范文范本不仅可以用于学生的学习,也可以用于教师的教学,为教育教学提供参考和指导。在这个范文范本集合中,小编为大家准备了一些新颖和有趣的总结作品,希望可以激发大家的写作创作灵感。
考研数学选择题的解题技巧(精选20篇)篇一
1.推演法:从题设条件出发,按惯常思维运用有关的概念、性质、定理等,经过直接的推理、演算,得出正确结论。
适用对象:对于围绕基本概念设置的,或备选项为数值形式结果的或某种运算律形式或条件为某种运算形式的,常用推演法。
个人观点:这种方法应该是最常用的,并且所有的题都能通过这种方法解出来,大家应该注重对基本概念和定理的记忆和运用。
2.图示法:是指根据条件作出所研究问题的几何图形,然后借助几何图形的直观性,
“看”出正确选项。
适用对象:对于条件有明显的几何意义:如五性:对称性,奇偶性,周期性,凹凸性,单调性或平面图形面积,空间立体体积等,常用图示法。
个人观点:相信大家一定很喜欢这种解题方法吧,画图直观,简便,但一定要注意图形的准确性,一点细微的概念差错也许会导致图形的错误。
推理演算,得出正确选项。
适用对象:对于条件中有……对任意……,必……特征的题目,或选项为抽象的函数形式结果的,可用赋值法。
个人观点:赋值法应该说是一种特殊的,而且最快速的方法,可惜适用范围比较狭窄,所以大家在用这种方法时,一定要注意使用条件,不要遇到什么题都赋特殊值。
4.排除法:从题设条件出发,或利用推演法排错,或利用赋值法排错,从而得出正确结论。
适用对象:理论性较强,选项较抽象,且不易证明的题目。
个人观点:根据我的观察有些选择题,尤其是理论性的选择题,有些答案是相互矛盾的,也就是说二者之中必有一对,所以建议大家遇到这种题时“聪明”一下。
5.逆推法:将备选项依次代入题设条件的方法。
适用对象:备选项为具体数值结果,且题干中含有合适的验证条件。
个人观点:这种方法对于有些题还是比较好用的,缺点就是如果正确选项放在a还好,
如果放在d,可能要浪费些时间了。
考研数学选择题的解题技巧(精选20篇)篇二
选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
2、赋予特殊值法。
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。
3、通过猜想、测量的方法,直接观察或得出结果。
这类方法在近年来的高考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
考研数学选择题的解题技巧(精选20篇)篇三
很多同学都认为考研数学的综合题比较难,有的同学甚至在卷面上只字未写,采取完全放弃的态度。实际上这种题目得分并没有大家想象的那么困难。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。
尽管试题千变万化,但其知识结构基本相同,题型相对固定,这就需要考生在研究真题和做模拟题时提炼题型。提练题型的目的,是为了提高解题的针对性,形成思维定势,进而提高考生解题的速度和准确性。近几年试卷中常见的综合题有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等等。
同学们在解考研数学综合题时,最关键的.一步是找到解题的切入点。所以大家需要对解题思路很熟悉,能够看出题目与复习过的知识点、题型之间存在的联系。在复习备考时要对所学知识进行重组,理清知识脉络,应用起来更加得心应手。解应用题的一般步骤都是认真理解题意,建立相关的数学模型,将其化为某数学问题求解。建立数学模型时,一般要用到几何知识、物理力学知识和经济学术语等。
另外,提醒同学们不要做比较偏门和奇怪的试题。研究生考试是很严肃的考试,不是数学竞赛,不会出现这类题目,因此完全没必要浪费时间。复习中,遇到比较难的题目,自己独立解决确实能显着提高能力。但复习时间毕竟有限,在确定思考不出结果时,要及时寻求帮助。一定要避免一时性起,盯住一个题目做一个晚上的冲动。同学们可以充分借助老师、同学和互联网的帮助,将题目弄明白,不要耽误太多无谓的时间。
考研数学选择题的解题技巧(精选20篇)篇四
在考研数学试卷中,综合题占据重要比例,这类题分值较大但做起来比较难,实际上这种题目得分并没有大家想象的那么困难,做好这部分题最重要的是平时对基础知识的积累与掌握,并在此基础上掌握解题方法。下面为大家分享考研数学解题方法。
在考研复习中对于那些具有很强的典型性、灵活性、启发性和综合性的题,考生要特别注重解题思路和技巧的培养。典型题可以理解为基础题和常考题型。做这种题时考生要积极主动思考,不能只是为了做题而做题。要在做题的基础上更深入地理解、掌握知识,所学的知识才能变成自己的知识,这样才能使自己具有独立的解题能力。
例如线性代数的计算量比较大,但纯计算的题目比较少,一般都是证明中带有计算,抽象中夹带计算。这就要求考生在做题时要注意证明题的逻辑严谨性,掌握知识点在证明结论时的基本使用方法,虽然线性代数的考试可以考的很灵活,但这些基本知识点的使用方法却比较固定,只要熟练掌握各种拼接方式即可。
尽管试题千变万化,但其知识结构基本相同,题型相对固定,这就需要考生在研究真题和做模拟题时提炼题型。提练题型的目的,是为了提高解题的针对性,形成思维定势,进而提高考生解题的速度和准确性。
