教学工作计划的制定应充分考虑学生的学习特点和学习需求。下面是一份经过多年实践验证并取得良好成效的教学工作计划分享给大家。
数学教案长方体和正方体的体积(优质17篇)篇一
3.培养学生归纳推理,抽象概括的能力.。
教学重点。
教学难点。
教学用具。
教具:1立方厘米的立方体24块,1立方分米的立方体1块.。
学具:1立方厘米的立方体20块.。
教学过程()。
一、复习准备.。
1.提问:什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.。
教师提问:拼成了一个什么形体?(长方体)。
这个长方体的体积是多少?(4立方厘米)。
你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)。
如果再拼上一个1立方厘米的正方体呢?(5立方厘米)。
谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们。
将本文的word文档下载到电脑,方便收藏和打印。
数学教案长方体和正方体的体积(优质17篇)篇二
3.培养学生归纳推理,抽象概括的能力.。
教学重点。
教学难点。
教学用具。
教具:1立方厘米的立方体24块,1立方分米的立方体1块.。
学具:1立方厘米的立方体20块.。
教学过程。
一、复习准备.。
1.提问:什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.。
教师提问:拼成了一个什么形体?(长方体)。
这个长方体的体积是多少?(4立方厘米)。
你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)。
如果再拼上一个1立方厘米的正方体呢?(5立方厘米)。
谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们。
数学教案长方体和正方体的体积(优质17篇)篇三
教学目的。
1.使学生认识长方体的特征,初步掌握长方体的概念,建立和发展初步的空间观念。
2.培养学生动手操作和观察的能力。
3.通过学生的实践活动,培养学生学习数学的兴趣。
教学过程。
一、复习。
教师:我们已经学习了一些平面图形,都有哪些图形呢?
二、新授。
1.导入。
教师出示教具,导入新课。
(1)学生拿出自己准备的长方体。
(2)研究长方体的特征。
(3)认识长方体的立体图形。
3.教学例2。
三、巩固练习。
1.下列图中哪些是长方体,哪些不是长方体,是长方体的指出它的长、宽、高。
2.判断题。
(1)相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。()。
(2)长方体有可能相邻的两个面的面积相等。()。
(3)长方体的每一个面一定是长方形。()。
3.说出下面长方体的长、宽、高各是多少厘米?
四、家庭作业:第23页第1、2、3题。
教学目的。
2.培养学生观察、比较、抽象概括的能力。
3.渗透事物是相互联系、发展变化的辩证唯物主义观点。
教学过程。
一、复习。
1.长方体有()个面,()条棱,()个顶点。长方体的6个面一般都是()形,也有可能有两个相对的`面是()形,()面积相等;()长度相等。
2.有一个长方体,长5分米,宽3分米,高2分米,它所有棱的棱长之和是()。
二、新授。
1.展示动画图像:
(1)将长方体的较长边缩短,使长、宽、高都相等。
(2)将长方体的较短边延长,使长、宽、高都相等。
2.观察学具正方体。
3.继续展示动画图像,进一步明确:
(1)正方体的六个面是完全相同的正方形;
(2)正方体的12条棱长度相等;
(3)有8个顶点。
5.填表。
三、巩固练习。
1.判断题。
(1)正方体的六个面面积一定相等。()。
(2)相交于一点的三条棱相等的长方体一定是正方体。()。
2.一个正方体每条棱长3分米,它的棱长之和是多少分米?
3.用一条长48厘米的铁丝折成一个正方体的框架,这个正方体的棱长是多少厘米?
