教案模板需要具备明确的教学步骤和详细的教学内容,在实施教学时可以更加有条不紊地进行。下面是一些小编为大家精选的教案模板范文,希望能够为您的教学工作提供一些有益的参考。
最新教学设计原理说课稿(优秀17篇)篇一
1.使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。
2.体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。
一、创设情境,复习旧知。
1、出示复习题:
师:老师这儿有一个问题,不知道哪位同学能帮助解答一下?
2、课件出示:把3个苹果放进2个抽屉里,总有一个抽屉至少放2个苹果,为什么?
3、学生自由回答。
二、教学例2。
(1)组织学生读题,理解题意。
教师:你们能猜出结果吗?
组织学生猜一猜,并相互交流。
指名学生汇报。
学生汇报时可能会答出:只摸4个球就可以了,至少要摸出5个球……。
教师:能验证吗?
教师拿出准备好的红球及蓝球,组织学生到讲台前来动手摸一摸,验证汇报结果的正确性。
2、组织学生议一议,并相互交流。再指名学生汇报。
教师:上面的问题是一个抽屉问题,请同学们找一找:“抽屉”是什么?“抽屉”有几个?
组织学生议一议,并相互交流。
指名学生汇报,使学生明确:抽屉就是颜色数。(板书)。
教师:能用例1的知识来解答吗?
组织学生议一议,并相互交流。
指名学生汇报。
使学生明确:只要分的物体比抽屉多,就能保证总有一个抽屉至少放荡2个球,因此要保证摸出两个同色的球,摸出球的数量至少要比颜色的种数多一。
(3)组织学生对例题的解答过程议一议,相互交流,理解解决问题的方法。
学生不难发现:只要摸出的'球比它们的颜色种数多1,就能保证有两个球同色。
3、做一做。
第1题。
1、独立思考,判断正误。
2、同学交流,说明理由。其中“370名学生中一定有两人的生日是同一天”与例1中的“抽屉原理”是一类,“49名学生中一定有5人的出生月份相同”则与例2的类型相同。教师要引导学生把“生日问题”转化成“抽屉问题”。因为一年中最多有366天,如果把这366天看作366个抽屉,把370个学生放进366个抽屉,人数大于抽屉数,因此总有一个抽屉里至少有两个人,即他们的生日是同一天。而一年中有12个月,如果把这12个月看作12个抽屉,把49个学生放进12个抽屉,49÷12=4……1,因此,总有一个抽屉里至少有5(即4+1)个人,也就是他们的生日在同一个月。
三巩固练习。
完成课文练习十二第1、3题。
四、总结评价。
1、师:这节课你有哪些收获或感想?
五、布置作业。
3、拓展练习(选做)。
最新教学设计原理说课稿(优秀17篇)篇二
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
一、问题引入。
1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。
2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?
游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
二、探究新知。
(一)教学例1。
师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。
板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。
问题:
(1)“总有”是什么意思?(一定有)。
(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)。
学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的.1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)。
总结:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。
2.完成课下“做一做”,学习解决问题。
问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?
(1)学生活动—独立思考自主探究。
(2)交流、说理活动。
引导学生分析:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。
总结:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。
(二)教学例2。
(留给学生思考的空间,师巡视了解各种情况)。
2.学生汇报,教师给予表扬后并总结:
总结1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。
总结2:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。
问题:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?用“商+2”可以吗?(学生讨论)。
引导学生思考:到底是“商+1”还是“商+余数”呢?谁的结论对呢?(学生小组里进行研究、讨论。)。
总结:用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。
师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
(三)学生自学例题3并进行自主交流,试着用手中的用具模拟演示场景。
三、解决问题。
四、全课小结。
将本文的word文档下载到电脑,方便收藏和打印。
最新教学设计原理说课稿(优秀17篇)篇三
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的`灵活应用感受数学的魅力。
经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。
2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?
游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
最新教学设计原理说课稿(优秀17篇)篇四
师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。
板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。
问题:
(1)“总有”是什么意思?(一定有)。
(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)。
学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的'枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)。
总结:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。
问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?