找切入点,理清知识脉络。
考生们在解综合题时,最关键的一步是找到解题的切入点。所以大家需要对解题思路很熟悉,能够看出题目与复习过的知识点、题型之间存在的联系。在考研复习中要对所学知识进行重组,理清知识脉络,应用起来更加得心应手。
解应用题的一般步骤都是认真理解题意,建立相关的数学模型,将其化为某数学问题求解。建立数学模型时,一般要用到几何知识、物理力学知识和经济学术语等。
选常规题,珍惜复习时间。
对于比较偏门和奇怪的试题,建议大家不要花太多的时间。同学们在复习中做好分析考研数学的常规题目便已足够。研究生考试不是数学竞赛,出现偏门和怪题的情况微乎其微,因此完全没必要浪费时间。
考研复习中,遇到比较难的题目,自己独立解决确实能提高能力。但复习时间毕竟有限,在确定思考不出结果时,要及时寻求帮助。一定要避免盯住一个题目做大半天的冲动。
总的来说考研数学试题的考察还是建立在基础之上,建议考生在平时的复习中注意积累解题方法和技巧、有计划地培养独立解题能力,最终准确把握考试题目侧重的知识点。
考研数学选择题的解题技巧(精选20篇)篇五
1.剔除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2.特特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
3.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。
4.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
5.逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。
6.直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。
7.图解法:就是利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几何性质分析,再辅以简单计算,确定正确答案的方法。这种解法贯穿数形结合思想,每年高考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速。
8.验证法:就是将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法。在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度。
9.分析法:对有关概念进行全面、正确、深刻的理解或对有关信息提取、分析和加工后而作出判断和选择的方法。选择题中最常用的是特征分析法——即根据题目所提供的信息,挖掘诸如数值特征、数学对象结构特征、位置特征等内容,进行快速推理,迅速作出判断的方法。
考研数学选择题的解题技巧(精选20篇)篇六
高中数学题目对我们的逻辑思维、空间思维以及转换思维都有着较高要求,其具有较强的推证性和融合性,所以我们在解决高中数学题目时,必须严谨推导各种数量关系。很多高中题目都并不是单纯的数量关系题,其还涉及到空间概念和其他概念,所以我们可以利用数形结合法理清题目中的各种数量关系,从而有效解决各种数学问题。
数形结合法主要是指将题目中的数量关系转化为图形,或者将图形转化为数量关系,从而将抽象的结构和形式转化为具体简单的数量关系,帮助我们更好解决数学问题。例如,题目为“有一圆,圆心为o,其半径为1,圆中有一定点为a,有一动点为p,ap之间夹角为x,过p点做oa垂线,m为其垂足。假设m到op之间的距离为函数f(x),求y=f(x)在[0,?仔]的图像形状。”
这个题目涉及到了空间概念以及函数关系,所以我们在解决这个题目时不能只从一个方面来思考问题,也不能只对题目中的函数关系进行深入挖掘。从已知条件可知题目要求我们解决几何图形中的函数问题,所以我们可以利用数形结合思想来解决这个问题。首先我们可以根据已知条件绘出相应图形,如图1,显示的是依据题目中的关系绘制的图形。
根据题目已知条件可知圆的半径为1,所以op=1,∠pom=x,om=|cos|,然后我们可以建立关于f(x)的函数方程,可得所以我们可以计算出其周期为,其中最小值为0,最大值为,根据这些数量关系,我们可以绘制出y=f(x)在[0,?仔]的图像形状,如图2,显示的是y=f(x)在[0,?仔]的图像。
考研数学选择题的解题技巧(精选20篇)篇七
据考研教育网了解,很多同学都认为考研数学的综合题比较难,有的同学甚至在卷面上只字未写,采取完全放弃的态度。实际上这种题目得分并没有大家想象的那么困难。对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。尽管试题千变万化,但其知识结构基本相同,题型相对固定,这就需要考生在研究真题和做模拟题时提炼题型。提练题型的目的,是为了提高解题的针对性,形成思维定势,进而提高考生解题的速度和准确性。近几年试卷中常见的综合题有:级数与积分的综合题;微积分与微分方程的.综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等等。