四、家庭作业:第23页4――10题。
数学教案长方体和正方体的体积(优质17篇)篇四
1、进一步掌握体积、容积单位之间的进率,并能比较熟练地进行化聚。
2、能根据有关体积、容积的计算方法,解答实际问题。
能比较熟练地进行化聚,并能根据有关体积、容积的计算方法,解答实际问题。
458立方厘米=()立方分米。
20.6立方分米=()立方米。
7060毫升=()升=()立方分米。
130毫升=()立方厘米=()立方分米。
800升=()立方分米=()立方米。
0.02立方米=()立方分米=()升。
2、一节货车车厢,从里面量长13米,宽2.7米,装的煤高1.2米。如果每立方米煤重1.3吨,这节车厢里装了多少吨煤?(得数保留整数)。
(1)学生独立完成。
(2)说说解题思路。
第一题:18×5=90(立方分米)90(立方分米)=90升。
90×0.74=66.6(千克)。
第二题:13×2.7×1.2=42.12(立方米)。
42.12×1.3≈55(吨)。
第三题:60×60×80=288000(立方厘米)。
2分米=20厘米。
20×20×20=8000(立方厘米)288000÷8000=36(个)。
第四题:9.6×4.2=40.32(平方米)。
9.6×4.2×2.5=100.8(立方米)。
第五题:80×40×(60-10)=160000(立方厘米)。
160000(立方厘米)=160升。
160000÷(40×40)=100(厘米)。
(3)重点分析第5题。
水面离箱口10厘米,说明水的高度是50厘米。从而求出水的容量。再根据底面边长40厘米的长方体水箱,求得水的高度。
1、学生独立研究。
2、小组讨论。
3、教师评议。
数学教案长方体和正方体的体积(优质17篇)篇五
长方体、正方体的体积计算(课本第29~31页的内容,课本第30页的例1及第32页练习七的第5~6题)。
1.通过讲授,引导学生找出规律,总结出体积的公式。
3.培养学生积极思考、探索新知的思维品质。
正方体木块若干。
一、复习导入。
1.什么叫体积?计量物体的体积常用的单位有哪些?
2.怎样计算一个物体的体积呢?
二、新课讲授。
1.长方体体积的计算。
教师课件出示一块长方体积木,一块盖房用的大型砖板。
(1)提问:它们的体积是多少?你是怎样想的?
引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。
教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。
(2)观察操作,探究长方体的体积公式。
小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。
学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。
说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?
学生独立思考,然后小组内讨论交流,得出结论。
小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。
讲述:如果用字母v表示长方体的体积公式可以写成:v=abh。
(3)质疑:求长方体的体积公式需要知道什么条件?
(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。
(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:v=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)。
3.运用长方体的体积公式解决问题。
(1)出示教材第30页的例1。
(2)学生看图,理解题意。
(3)说出题中所给信息,和所求问题。
(4)指名说出长方体的体积公式。
(5)指名学生上台板演过程,其他同学判断。
(6)老师订正书写。v=abh=7×4×3=84(cm3)。
(7)看图,学生独立在练习本上完成。
(8)指名板演,集体订正。
三、课堂作业。
完成课本第31页“做一做”第1、2题。
四、课堂小结。
1.这节课,你有什么收获?
五、课后作业。
完成练习册中本课时练习。
数学教案长方体和正方体的体积(优质17篇)篇六
3.培养学生归纳推理,抽象概括的能力.。
教学重点。
教学难点。
教学用具。
教具:1立方厘米的立方体24块,1立方分米的立方体1块.。
学具:1立方厘米的立方体20块.。
教学过程()。
一、复习准备.。
1.提问:什么是体积?
2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.。
教师提问:拼成了一个什么形体?(长方体)。
这个长方体的体积是多少?(4立方厘米)。
你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)。
如果再拼上一个1立方厘米的正方体呢?(5立方厘米)。
谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们。
数学教案长方体和正方体的体积(优质17篇)篇七
教学内容:
教学目标:
1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。
2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。
教学重点:
正方体和长方体体积的计算方法。
教学难点:
教具:
长、正方体模型、课件、长、正方体形状的纸盒等。
教学过程:
创设情境,导入新课。
出示长方体模型,您能告诉大家这个长方体体积是多少?并说一说是怎样想的吗?
教师演示,学生感知这个长方体模型的体积(每层有4个,共3层,一共是12个),这个长方体的体积就是12立方厘米。
揭示课题:对一些不可以分割的长方体,我们有没有办法计算的他体积呢?(板书:长方体和正方体的体积)。
操作探究,发现规律。
学生按照要求用正方体搭出四个不同的长方体并编号。
让学生观察,并作小组交流。
这些长方体的长宽高各是多少?
用了几个小正方体?不数,你怎样计算小正方体的个数?
长方体的体积是多少?和计算小正方体的个数的'方法比一比。
根据所搭的长方体填表:(表格略)。
根据表格,引导分析,发现规律。
比较每一个长方体的体积,和计算小正方体个数的方法,你能得出什么结论?