(1)学生活动—独立思考自主探究。
(2)交流、说理活动。
引导学生分析:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。
总结:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。
最新教学设计原理说课稿(优秀17篇)篇五
《义务教育课程标准实验教科书·数学》六年级下册第68页。
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。
3. 通过“抽屉原理”的灵活应用感受数学的魅力。
经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
每组都有相应数量的盒子、铅笔、书。
最新教学设计原理说课稿(优秀17篇)篇六
1、理解文章的内容,把握作者的思想感情。
2、培养学生对本文的深层挖掘能力,重新认识生命及人与周围生物的关系等问题。
【教学重点、难点】。
1、本课的重点在于理解老树的命运。
2、难点在于从老树的命运中挖掘作者更深刻的意图。
教师试图从老树的特点、功用入手,探究老树的命运,进一步理解生命的意义及对都市文明与自然界共同发展等问题的深层思考。
一课时。
【辅助教具】。
多媒体课件。
一、创设情境导入课文。
最新教学设计原理说课稿(优秀17篇)篇七
各位专家评委,各位老师,您们好!
我叫杨淑芳,来自武当中学.很高兴能参加这次优质课竞赛,并得到您们的指导。今天我说课的内容是人教版义务教育课程标准实验教科书《语文》九年级下册第10课《那树》。下面我就从教材分析;教学目标的确定;教学重点、教学难点的分析;教学方式、方法;教学过程设计这五个方面把我的理解和认识作一个说明。
一、教材分析。
这篇课文是台湾著名散文家王鼎钧的名作,曾得到许多专家的好评,而且这篇散文丰富的思想性和较高的艺术性,值得我们认真揣摩品味、欣赏。本文不仅是一篇非常好的语文学习材料,同时也是一篇认识自然、透视人与自然关系的教科书,其中的思想价值、情感价值、审美价值、文学价值等都值得我们认真学习和运用发挥。
这篇散文通过描写一棵大树长年造福于人类又最终被人类伐倒的故事,表达了作者对大树命运的痛惜,以及对人与自然的关系的深层思考和深重的感慨。文章写作思路清晰、明澈,语言生动、老练、简洁,描写性和形象性很强,语言富有表现力,感染力,感情色彩强烈,表情达意含蓄,使文章意味深长,字里行间流露着作者对大树的同情以及对人类罪恶行径的批判与憎恶。本文在语言、写作思路等方面都值得学生品味学习,其中对学生的思想教育意义尤为深远。
二、教学目标的确定。
《语文新课标》明确指出“确定目标要有科学性,要注重学生知识的掌握,能力的培养,情感体验的提高,提高学生的语文素养。”因此,我依据九年级学生认知规律我确立如下目标:
知识目标。
1.把握树的价值、品格及其命运,理解作者的思想情感。
2.体会比喻、拟人等修辞的表达效果。
3.正确认识人与自然的关系。
能力目标。
1.整体把握课文内容,探究课文的主旨。
2.理解托物寓意的创作手法,品味文章的艺术性,逐步培养学生的散文鉴赏能力。
3.揣摩语言,体味关键语句的深层含义,培养语感,并感受老树命运的悲剧色彩。
三、教学重点、教学难点的分析。
根据本文的内容与《新课标》要求,我把品味文章的语言,体会作者的思想感情,培养学生的自主学习能力及理解分析能力、让学生体会比喻、拟人等修辞方法的妙处同时揣摩语言,正确认识人类发展与自然的关系,树立环保意识,作为文章的教学重点。根据学生的实际情况把揣摩关键语句,体味作者痛苦、悲悯、愤激的情感,感受老树命运的悲剧色彩作为文章的教学难点。
四、教法和学法。
1、教法:《新课标》教学建议指出:“要注重创设情境,激发学生学习语文的兴趣。”“阅读教学是学生、教师、文本之间对话过程”。我利用富有感染性的语言、图片以及歌曲创设情境。
(1)用情境激趣法激活学生的情感。例如在课前:用歌曲好大一棵树和一幅鲜活的大树将学生引入情境中去。