同学们在解综合题时,最关键的一步是找到解题的切入点。所以大家需要对解题思路很熟悉,能够看出题目与复习过的知识点、题型之间存在的联系。在复习备考时要对所学知识进行重组,理清知识脉络,应用起来更加得心应手。解应用题的一般步骤都是认真理解题意,建立相关的数学模型,将其化为某数学问题求解。建立数学模型时,一般要用到几何知识、物理力学知识和经济学术语等。
另外,考研教育网提醒同学们不要做比较偏门和奇怪的试题。研究生考试是很严肃的考试,不是数学竞赛,不会出现这类题目,因此完全没必要浪费时间。复习中,遇到比较难的题目,自己独立解决确实能显着提高能力。但复习时间毕竟有限,在确定思考不出结果时,要及时寻求帮助。一定要避免一时性起,盯住一个题目做一个晚上的冲动。同学们可以充分借助老师、同学和互联网的帮助,将题目弄明白,不要耽误太多无谓的时间。
()
考研数学选择题的解题技巧(精选20篇)篇八
首先,要认真审题。做题时忌讳的就是不认真读题,埋头苦算,结果不但浪费了大量的时间,甚至有时候还选错,结果事倍功半。所以一定要读透题,由题迅速联想到涉及到的概念,公式,定理以及知识点中要注意的问题。发掘题目中的隐含条件,要去伪存真,领会题目的真正含义。
其次,要注意解题方法。做题时除了按照解答题的思路直接来求以外,还要注意一些特殊的方法,比如说特殊值法,代入法,排除法,验证法,数形结合法等等。
直接法。
有些选择题本身就是由一些填空题,判断题,解答题改编而来的,因此往往可采用直接法,直接由概念、公式、定理及性质出发,按照做解答题的方法一步步来求。我们在做解答题时大部分都是采用这种方法。
排除法。
选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
验证法。
通过对选择支的观察,分析,将各选择支逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。
特殊值法。
有些选择题用常规方法求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。
数形结合法。
也叫图象法,有些选择题用代数方法解计算较繁,但若能根据题意,做出草图,然后根据图形的形状、位置、性质、综合特征等,由图形的直观性得出选择题的答案。
选择题的解题方法还有很多,但做题时也不要拘泥于固定思维,有时候一道题可采用多种特殊方法综合运用。
还有,在做选择题的过程中,遇到关键性的词语可用笔做个记号,以引起自己的注意,比如说至少,没有一个,至多一个等等。第一遍没做的题也要做个记号,但要注意与其它记号区分开来,这样不容易遗漏。
最后,做完题后要仔细检查,有没有遗漏的,有没有涂错的,全面认真的再做一遍,可用不同的方法做一下,验证答案。另外遇到真不会做的,也不要空着不做,一定要选个答案。
一、直接法。
这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。它是解填空题的最基本、最常用的方法。使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。
二、特殊化法。
当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。这样可大大地简化推理、论证的过程。
三、数形结合法。
“数缺形时少直观,形缺数时难入微。”数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到“形帮数”的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到“数促形”的目的。对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
四、等价转化法。
通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。
1、要因题制宜。在做选择填空题时,由于只需要选选项、写结果,不要求有计算过程,所以,我们应该采取最直接、最简单的方法来解题,而不是按部就班的来写解题过程。比如:选择题中最经常用到的排除法,很多时候不需要计算,一眼过去就知道哪个选项不正确,第一时间予以排除,这样就能为接下来的题目争取到更多的时间。
而在做后面简答题时,就不能忽略计算过程,通常情况下后面的大题都是按照步骤给分的,即使最后结果错了,但是解题思路、过程正确,也能得到一部分分数。
2、要放平心态。很多考生不是因为被题考倒了,而是被吓倒了。一看到题有些难度心里就发慌,导致发挥失常。其实,高考作为选拔考试,极少出现偏题、怪题,一旦觉得有难度,可多尝试几种方法来解题,或者是换一种思路,要始终坚信考题内容就是自己学过的知识,只要找准思路、找对方法就一定能解开。
3、要跳跃答题。方法君在此建议,高考数学并不一定非要按照从前至后的顺序答题,按照往年的考试规律,无论是选择题、填空题还是简答题,难度都是逐步递增的,所以,每种题型的前几题一定是比较简单的,如果我们先将基础题做完,就能拿到接近70%的分数,然后,再做中等难度和难度题,这样不仅时间上有优势,也能建立一定的心理优势,有利于考试的发挥。