再次探索,验证猜想。
出示例题10,让学生摆一摆,再数一数,看看一共用多少个小正方体。
如果让你摆一个长5厘米,宽4厘米,高3厘米的长方体,你能说出要用几个1立方厘米的小正方体吗?学生思考后回答。
引导概括,得出公式。
交流的出结论:
v=abh。
启发引导。
让学生尝试,再交流得出结论:
应用拓展,巩固练习。
做“试一试”
先指名说出长方体的长宽高分别是多少?正方体的棱长是多少,再独立计算。交流时先说说公式,再说说怎样列式。
做“练一练”第1题。
观察题中的图形,说出每个图形的长宽高或棱长,在独立完成。
做“练一练”第2题。
先让学生选择几个式子说说其表示的意思,再口算。
课堂作业:做练习四第2题。
课后作业:
完成练习四第1、3题。
数学教案长方体和正方体的体积(优质17篇)篇八
一、填空:
1、叫体积。
2、长方体体积公式是:;用字母表示:
3、正方体体积公式是:;用字母表示:
4、一个正方体棱长5厘米,它的棱长和是,表面积是,体积是。
5、一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是占地面积是,表面积是,体积是。
6、一个长方体方钢,横截面是边长4厘米的正方形,长2分米,体积是立方厘米。
7、一个长方体水池占地24平方米,深3.5米,它能蓄水立方米。
8、一个长方体木料,长4米,如果把它截3段,表面积增加24平方分米,这根木料的.体积是。
9、用棱长3厘米的小正方体拼成一个大正方体,至少需这样的小正方体块。
10、将一个长2米,宽3分米,高2.6分米的长方体木料,将它平均截成两段,表面积增加平方分米。
二、操作题:
右图是长方体展开图,测量所需数据,并求长方体体积。(取整厘米)。
三、解决问题。
1、一个无盖的长方体金鱼缸,长8分米,宽6分米,高7分米。制作这个鱼缸共需玻璃多少平方分米?这个鱼缸能装水多少升?(玻璃厚度忽略不计)。
数学教案长方体和正方体的体积(优质17篇)篇九
教学目标:
1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,解决一些简单的实际问题。
2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。
3、培养学生动手操作、抽象概括、归纳推理的能力。教学。
教学重点:
使学生理解长方体的体积公式的推导过程,掌握长方体体积的计算方法。
教学难点:
理解长方体的体积公式的推导过程。
课前准备:
小正方体若干个教法学法合作法、讨论法。
教学过程:
教学环节第一次备课动态修改。
一、复习导入。
这节课我们就来学习长方体的体积的计算。(小本的字典,体积小)。
(分割成若干个小正方体,再比较,求长方体的体积就是求长方体所含有多少个这样的体积单位。)。
二、概括公式。
1、学生猜想。
一个物体的大小和什么有关呢?
(1)长、宽相等的时候,越高,体积越大。
(2)长、高相等的时候,越宽,体积越大。
(3)高、宽相等的时候,越长,体积越大。
与长、宽、高都有关系。
2、动手实践操作。
这个猜想正确吗?下面就请同学们通过实验去验证我们的猜想是否正确。
课件出示记录表。(课本29页)。
(1)提出小组合作要求。
请同学们小组合作,用你们手中的1立方厘米小正方体拼成形状不同的长方体,每拼成一种就记录下它的长、宽、高和体积各是多少,然后计算出来验证刚才的猜想是否正确。
(2)小组合作学习。
(3)小组派代表汇报。
生:把4个正方体摆成1排,每排4个,摆1层。这个长方体的长是4厘米,宽是1厘米,高是1厘米,体积是4立方厘米。
(2)引导学生把计算结果与记录表中的体积进行比较,发现长×宽×高的乘积就是长方体的体积。
板书:v=a×b×h=abh,学生齐读公式。
现在请同学们根据长方体的体积计算公式,在小组内讨论讨论:正方体体积的计算公式是什么?学生小组讨论。
教师追问:你们是怎么想的?