(2)朗读教学法使学生通过朗读感悟获得的体验也是不可忽视的,因此我采用了朗读教学法,重点语句要多读,从而获得深刻理解,如朗读大树被杀戮的的精彩语句时,重点让学生体味“咬”、“嚼碎”等词语所渗透的作者的思想情感。
(3)对话讨论教学法。引导学生与文本对话,从而起到桥梁的作用,让学生处于积极思考的过程中,调动学生的学习积极性,步步深入课文,由整体感知到引发深入思考。如:你认为那是一棵怎样的树?他有怎样的特点和品格?文章表达了作者怎样的思想感情?让学生通过自己阅读课文说出自己的情感体验。在教学中我注重延伸拓展,充分发挥学生的想象力,培养学生的创造性的思维。如:如果你是那位交通专家你会怎样做?如此,可以充分发挥学生的主观能动性,发挥其想象力和创造性的思维。
2、学法:《语文新课标》在教学建议中明确指出:教师应该改变学生的学习方式,让学生自主学习,快乐的学习,让学生会学,因此在教学中我注重学生的学法指导,如朗读指导,学生自主合作交流学习方式的指导,提高自主学习的能力。学生分小组讨论,合作探究,在讨论交流中获得知识,得到审美体验的同时提高学习能力。
本节课分为新奇导入,赏析课文,布置作业三部分完成,赏析课文又通过“那树”(老树的价值,品格)“那命运”(对树不公的判决)(感受老树命运的悲剧色彩“那未来”(美好的展望)逐步归结文章主旨。教学过程可总结为新奇导入,激活感点;夯实基础,文海拾贝;合作探究,见仁见智;实战演习,学以致用四点。
(一)新奇导入,激活感点。
音乐最能扯出人普遍的情感体验,所以上课伊始我利用课件播放歌曲《好大一棵树》和一幅茂盛的大树图片,同时用“绿色象征着生命”,使学生能立刻投入到课堂。把课文内容情节以消息形式呈现给学生并提出问题,既新颖使讲析课文层次清晰又创设悬念激发学生求知欲。
(二)夯实基础,文海拾贝。
首先,从那是一棵怎样的树,因为第几段写到什么?这一问题中把握树的价值、品格到得出“树为人奉献”,从而提高学生分析问题,总结归纳能力,激发学生无限的审美意识。再次,在人是如何屠杀树的?屠杀是如何进行的?一系列问题中通过找重点词语并积累,体会拟人、比喻修辞手法的`妙处让学生了解并掌握,夯实基础,避免看似一节很成功的课堂却导致一部分学生连基础的都没有掌握的后果。之后,自己和学生深情的阅读激活学生体验,在美文中感受语言的魅力。让学生有意识的注意散文体裁的语言美,品析鉴赏本文的修辞美、感受悲剧色彩、奇幻色彩。
(三)合作探究,见仁见智。
通过屠杀者对树的残忍,分几个步骤进行?表现了作者怎样的思想感情?这一问题的自主探究与合作交流,重在培养学生对树的悲剧的个性感悟基础上的个性表达能力,同时在教学中我注重延伸拓展设计如果你是那位交通专家你会怎样做?这一问题的合作探究鼓励学生各抒己见,充分发挥学生的主观能动性,充分发挥学生的想象力,培养学生的创造性的思维。最后,为揣摩文章的主旨播放四幅环境被破坏的图片加上“人类仅仅毁掉的是一棵树吗?”的问题,发人深省在学生各抒己见后归结文章主旨。
(四)实战演习,学以致用。
在学生感受到王鼎钧散文艺术魅力的同时,选择啊,呀,哦,哎,喂等词写几句话,此重在培养学生对文字的感悟与理解能力基础上的语言表达能力,同时也为了进一步归结文章主旨,引导学生联系生活,关注身边绿色,增强环保意识,树立科学发展观,结合现实阐述社会发展的同时,我们人类到底该怎样处理发展与环保的矛盾,让我们和大自然和谐共处。
(五)板书设计:
要让学生对一堂课的结构和内容及主题思想有一个明确扎实的印象,我在板书设计上力求简洁、新颖,令学生一目了然又铭记于心。
(六)布置作业。
布置作业:作为课堂教学的评价延续,既提高学生的写作能力又让学生进一步了解人类文明的进步与自然生态之间的矛盾,认识保护自然环境的必要性和重要性,增强环境保护的责任感和紧迫感。
总之,在《那树》课堂教学中,我依照《语文教学大纲》要求,把《语文新课程标准》的精神科学有效的贯彻到实际教学活动中去,把学生作为教学的主体,创设情境调动学生的学习积极性,充分发挥学生的学习主动性和能动性,采用朗读法、讨论法,点评法,注重合作探究,力求使学生在语文学习中掌握知识和提高语文素养能力,认识生命与自然等方面都有所收获。
谢谢大家!