4、要学会舍得。数学考试中,如果自觉基础不是很好,或者是时间不允许,那么就放弃最后一道大题。与其匆匆忙忙、慌慌张张做题,不如舍弃一些不容易得分的题,将注意力集中到可以得分的题上。如果时间允许,再考虑最后一道题;如果时间如允许,就把已知条件抄一遍,这样也有可能拿到一些分数。
考研数学选择题的解题技巧(精选20篇)篇九
对于考研数学来说,最后的综合题可能对大家来说是重要的一部分,首先是分值的诱惑,其次这部分的试题在考研数学中也占据着重要的比例。(ps:看完有收获哟,wordzhongcao音频)但对大多数学生来说,考研数学综合题比较难,有的同学就选择放弃了,也有一部分同学,在这一部分的复习中盯着一个题接很久的时间,甚至一天,其实这样都是不科学的。
也有一部分同学在卷面上只字未写,采取完全放弃的态度。实际上这种题目得分并没有大家想象的那么困难。对于那些具有很强的典型性、灵活性、启发性和综合性的`题,要特别注重解题思路和技巧的培养。尽管试题千变万化,但其知识结构基本相同,题型相对固定,这就需要考生在研究真题和做模拟题时提炼题型。提练题型的目的,是为了提高解题的针对性,形成思维定势,进而提高考生解题的速度和准确性。近几年试卷中常见的综合题有:级数与积分的综合题;微积分与微分方程的综合题;求极限的综合题;空间解析几何与多元函数微分的综合题;线性代数与空间解析几何的综合题;以及微积分与微分方程在几何上、物理上、经济上的应用题等等。
同学们在解综合题时,最关键的一步是找到解题的切入点。所以大家需要对解题思路很熟悉,能够看出题目与复习过的知识点、题型之间存在的联系。在复习备考时要对所学知识进行重组,理清知识脉络,应用起来更加得心应手。解应用题的一般步骤都是认真理解题意,建立相关的数学模型,将其化为某数学问题求解。建立数学模型时,一般要用到几何知识、物理力学知识和经济学术语等。
对于比较偏门和奇怪的试题,建议大家不要花太多的时间。研究生考试是很严肃的考试,不是数学竞赛,不会出现这类题目,因此完全没必要浪费时间。复习中,遇到比较难的题目,自己独立解决确实能显着提高能力。但复习时间毕竟有限,在确定思考不出结果时,要及时寻求帮助。一定要避免一时性起,盯住一个题目做一个晚上的冲动。同学们可以寻求其他人的帮助,比如说老师同学等,也可以在网上寻求帮助,将题目弄明白,不要耽误太多无谓的时间。
总之考研数学的复习说简单也简单,说难也难。我们对于考研数学的复习要把握其考察的角度,在平时的复习中注意积累一些界问题方法和技巧。比较考研数学综合题考察还是建立在基础之上,我们要善于抓住和找到一类题型的答题关键点和一些固定的解题技巧,其实这些都是有章可循的。最后祝大家考研复习取得理想的效果。
考研数学选择题的解题技巧(精选20篇)篇十
选择题。
有些单项选择题概念性非常强,计算技巧也比较高,求解单项选择题一般有以下几种方法:
推演法:它适用于题干中给出的条件是解析式子。
图示法:它适用于题干中给出的函数具有某种特性,,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。
举反例排除法:排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函数的情况。
逆推法:所谓逆推法就是假定被选的四个答案中某一个正确,然后做逆推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。
赋值法:也就是说将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。
证明题:
第一,对题目所给条件敏感。在熟悉基本定理、公式和结论的基础上,从题目条件出发初步确定证明的出发点和思路;第二,善于发掘结论与题目条件之间的关系。例如利用微分中值定理证明等式或不等式,从结论式出发即可确定构造的辅助函数,从而解决证明的关键问题。
计算题:
近年计算题考查重点不在于计算量和运算复杂度,而侧重于思路和方法,例如重积分、曲线曲面积分的计算、求级数的和函数等,除了保证运算的准确率,更重要的就是系统总结各类计算题的解题思路和技巧,以求遇到题目能选择最简便有效的解题思路,快速得出正确结果。现在距离考试还有一个多月,考前冲刺做题贵在“精”,选择命题合乎大纲要求、难度适宜的模拟题进行练习是效果最为立竿见影的。
应用题:
重点考查分析、解决问题的能力。首先,从题目条件出发,明确题目要解决的目标;第二,确立题目所给条件与需要解决的目标之间的关系,将这种关系整合到数学模型中(对于图形问题要特别注意原点及坐标系的选取),这也是解题最为重要的环节;第三,根据第二步建立的数学模型的类别,寻找相应的解题方法,则问题可迎刃而解。
将本文的word文档下载到电脑,方便收藏和打印。
考研数学选择题的解题技巧(精选20篇)篇十一
遇到难题一时想不出来,可以考虑换一种方法,换一种思路,如果仍然没有头绪,不妨先放一放,记下题号,等后面的解答完了再回来看看,你可能会获得新的解题方法。最后如果仍然没有想出来的也不能放弃,是选择题就要猜测答案了,填空题也不能空着,猜测答案往上写,是大题,就要分步写,只要与问题有关,能写多少写多少。
遇到了难题,我该怎么办?