学生:因为正方体是特殊的长方体,当长方体的长、宽、高都相等时,长宽高也就是正方体的棱长。所以正方体的体积=棱长×棱长×棱长。
教师说明用字母表示v=a×a×a=a3。
说明:a3读作a的立方或a的三次方,表示3个a相乘。
学生齐读公式。
5、教学底面积。
三、练习。
1、出示课本30页的例一:生独自完成,集体订正。
2、课本31页做一做。
四、课堂总结。
今天你有哪些收获?还有什么疑问?
板书设计:
v=a×b×h=abhv=a×a×a=a3。
v=s×h=shv=s×h=sh。
例1.v=abhv=a3。
=7×3×4=6×6×6。
=84cm3=216dm3。
数学教案长方体和正方体的体积(优质17篇)篇十
1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,解决一些简单的实际问题。
2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。
3、培养学生动手操作、抽象概括、归纳推理的能力。 教学
使学生理解长方体的.体积公式的推导过程,掌握长方体体积的计算方法。
理解长方体的体积公式的推导过程。
小正方体若干个 教法学法 合作法、讨论法
教学环节 第一次备课 动态修改
这节课我们就来学习长方体的体积的计算。 (小本的字典,体积小)
(分割成若干个小正方体,再比较,求长方体的体积就是求长方体所含有多少个这样的体积单位。)
1、学生猜想
一个物体的大小和什么有关呢?
(1)长、宽相等的时候,越高,体积越大。
(2)长、高相等的时候,越宽,体积越大。
(3)高、宽相等的时候,越长,体积越大。
与长、宽、高都有关系。
大胆猜测长方体的体积怎样计算
学生猜想:长方体的体积=长宽高
2、动手实践操作
这个猜想正确吗?下面就请同学们通过实验去验证我们的猜想是否正确。
课件出示记录表。(课本29页)
(1)提出小组合作要求
请同学们小组合作,用你们手中的1立方厘米小正方体拼成形状不同的长方体,每拼成一种就记录下它的长、宽、高和体积各是多少,然后计算出来验证刚才的猜想是否正确。
(2)小组合作学习
(3)小组派代表汇报
生:把4个正方体摆成1排,每排4个,摆1层。这个长方体的长是4厘米,宽是1厘米,高是1厘米,体积是4立方厘米。
数学教案长方体和正方体的体积(优质17篇)篇十一
1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。
2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。
3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。
一、复习引入。
(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?
(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?
二、学习新课。
探究正方体体积公式:
问:通过计算2号长方体的体积你们发现了什么?
引导学生明确:
(1)这个长方体长、宽、高都相等,实际上它是一个正方体。
(2)正方体体积=棱长×棱长×棱长(板书)。
(3)如果用v表示正方体体积,用a表示它的棱长字母公式为:v=a。
教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:v=a3(板书)。
三、议一议。
如果用s表示底面积,上面的公式可以写成:
v=sh。
四、巩固练习。
计算下面图形的体积。
板书设计:
正方体体积=棱长×棱长×棱长长方体(或正方体)的体积=底面积×高。
v=a3v=sh。
数学教案长方体和正方体的体积(优质17篇)篇十二
使学生理解长方体和正方体体积的计算公式,初步学会计算长方体和正方体的体积,培养学生实际操作能力,同时发展他们的空间观念。
一、创设情境。
填空:
2、常用的体积单位有:、、。
3、计量一个物体的体积,要看这个物体含有多少个。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)。
二、实践探索。
1.小组学习------长方体体积的计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的小正方块,按第32页的第(1)题摆好。
观察结果:(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)。
431。
含体积单位数:4×3×1=12(个)。
体积:4×3×1=12(立方厘米)。
(3)它含有多少个1立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)。
通过上面的实验,你发现了什么?(可让学生分小组讨论)。
用字母表示:v=a×b×h=abh。
应用:出示例1,让学生独立解答。
2.小组学习——正方体体积的计算。
用字母表示为:v=a3。
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
三、课堂实践。
1.做第34页的“做一做”的第1题。
(1)先让学生标出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做第33页的“做一做”的第2题。
3、做练习七的第4、6题。
四、课堂。
五、课后实践。
做练习七的第5、7题。
数学教案长方体和正方体的体积(优质17篇)篇十三
授课时间:
20__年3月24日。
教学内容:
教学目标:
1、让学生理解长方体和正方体的表面积意义,初步学会长方体表面积的计算方法。
2、通过动手操作、小组合作、观察思考等解决问题的方法,去探求、经历、感受长方体和正方体的表面积概念和长方体表面积计算方法,培养学生的动手操作、观察、抽象概括、探究问题的能力和初步的空间观念。
3、使学生感受到数学与生活的密切联系,培养学生初步的数学应用意识,并在探究过程中获得积极的数学情感体验。
教学重点:
理解长方体、正方体表面积的意义和掌握长方体表面积计算方法。
教学难点:
确定长方体每一个面的长和宽。
教具准备:
课时安排:
第一课时。
教学流程:
一、复习旧知。
1、什么是长方体的长、宽、高?