最新教学设计原理说课稿(优秀17篇)篇八
《义务教育课程标准实验教科书数学》六年级下册第68页。
1.经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
【教学重点】。
经历抽屉原理的探究过程,初步了解抽屉原理。
理解抽屉原理,并对一些简单实际问题加以模型化。
【教具、学具准备】。
每组都有相应数量的盒子、铅笔、书。
一、课前游戏引入。
师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)。
师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。
师:开始。
师:都坐下了吗?
生:坐下了。
生:对!
【点评】教师从学生熟悉的抢椅子游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。
二、通过操作,探究新知。
(一)教学例1。
师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)。
【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
生:不管怎么放,总有一个盒子里至少有2枝笔?
是:是这样吗?谁还有这样的.发现,再说一说。
师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)。
师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。
(4,0,0)。
(3,1,0)。
(2,2,0)。
(2,1,1),
师:还有不同的放法吗?
生:没有了。
师:你能发现什么?
生:不管怎么放,总有一个盒子里至少有2枝铅笔。
师:总有是什么意思?
生:一定有。
师:至少有2枝什么意思?
生:不少于两只,可能是2枝,也可能是多于2枝?
师:就是不能少于2枝。(通过操作让学生充分体验感受)。
学生思考组内交流汇报。
师:哪一组同学能把你们的想法汇报一下?
组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。
师:你能结合操作给大家演示一遍吗?(学生操作演示)。
师:同学们自己说说看,同位之间边演示边说一说好吗?
师:这种分法,实际就是先怎么分的?
生众:平均分。
师:为什么要先平均分?(组织学生讨论)。
生1:要想发现存在着总有一个盒子里一定至少有2枝,先平均分,余下1枝,不管放在那个盒子里,一定会出现总有一个盒子里一定至少有2枝。
生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?
师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)。
师:哪位同学能把你的想法汇报一下,
生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把6枝笔放进5个盒子里呢?还用摆吗?
生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把7枝笔放进6个盒子里呢?
把8枝笔放进7个盒子里呢?
把9枝笔放进8个盒子里呢?
你发现什么?
生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。
【点评】教师关注了抽屉原理的最基本原理,物体个数必须要多于抽屉个数,化繁为简,此处确实有必要提领出来进行教学。在学生自主探索的基础上,教师注意引导学生得出一般性的结论:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。通过教师组织开展的扎实有效的教学活动,学生学的有兴趣,发展了学生的类推能力,形成比较抽象的数学思维。
2.解决问题。
(1)课件出示:5只鸽子飞回4个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?
(学生活动独立思考自主探究)。
(2)交流、说理活动。
师:谁能说说为什么?
生1:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。
生2:我们也是这样想的。
生3:把5只鸽子平均分到4个笼子里,每个笼子1只,剩下1只,放到任何一个笼子里,就能保证至少有2只鸽子飞进同一个笼里。
生4:可以用54=11,余下的1只,飞到任何一个鸽笼里都能保证至少有2只鸽子飞进一个个笼里,所以,至少有2只鸽子飞进同一个笼里的结论是正确的。
师:许多同学没有再摆学具,证明这个结论是正确的,用的什么方法?