会做的题目要力求做对、做全、得满分,而更多的问题是对不能完整完成的题目如何分段得分。下面有两种常用方法。
一、面对一个疑难问题,一时间想不出方法时,可以将它划分为几个子问题,然后在解决会解决的部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。而且可望在上述处理中,可能一时获得灵感,因而获得解题方法。
二。有些问题好几问,每问都很难,比如前面的小问你解答不出,但后面的小问如果根基前面的结论你能够解答出来,这时候不妨先解答后面的,此时可以引用前面的结论,这样仍然可以得分。如果稍后想出了前面的解答方法,可以补上:“事实上,第一问可以如下证明”。
1、直接求解法。
从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择支对照来确定选择支。
2、筛选排除法。
在几个选择支中,排除不符合要求的选择支,以确定符合要求的选择支。
3、特殊化方法。
就是取满足条件的特例(包括取特殊值、特殊点、以特殊图形代替一般图形等),并将得出的结论与四个选项进行比较,若出现矛盾,则否定,可能会否定三个选项;若结论与某一选项相符,则肯定,可能会一次成功,这种方法可以弥补其它方法的不足。
考研数学选择题的解题技巧(精选20篇)篇十二
选择题是全国各地数学中考必考题型之一,选择题具有题目精炼、答案明确、适应性强,解法灵活、概念性强、知识覆盖面广等特点。选择题能很好考核学生的基础知识,同时更能强化学生分析判断能力和解决实际问题的能力的培养。
根据全国各地教材差异,选择题的数目一般在8~14题之间。
解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程。因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件。事实上,后者在解答选择题时更常用、更有效。
选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做。常见的解法有:
排除法是根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项,如果不能立即得到正确的选项,至少可以缩小选择范围,提高解题的准确率。排除法是解选择题的间接方法,也是选择题的常用方法。
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。
这类方法在近年来的中考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
考研数学选择题的解题技巧(精选20篇)篇十三
(1)要注意审题,我们在考试的时候一定要把题目多读几遍,弄清楚我们需要做的是什么,题目和选项之间有什么关系,弄清楚题目再动手去解答。
(2)答题时的顺序不一定要按照题号来进行。我们在做数学选择题的时候可以先从自己熟悉的题目开始,然后在去做自己不熟悉的题,因为这样做可以使我们更快的进入考试的状态,处理难题的时候才会有更强的自信。
(3)高考数学的选择题有大约七成的题都是按照直接法来解题的,所以我们要注意对富豪、概念、公式、定理等方面的理解和使用。例如函数和数列等题型就是考试常见的题目。
(4)要方法多样,高考数学是考察能力的考试,做题的时候要注意方法,要善于使用各种解题技巧,比如排除、验证、转化、估算等技巧。一旦有了思路就要尽快作答,不要在一些小提上过多的浪费时间,如果实在没有思路,我们也要坚定信心,就算是蒙题,也有四分之一的几率蒙对。
(5)在做数学选择题的时候,一定要控制好时间,最多不要超过四十分钟,为后面答题留下时间,以免时间浪费过多导致答不完卷。
考研数学选择题的解题技巧(精选20篇)篇十四
例如学习微积分的时候,先把这四个公式记住:
1、等价无穷小。
2、基本求导微分公式。
3、基本积分公式。
4、基本泰勒公式。
这四个公式相当于微积分里的基本工具,是全书都需要用到的。很多同学表示没关系,用到的时候再去查,感觉那样很是消耗信心和耐心的。另外还有就是一些基本概念和定理,以高数第一章为主:
1、数列、函数的极限定义。
2、极限的保号性定理。
3、等价无穷小、同阶、高阶、低阶无穷小的定义。
4、函数连续的定义。
5、闭区间上连续函数的定理等等。
这些同样属于考研数学中基本元素,一定掌握到一定程度,不能似懂非懂。每多记一次,就会多一度理解。
第二步:掌握必考的逻辑和思维。
比如求极限每年都是必考的,题型也比较固定。这就属于我们必须要掌握住的题型和方法,一般按照如下步骤进行:
1、判断类型。