2、指出长方体纸盒的长、宽、高,并说出长方体有什么特征?正方体有什么特征?
二、创设情境,揭示课题。
同学们,在我们的日常生活中有许多精美的包装盒,工人师傅在制作这些纸盒时至少要用多少纸板呢?这就是我们这节课要研究的主要内容。
板书课题“长方体和正方体的表面积”:当你看了课题以后,你想知道什么?
三、动手操作,建立表象。
1.初步认识长方体的表面积。
2.初步认识正方体的表面积。
请你拿出长方体或正方体纸盒,也用同样的方法剪开,再展开,看看展开后的形状,然后在展开后的图形中,分别用“上”、“下”、“前”、“后”、“左”、“右”标明6个面。
我们知道了什么是长方体和正方体的表面积,怎样计算表面积呢?
四、自主探究。
深化主题。
1、探索活动:长方体的表面积。
2、集体研讨:学生归纳,
老师板书:长方体表面积:长×宽×2+长×高×2+高×宽×2或:(长×宽+长×高+高×宽)×22。出示例1做一个微波炉的包装箱,长0.7米,宽0.5米,高0.4米,至少要用多少平方米的硬纸板?学生独立计算,教师巡视,选择两种算法,指定两名学生上黑板板书,并口述列式计算的依据。
3、小结:计算长方体的表面积,关键是要正确找出3组面中每个面的长和宽。同学们真爱动脑筋,我们计算时可以选择最简便的算法。
4、迁移:把高0.4米改为0.5米,怎样计算?学生讨论,交流汇报:
这是一个特殊的长方体,有两个相对的面是正方形,四个完全一样的长方形(只列算式不计算结果)。
五、优化训练。
勇闯第二关:智力冲浪园。
六、归纳知识,课堂总结。
七、布置作业。
教后反思:
数学教案长方体和正方体的体积(优质17篇)篇十四
1.使学生熟练地掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。
2.培养学生分析、解决问题的能力,以及良好的思维品质。
掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。
能灵活地解决一些实际问题。
课件。
一、复习导入。
1.如果告诉了长方体的长、宽、高,怎样求它的表面积?
2.如果要求正方体的表面积,需要知道什么?怎样求?
二、课堂作业。
完成教材第26页第11~13题。
1.第11题。
(1)分析题目的已知条件和问题。
(2)粉刷教室要粉刷几个面?哪一个面不要粉刷?还要注意什么?
(3)列式解答。
4×[8×6+(8×3+6×3)×2-11.4]。
=4×[48+42×2-11.4]。
=4×120.6=482.4(元)。
答:粉刷这个教室需要花费482.4元。
2.第12题。
这是一道计算组合图形的表面积的题,提醒学生:两个图形重叠部分的面积不能算在表面积里。
分析:前后面的面积是相等的,就是把3个长方体前面的面相加即可。
左右两面也相等,实际上就是求中间这个长方体左右的两个面即可。
=(2200+2600+1600)×2=12800(cm2)。
涂红油漆40×65×2+40×40×3=5200+4800=10000(cm2)。
答:涂黄油漆的总面积为12800cm2,涂红油漆的面积为10000cm2。
3.第13题。
提示:把一个长方体从中间截断,就可以分成两个正方体。
让学生分别计算出长方体的表面积和切后的两个正方体的表面积和,再比较它们的表面积,看有没有发生变化。
小结:截完后,增加了两个截面。所以,两个正方体的表面积大于原来长方体的表面积。
三、课堂小结。
通过这节课的学习,你有什么收获?还有什么问题?