生:用平均分的方法,就能说明存在总有一个鸽笼至少有2只鸽子飞进一个个笼里。
师:同意吗?(生:同意)老师把这位同学说的算式写下来,(板书:54=11)。
师:同位之间再说一说,对这种方法的理解。
师:现在谁能说说你对总有一个鸽笼里至少飞进2只鸽子的理解。
生:我们发现这是必然存在的一个现象,不管鸽子怎样飞回鸽笼,一定会有一个鸽笼里至少有2只鸽子。
师:同学们都有这个发现吗?
生众:发现了。
师:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来看这样一组问题。
(二)教学例2。
1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
(留给学生思考的空间,师巡视了解各种情况)。
2.学生汇报。
生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。
板书:5本2个2本余1本(总有一个抽屉里至有3本书)。
7本2个3本余1本(总有一个抽屉里至有4本书)。
9本2个4本余1本(总有一个抽屉里至有5本书)。
师:2本、3本、4本是怎么得到的?生答完成除法算式。
52=2本1本(商加1)。
72=3本1本(商加1)。
92=4本1本(商加1)。
师:观察板书你能发现什么?
生1:总有一个抽屉里的至少有2本只要用商+1就可以得到。
师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
生:总有一个抽屉里的至少有3本只要用53=1本2本,用商+2就可以了。
生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。
师:到底是商+1还是商+余数呢?谁的结论对呢?在小组里进行研究、讨论。
交流、说理活动:
生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。
生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是总有一个抽屉里至少有2本书。
生3∶我们组的结论是5本书平均分放到3个抽屉里,总有一个抽屉里至少有2本书用商加1就可以了,不是商加2。
师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?
生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现总有一个抽屉里至少有商加1本书了。
师:同学们同意吧?
师:同学们的这一发现,称为抽屉原理,抽屉原理又称鸽笼原理,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称狄里克雷原理,也称为鸽巢原理。这一原理在解决实际问题中有着广泛的应用。抽屉原理的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
3.解决问题。71页第3题。(独立完成,交流反馈)。
小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏。
【点评】在这一环节的教学中教师抓住了假设法最核心的思路就是用有余数除法形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地平均分给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对某个抽屉至少有书的本数是除法算式中的商加1,而不是商加余数,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了抽屉原理。
三、应用原理解决问题。
生:2张/因为54=11。
师:先验证一下你们的猜测:举牌验证。
师:如有3张同花色的,符合你们的猜测吗?
师:如果9个人每一个人抽一张呢?
生:至少有3张牌是同一花色,因为94=21。
四、全课小结。
【点评】当学生利用有余数除法解决了具体问题后,教师引导学生总结归纳这一类抽屉问题的一般规律,使学生进一步理解掌握了抽屉原理。
最新教学设计原理说课稿(优秀17篇)篇九
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。
激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)。
师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。
师:开始。
师:都坐下了吗?
生:坐下了。
生:对!
师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。(抽屉原理)。
1、研究3枝铅笔放进2个文具盒。
(1)要把3枝铅笔放进2个文具盒,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。
(2)反馈:两种放法:(3,0)和(2,1)。
(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)。
(4)“总有”什么意思?(一定有)。
(5)“至少”有2枝什么意思?(不少于2枝)。
小结:在研究3枝铅笔放进2个文具盒时,同学们表现得很积极,发现了“不管怎么放,总有一个文具盒放进2枝铅笔)。
2、研究4枝铅笔放进3个文具盒。
(1)要把4枝铅笔放进3个文具盒里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。
(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
(3)从四种放法,同学们会有什么发现呢?(总有一个笔盒至少有2枝铅笔)。
(4)你是怎么发现的?