2、简单代换(无穷小代换或者倒代换)把分母变为一项。
3、拆分组合;能拆就拆,拆不了就合。
4、洛必达或者泰勒公式。
还有间断点和渐近线也是每年必考的。关于间断点,我们要知道,间断点就考两类:
1、可去间断点(就是求极限)。
2、无穷间断点(就是求垂直渐近线)。
还要知道求渐进线的基本步骤:
1、先求垂直渐近线(找没有定义的点)。
2、再求水平渐近线(分左右两侧趋近)。
3、最后求斜渐近线(分左右两侧趋近)。
4、切记同一侧水平渐近线和斜渐近线不能同时存在。
第三步:锻炼良好的数学心态。
数学中考的全部是主流的重难点,绝没什么偏题、怪题、难题。从当年的拉式中值定理证明到今年积的求导法则证明;更加偏向基础以及学生对基础问题的掌握熟练程度。因此是否真的对主流的知识点掌握到一定程度至关重要。但是即使这样很多学生在复习过程中,也一直患得患失:万一考了怎么办。其实很简单:考了就考了,在数学中不要怕什么万一,就算真有万一,把万分之9999掌握住也足够了。
(1)直推法。
推法是由条件出发,运用相关知识,直接分析、推导或计算出结果,从而作出正确的判断和选择。计算型选择题一般用这种方法,这是最基本、最常用、最重要的方法。
(2)赋值法。
是指用满足条件的“特殊值”,包括数值、矩阵、函数以及几何图形,通过推导演算,得出正确选项。
(3)排除法。
通过举例子或根据性质定理,排除三个,第四个就是正确答案。这种方法适用于题干中给出的函数是抽象函数,抽象的对立面是具体,所以用具体的例子排除三项得出正确答案,这与上面介绍的赋值法有类似之处。
(4)反推法。
就是由选择题的各个选项反推条件,与题设条件或已有的性质、定理及结论相矛盾的选项排除,从而得出正确选项。这种方法适用于选项中涉及到某些具体数值的选择题。
(5)图示法。
若题干给出的函数具有某种特性,例如:周期性、奇偶性、对称性、凹凸性、单调性等,可考虑用该方法,画出几何图形,然后借助几何图形的直观性得出正确选项。此外,概率中两个事件的问题也可用图示法,即文氏图。
第三,考研党缺乏对选择题解答方法和技巧的了解,往往用最常规的方法去做,不但计算量大,浪费时间,还很容易出错,有时甚至得不出结论。
考研数学选择题的解题技巧(精选20篇)篇十五
如果这套题看起来有很多陌生的题,也不要心慌。有些试题万变不离其宗,只要仔细思考就会产生思路。小编提醒考生,大家在考试过程中要合理掌握时间。如果一道考题思考了大约有二十分钟仍然没有思路,可以先暂时放弃这道题目,不要在一道试题上花费太多的时间,导致最后没有时间去做会做的考题。选择题和填空题一般4分钟左右做一道,整个选择题、填空题的时间控制在55分钟到65分钟,解答题平均一道题10分钟左右,90分钟做完解答题,一般前面两个大题难度不会特别大,时间可以比这个时间少。
当确实没有思路的时候要暂时放弃,如果放弃的是一道选择题,建议大家标记一下此题,防止因此题使答题卡顺序涂错,如果时间充足还可再做。但是,标记要慎重,以免被视为作弊,可以用铅笔标记,交试卷之前用橡皮察去。小编提醒考生,如果解答题有两问,第一问做不上,可以把第一问当作已知条件,先完成第二问,这叫调补解答。如果在时间允许的情况下,经过努力而攻下了中间难点,可在相应题尾补上。
在做题顺序上可以采用选择、填空、计算、证明的顺序。完成选择填空后,做大题时,先通观整个试题,明确哪些分数是必得的,哪些是可能得到的,哪些是根本得不到的,再采取不同的对应方式,才能镇定自如,进退有据,最终从总体上获胜。比如说,如果对概率部分的题比较熟悉,那么这部分的题做题就是有套路,那就可以先把概率部分做了。小编提醒考生,通常来说,概率部分是三门课中最简单最好拿分的。其次就是线代了,当然线代两个大题可能有一个难度稍微大一点,另外一个难度相对比较小,那么你可以选择把其中简单一点的,自己有思路的那题先做了。最后再来做高数部分的.题,高数一共有5个大题,如果是数一的同学,出现难题通常是在无穷级数,中值定理,曲线、曲面积分,应用题。也就是说高数部分有一道大题是相对简单的,可以先把这道题做了,通常这道题也就是在大题的第一题。就是说,这5道大题,一定要先把分给拿住了。最后再来解决稍微难一点的。当然剩下的几个题,也要有选择性的来做,如果有一点思路的,可以先考虑,完全没有思路的最后处理。
考研数学选择题的解题技巧(精选20篇)篇十六
定义:直接从题设条件出发,运用有关的概念、定义、公理、定理、性质、公式等,使用正确的解题方法,经过严密的推理和准确的运算,得出正确的结论,然后对照题目中给出的选择项“对号入座”,作出相应的选择,这种方法称之为直接法.是一种基础的、重要的、常用的方法,一般涉及概念、性质的辨析或运算较简单的题目常用直接法.