四、课后作业。
完成练习册中本课时练习。
板书设计:
数学教案长方体和正方体的体积(优质17篇)篇十五
1、使学生理解并掌握长方体、正方体表面积的含义和计算方法,能运用长方体和正方体表面积的计算方法解决一些简单的实际问题。
2、使学生在活动中进一步积累探索有关图形问题的学习经验,发展空间观念和数学思考。
3、使学生进一步感受立体图形的学习价值,增强学习数学的兴趣。
理解并掌握长方体和正方体的表面积的计算方法。能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
长方体模型、框架,长方体形状的纸盒等
一、复习准备
谈话:前两节课我们探索了长方体和正方体的基本特征,这节课我们继续学习有关长方体与正方体的知识。
出示长方体和正方体纸盒(与教材中例4和“试一试”同样大小的长方体和正方体)。
提问:长方体有几个面?这几个面之间有什么关系?它们可分为哪几组?正方体呢?
二、探究新知
1.探究长方体表面积的计算方法。
(1)出示问题:如果告诉你这个长方体纸盒的长、宽、高
你能算出做这个长方体纸盒至少要用多少平方厘米硬纸板吗?
在交流中明确:求至少需要多少平方厘米硬纸板,只要算出这个长方体6个面的面积之和。
(3)指名回答是怎样列式的,并相机板书如下算式:
6×4×2+5×4×2+6×5×2; (6×4+5×4+6×5)×2
(4)比较小结:这两种方法都反映了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么? (要根据长方体的长、宽、高,正确找出3组面中相关面的长和宽)
(5)提出要求:用这两种方法计算长方体6个面的面积之和都是可以的。请你用自己喜欢的方法算出结果。
2.探究正方体表面积的计算方法。
(1)谈话:根据长方体的特征我们解决了做长方体纸盒至少需要多少硬板纸的问题。如果纸盒是正方体的,你还会解决同样的问题吗? (出示‘‘试一试’’)
(2)学生独立尝试解答。
(3)组织交流反馈,提醒学生根据正方体的特征进行思考。
3.揭示表面积的含义。
谈话:刚才我们在求做长方体和正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,长方体(或正方体)6个面的总面积,叫做它的表面积。
三、应用拓展
1.做“练一练”。
先让学生独立计算,再要求学生结合自己的列式和题中的直观图具体说明思考的过程。
2.做练习四第1题。
让学生看图填空,再要求同桌同学互相说说每个面的长和宽,并核对相应的面积计算是否正确。
3.做练习四第2题。
让学生独立依次完成题中的两个问题,适当提醒学生运用第(1)题的结果来解答第(2)题,并要求学生说说用这样的方法求表面积的根据。
4.做练习四第5题。
让学生根据表中列出的各组数据对每一个物体是长方体还是正方体作出判断,并说明判断的理由;再让学生独立计算,并将结果填人表中。最后引导学生比较求长方体的表面积与求正方体表面积的过程和方法,说说求长方体或正方体表面积时各要注意什么。
四、全课小结
五、布置作业
做练习四第3、4题。补充习题相关内容
1.探究长方体表面积的计算方法。
(1)出示问题:如果告诉你这个长方体纸盒的长、宽、高
你能算出做这个长方体纸盒至少要用多少平方厘米硬纸板吗?