(5)大家通过枚举出四种放法,能清楚地发现“总有一个文具盒放进2枝铅笔”。如果要让每个文具盒里放的笔尽可能的少,你觉得应该要怎样放?(每个文具盒都先放进一枝,还剩一枝不管放进哪个文具盒,总会有一个文具盒至少有2枝笔)(你真是一个善于思想的孩子。)。
(6)这位同学运用了假设法来说明问题,你是假设先在每个文具盒里放1枝铅笔,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)。
3、类推:把5枝铅笔放进4个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把6枝铅笔放进5个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
4、从刚才我们的探究活动中,你有什么发现?(只要放的铅笔比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。)。
5、如果铅笔数比文具盒数多2呢?多3呢?是不是也能得到结论:“总有一个笔盒至少有2枝铅笔。”
6、小结:刚才我们分析了把铅笔放进文具盒的`情况,只要铅笔数量多于文具盒数量时,总有一个文具盒至少放进2枝铅笔。
这就是今天我们要学习的抽屉原理。既然叫“抽屉原理”是不是应该和抽屉有联系吧?铅笔相当于我们要准备放进抽屉的物体,那么文具盒就相当于抽屉了。如果物体数多于抽屉数,我们就能得出结论“总有一个抽屉里放进了2个物体。”
过渡:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来研究这样一组问题。
1、研究把5本书放进2个抽屉。
(1)把5本书放进2个抽屉会有几种情况?(5,0)、(4,1)和(3,2)。
(2)从三种情况中,我们可以得到怎样的结论呢?(总有一个抽屉至少放进了3本书)。
(3)还可以怎样理解这个结论?先在每个抽屉里放进2本,剩下的1本放进任何一个抽屉,这个抽屉就有3本书了。
2、类推:如果把7本书放进2个抽屉中,至少有一个抽屉放进4本书。
如果把9本书放进2个抽屉中。至少有一个抽屉放进5本书。
3、小结:从以上的学习中,你有什么发现?(在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。)。
4、经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。“抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
5、做一做:
7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个佶舍里。为什么?
8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?
(先让学生独立思考,在小组里讨论,再全班反馈)。
下面我们一起来放松一下,做个小游戏。
这节课,你有什么收获?
最新教学设计原理说课稿(优秀17篇)篇十
《教学设计原理》是加涅的其中一本代表作。从书名中的“教学”二字可知,这本书讲述的并不仅是教授。教授仅仅是教学的一部分。教一词指的是一个人想学习者讲授或者掩饰某些东西。但是教师或培训者的角色包括多种不同的任务,如选择材料,判断学生的准备情况,监控教学活动,最终起到内容资源与学习促进的作用,于是更广泛的术语“教学”讲强调的重点放在了教师用来使学生参加到学习活动中去的完整的活动范围。
大致浏览过加涅的这本书,该书分为十六章,他在书中不仅提出了教学的系统性,认为每一阶段的输出都是下一阶段的输入,这具有明显的控制论的特点,反映出信息加工理论受到计算机科学影响的特征,因为在教学设计的每一个决策点上都要注意技术知识的一致性和相容性,还提出了技术的潜在用途,学习发生过程及学习发生所需要的内、外部条件对学习的发生的影响,总结出学习结果的五种类别并从教学设计的观点对学生心理结构做了详细分类,提出了“学习层级这样一种新的研究体系,并由此提出了新的教学论体系,并在这些工作的基础上提出了完整的教学设计原理与技术。
术相关的硬技术,而加涅的教学技术学则更多地类似于国内教学论、课程论研究的范围,但是加涅在这本书中给我们定义了一个等式:教学设计+教育技术=教育技术学,他讲到教育技术学可以被定义为将理论和其他有组织的知识在教学设计和开发任务中的系统运用,它还包括探求有关人们如何学习和如何最好地设计教学系统和材料的新知识。他所认为的教育技术学更多的类似于国内教学论和课程论研究的范畴。我国教育技术学发展起步较晚,而且一些基本的理论都是吸取国外的专家的,但是毕竟东西方不只是在文化经济等上有差异,在教育方面都是有很大的差异的,所以我国的教育技术学是在汲取了国外的理论的基础上又结合了本国教育的特色以及技术方面的发展情况而最终形成的。其次,加涅在绪论中认为教学设计具有系统性,因为在教学设计的每一个决策点上都要注意技术知识的一致性和相容性,他认为每一阶段的输出都是下一阶段的输入,这具有明显的控制论的特点,反映出信息加工理论受到计算机科学影响的特征。