定义:利用选择题的特征:答案唯一,来去伪存真,舍弃不符合题目要求的错误答案。途径有二种:
1)从已知条件出发,通过观察分析或推理运算各选项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论,这种方法称为排除法.
2)从选项入手,根据题设的条件与选项的关系,通过分析、推理、计算、判断,对选项进行筛选,逐步缩小范围,得到正确结果.称为反排法.
排除法常应用于条件多于一个时,先根据一些已知条件,在选择项中找出与其相矛盾的选项,予以排除,然后再根据另一些已知条件,在余下的选项中,再找出与其矛盾的选项,再予以排除,直到得出正确的选项为止.
定义:根据题目的条件和要求,将题目等价转化为一个容易解答的方式进行解决。在解决有关排列组合的的应用问题尤为突出.
定义:根据题目中涉及到的知识的定义出发进行解答,因此回归定义是解决问题的一种重要策略.
总结:要注意定义的成立条件或约束条件,平时要掌握定义的推导和证明过程.
定义:通过平时的练习积累,可根据直觉对题目中的答案进行判断.比如一个长方形面积最小时,长与宽的关系是什么样的?二点间的直线距离最短等.
要点:需要平时多积累、多观察、多总结.
考研数学选择题的解题技巧(精选20篇)篇十七
“内紧外松”,集中注意,消除焦虑怯场。
集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
提高解选择题的速度、填空题的准确度。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。
通过一个既有的模型,数学结论,物理实验,物理现象,通过列举简化,或者给出相关信息,来达到可以用教材知识思考的程度,有时候干脆直接出成理想实验题目或者资料类题目,这类题目往往突出的是细节,因为元素众多。
解题过程中卡在某一过渡环节上是常见的,这时可以先承认中间结论,往后推,看能否得到结论。若题目有两问,第(1)问想不出来,可把第(1)问当作“已知”,先做第(2)问,跳一步解答。对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.顺向推有困难就逆推,直接证有困难就反证。
“以退求进”是一个重要的解题策略,对于一个较一般的问题,如果一时不能解决所提出的问题,那么可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从参变量退到常量,从较强的结论退到较弱的结论。总之,退到一个能够解决的问题,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。
认真审题。
审题要仔细,关键字眼不可疏忽。不要以为是“容易题”“陈题”就一眼带过,要注意“陈题”中可能有“新意”。也不要一眼看上去认为是“新题、难题”就畏难而放弃,要知道“难题”也可能只难在一点,“新题”只新在一处。
审题要认真仔细。
对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。
熟悉习题中所涉及的内容。
解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。
正确的心态。
其实对于所有认真复习迎考的同学来说,都有能力与实力在压轴题上拿到一半左右的分数,要获取这一半左右的分数,不需要大量针对性训练,也不需要复杂艰深的思考,只需要你有正确的心态!信心很重要,勇气不可少。同学们记住:心理素质高者胜!
千万不要分心。
专心于现在做的题目,现在做的步骤。现在做哪道题目,脑子里就只有做好这道题目。现在做哪个步骤,脑子里就只有做好这个步骤,不去想这步之前对不对,这步之后怎么做,做好当下!
重视审题。
你的心态就是珍惜题目中给你的条件。数学题目中的条件都是不多也不少的,一道给出的题目,不会有用不到的条件,而另一方面,你要相信给出的条件一定是可以做到正确答案的。所以,解题时,一切都必须从题目条件出发,只有这样,一切才都有可能。
审题要慢,做题要快,下手要准。
题目本身就是破解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。
保质保量拿下中下等题目。
中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。
要牢记分段得分的原则,规范答题。
会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。
以上就是高考数学解题技巧,高中数学做题技巧的相关建议,希望能帮助到您!