在交流中明确:求至少需要多少平方厘米硬纸板,只要算出这个长方体6个面的面积之和。
(3)指名回答是怎样列式的,并相机板书如下算式:
6×4×2+5×4×2+6×5×2; (6×4+5×4+6×5)×2
(4)比较小结:这两种方法都反映了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么? (要根据长方体的长、宽、高,正确找出3组面中相关面的长和宽)
(5)提出要求:用这两种方法计算长方体6个面的面积之和都是可以的。请你用自己喜欢的方法算出结果。
修改之处:
数学教案长方体和正方体的体积(优质17篇)篇十六
1.初步认识正方体、长方体,感知它们的特征。
2.能运用观察、比较的方法认识形体。
3.在活动中体验帮助别人的快乐。
4.知道按事物不同的特征进行排序会有不同的结果,初步了解排序的可逆性。
5.提高逻辑推理能力,养成有序做事的好习惯。
各种正方体、长方体积木及玩具。
一、通过小故事,引起幼儿的兴趣。
师:今天老师接到一个电话,前几天森林里刮大风,把小兔子家的房子吹倒了,小兔子非常着急,怎么办呢?(小朋友帮助小兔搭房子)二、引导幼儿观察搭房子的材料--积木,认识正方体、长方体。
2.请每个幼儿拿一块积木,看一看、摸一摸自己拿的积木是由什么图形组成的?(先让幼儿自由讲讲,再请个别幼儿回答)(二)引导幼儿数一数手里的积木一共有几个图形组成。
1.师:有的小朋友的积木是由长方形组成的,有的小朋友的积木是由正方形组成的,也有的小朋友的积木是由长方形和正方形组成的,你能告诉我,你的积木上一共有几个图形吗?(幼儿数,老师观察)2.请用不同方法数的幼儿倒前面来示范数。
3.全体幼儿用与刚才不同的方法再次数数。
(三)引导幼儿观察每个面的形状。
2.小结:由六个长方形或四个长方形、两个正方形组成的形体是长方体,由六个一样大的正方形组成的形体是正方体。
三、帮小兔子搭房子。
1.师:现在,就请小朋友用这些材料来搭房子吧,要搭得既坚固又漂亮。(幼儿建构房子)
2.参观房子,说一说搭房子的积木是什么形体的?
四、迁移经验,运用自己感知的正方体、长方体的特征判断自己的礼物是什么形体。
2.分别请拿正方体礼物的幼儿和拿长方体礼物的幼儿到前面来,其它幼儿检查是否正确。
五、活动延伸请幼儿课后在幼儿园、在家里找一找,有哪些东西也是正方体和长方体的,然后告诉小朋友和老师。
本节课我通过比较法、观察法、对比法,让幼儿能直观看到形与体的区别和本质联系,从而了解平面和立体的不同,感知各自的特点,从而解决活动的重难点使活动有效开展。活动开展中,幼儿兴趣浓厚,经过操作比较,能大胆表达形与体的区别,知道体是在形的基础上构成的,而且在拓展环节,幼儿能拓展思维,积极表述生活中那些物品是正方体的,使经验知识得到了进一步的内化。
数学教案长方体和正方体的体积(优质17篇)篇十七
(二)学习新课。
教师出示长方体教具,用手摸一下前面(面对学生的面),说明这是长方体的一个面,这个面的大小就是它的面积;再用手摸一下左边的面,说它也是长方体的一个面,它的大小是它的面积。
教师:长方体有几个面?学生:6个面。
教师用手按前、后,上、下,左、右的顺序摸一遍,说明这六个面的总面积叫做它的表面积。
请学生拿着自己准备的长方体盒子也摸一摸,同时两人一组相互说一说什么是长方体的表面积。
再请同学拿着正方体盒子,两人一组边摸边说什么是正方体的表面积。
学生讨论。(把六个面展开放在一个平面上。)。
教师演示:把长方体盒子、正方体盒子展开,剪去接头粘接处,贴在黑板上。也请每位同学把自己准备的长、正方体盒子的表面展开铺在课桌上。
教师:请再说一说什么是长、正方体的表面积。(学生口答。)。
2.长方体表面积的计算方法。
学生四人一组边操作边讨论后归纳:
请同学用自己的展开图练习找各面的长宽。然后再请一两位同学上讲台,指出黑板上展开图中相等的面和对应的长和宽。
3.正方体表面积的计算方法。
(1)教师:看看自己的正方体表面展开图,能说出正方体的表面积如何求吗?
(2)试解下面的题。
例2(投影片)一个正方体纸盒,棱长3厘米,求它的表面积。
请同学们填在书上,一位同学板书:
32×6。
=9×6。
=54(厘米2)。
答:它的表面积是54厘米2。
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面。列式:32×5。
教师:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。
(3)练习:课本p26做一做。(请两位同学写投影片,其余同学做本上。)。
用学生投影片集体订正。
(三)巩固反馈。
课堂教学设计说明。
本节新课教学分为三部分。
第三部分教学正方体表面积的计算方法。
板书设计。