。
为了突出重点,突破难点,顺利达成教学目标,我将采用的教学方法有:
五、教学方法。
讲授法,自主探究法,小组讨论法。
六、教学过程。
新课标要求学生是学习的主体,教师是引导者,组织者,下面我将从四个方面谈谈本节课的教学过程。
1.新课导入。
我会在多媒体上呈现一些数字,4,6,8,10,15,16,20,25......,紧接着让学生回顾之前所学的倍数概念,找出2、5的倍数。在学生找出来后,我会让他们以小组为单位,观察这些数字,并看看有什么特点?从而,导入今天的新课。这样设计不但可以帮助学生巩固以前的旧知识,还可以帮助他们培养思维能力。
2.新课教学。
待他们讨论结束后,我会出示百数表,以提问的方式请不同的同学说出2的倍数有哪些特征,5的倍数有哪些特征,并对他们的回答加以引导完善,从而总结出2、5的倍数特征:
紧接着引导同学观察自然数及其2的倍数,通过观察,2的倍数全是双数,从而引出偶数和奇数的概念。
这样设计不但可以锻炼学生的观察能力,同时还可以锻炼他们的自主探究学习能力,而且突出了本节课的重点。
3.巩固提升。
我会在多媒体上呈现一些数字,让同学们判断哪些是2的倍数,那些事5的倍数。之所以这样设计是因为能够让学生对本节课的知识加以理解掌握,同时突破难点。
4.小结作业。
我会请一位同学说说本节课的收获,同时给他们留一个小任务,课后探究3的倍数特征。这样不但能提升学生的归纳总结能力还能拓展他们的思维。
七、说板书。
我的板书注重突出重点,简单明了,便于学生理解本节课知识。
2.奇数和偶数。
八、教学反思。