考研数学选择题的解题技巧(精选20篇)篇十八
技巧说明:
分析法就是对有关概念进行全面、正确、深刻的理解或对有关信息提取、分析和加工后而作出判断和选择的方法。
(1)特征分析法——根据题目所提供的信息,如数值特征、结构特征、位置特征等,进行快速推理,迅速作出判断的方法,称为特征分析法。
(2)逻辑分析法——通过对四个选择支之间的逻辑关系的分析,达到否定谬误支,选出正确支的方法,称为逻辑分析法。
考研数学选择题的解题技巧(精选20篇)篇十九
考研数学试卷主要有三大题型,分别为选择、填空与计算。而数学这一科目更适合实践出真知,只有大量练习把知识点应用起来,才能培养好解题技巧。在这里帮帮与大家分享考研数学三类题型的解题技巧,以供参考。
从历年真题来看,选择题主要考查的是考生对基本的数学概念、性质的理解,要求考生能进行简单的推理、判断、计算和比较即可。
其难度一般都是适中的,均为中等难度,很少出现偏题怪题,但也不是能一眼就能看出选项的。因此还是要依靠扎实的知识得分,不可抱着侥幸心理,觉得运气好就能得高分。
选择题属于客观题,答案是唯一的,其他三项都是干扰项,大家做题时一定要认真,选错了就不得分了。常用的方法有代入法、排除法、图示法、逆推法、反例法等。如果实在解不出来,只能靠猜测了,但只有四分之一的机会,并不建议使用。
填空题和选择题一样,没有步骤分,即使计算过程再精彩,最后答案数字写错了,前面的努力也算白费了。因此,每年这部分很多考生都失分严重,需要引起大家的重视。
填空题一般是需要一定技巧的计算,但不会有太复杂的计算题。题目的难度与选择题不相上下,也是适中。填空题总共有6个,一般高数4个,线代和概率各1个,主要考查的是考研数学中的三基本:基本概念、基本原理、基本方法以及一些基本的性质。做这24分的题目时需要认真审题,快速计算,并且需要有融会贯通的知识作为保障。
解答题的分值很大,甚至占了总分的百分之六十以上,类型也较复杂,有计算题、证明题、实际应用题等,并且一般情况下每道大题都会有多种解题方法或者证明思路,有的甚至有初等解法,得分率不容易控制。解题时应注意以下几点:
(1)做解答题时尽量用与考研数学的考试大纲中规定的考试内容和考试目标相一致的解题方法和证明方法,每一步的表述要清楚,每题的分值与完成该题所花费的时间以及考核目标是有关系的。
(2)解答题的综合性较强、推理过程较多、或者应用性的'题目,分值较高。基本的计算题、常规性试题和简单的应用题分值较低。解答题属主观题,其答案有时并不唯一,要能看到出题人的考核意图,选择合适的方法解答该题。
(3)计算题的正确解答需要靠自己平时对各种题型计算方法的积累及掌握的熟练程度。如二元函数求最值的方法和步骤,曲线积分、曲面积分的计算方法及其与重积分的关系,以及格林公式、高斯公式等,重积分的计算方法及一些特殊结论(如积分区域对称,被积对象具有一定的奇偶性时的情形)等都需要非常熟悉。
(4)证明题是大多数考生感到无从下手的题目,所以一些简单的证明题在考试中也会得分率极低。证明题考查最多的是中值定理(微分中值定理及积分中值定理),其次从题型来说就是不等式的证明,方法却比较多,但仍然是有章可寻的。
这就需要考生在平时多留意证明题的类型及其证明方法。解答题除考查基本运算外,还考查考生的逻辑推理能力和综合运用能力,这需要考生在复习的过程中不断的加强与提高。
不求暖心,只想来点实在的。来帮学堂刷视频,用实力搞定考研。
考研数学选择题的解题技巧(精选20篇)篇二十
单项选择题重点考查考生对基本概念、基本性质、基本定理的理解与掌握的程度,运算量相对较小,像等价无穷小、二重积分的对称性、积分上限函数的图象、过渡矩阵、伴随矩阵、随机变量的数字特征、分布函数等问题,只要掌握基本概念和性质就可解决。这一部分内容只要基本功扎实,顺利拿下不成问题。但8道题目中偶尔会出现一道具有一定难度的单选题,建议如果一时没有思路也不要过多浪费时间,灵活调控作答时间。
复习攻略:
强化对基础知识的掌握。
回顾基本概念、性质、定理等基础知识时,既要对相关知识点的内涵理解准确,也要注意其外延;及时整理、定期翻看与常见考点(如涉及到极限、函数的连续性、可导性、可积性等)有关的结论及反例,避免在考试中因为对某一命题的判断失误而丢分。
四选一的形式决定了选择题的作答具有较高的技巧性,也就是说,并不是每一道题目都需要我们按部就班从头开始算起直至选出正确的一项。当遇到的题目用直接求解的方法较为困难时,运用一些特殊的答题技巧,如赋值法、排除法、逆推法、数形结合等,很可能会用最短的时间获得正确答案。像蔡老师《考研数学全真模拟试卷及精析》试卷(四)的第4道选择题,涉及到导函数的图象,利用排除法,在一分钟之内就可以得到正确选项了。