成的素质包括能力和人格特质,学生后天习得的素质就是加涅总结出的五类学习结果。因为学生的先天素质不能被教学所改变,教学只能避免超越它们,而发展中形成的两类素质,由于具有相对稳定性,教学只能适应它们,因此素质教育是对学生习得的五类的素质教育。?第四,加涅是通过对学习发生的过程及学习发生所需要的内、外部条件来研究教学的,他认为教学是通过安排一系列符合学习者内部条件和外部条件(事件)来促使学习的发生,这正是他对于教学理论的贡献。他的教学理论是建立在坚实的心理学研究基础上,具有更强的可靠性和更具体的指导性。加涅认为学习的行为是千差万别的,千差万别的学习行为都可以归入上述五类习得的学习结果中。每类学习的行为表现不同,所需的内部条件和外部条件也不同。因此,我们应针对不同类型的学习进行教学设计,包括确定目标、任务分析、教学过程及结果测评。
第五,加涅提出了“学习层级”这样一种新的研究体系,由此提出了新的教学论体系,并在这些工作的基础上提出了完整的教学设计原理与技术。我们设计智慧智能序列时要以学习层次为基础,这些层次是通过从终点目标倒推的方式获得的,这样做我们就能分析将要学习的技能序列,当学习者能够回忆出构成新技能的子技能时,它们就会最顺利的完成新技能的学习。
实践相结合进行研究。在研究学习和教育时,把认知观和行为观相结合。在认知观中,既吸取建构主义中有用的东西,也吸取信息加工心理学中有用的东西。在研究学习时,既把学习看成是过程(事件),也把学习看成是结果。在研究学习的条件时,既指出其内部条件,也指出其外部条件。另外,怎么学也是一个问题。学习加涅的著作,首先要了解他的理论、观点和方法,并且把这些应用到我们的教育中去。但是其中也不乏缺陷之处,他的理论体系不可能没有缺点和局限性。例如,他强调学习的作用,而对发展的作用考虑很少,他强调对学习类型做分析,将复杂现象加以分解,但对于如何由个别成分合成复杂的心理能力研究不够。又如他强调学习的顺序是由下位到上位,局部到整体,但有时学习顺序并非完全如此。记得有位著名心理学家说过,我们评价一个人,要看他说了什么,而不是看他没有说什么,就是说这些不完善的地方也不能影响我们对加涅的理论的学习。
最新教学设计原理说课稿(优秀17篇)篇十一
本课通过创设情境、直观和实际操作,使学生进一步经历“抽屉原理”的探究过程,并对一些简单的实际问题“模型化”,从而在用“抽屉原理”加以解决的过程中,促进逻辑推理能力的发展,培养分析、推理、解决问题的能力以及探索数学问题的兴趣,同时也使学生感受到数学思想方法的奇妙与作用,在数学思维的训练中,逐步形成有序地、严密地思考问题的意识。
《义务教育课程标准实验教科书数学》六年级下册第70--71页的内容。
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
【教学重点】经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。
【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教学准备】多媒体课件、每组准备13枚“金币”和5个杯子。
【教学课时】一课时。
在研究新课之前得先请同学们见见自己的老朋友,看看谁还认识他?
出示图片——鲁滨逊画像。
一).探索比抽屉数多1的至少数。
话说鲁宾逊完全不顾父愿,甚至违抗父命,也全然不听母亲的恳求和朋友们的劝阻,一意孤行开始了他的冒险之旅。一天拂晓,当他所乘坐的正驶向加那利群岛时,被一艘土耳其海盗船袭击,所有船员全部被俘。鲁宾逊被海盗船长作为自己的战利品留了下来,成了船长的奴隶。这一日,海盗们没有出海,懒洋洋的在岸上休息,船长命令鲁宾逊给海盗们传授些文明人的知识,让海盗们变得像鲁宾逊一样富有智慧。看着桌子上闪闪发光的金币,鲁宾逊想到了一个办法,他找来两个盒子:
出示例一:
1.把3枚金币放入2个盒子里,有几种放法?
学生拿起自己手中的学具做实验,小组讨论后发言,其他同学可以补充。
2.师:把4枚金币都放进3个盒子里,有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)。
师:谁来展示一下你摆放的情况?这种分法,实际就是先怎么分的?为什么要先平均分?(组织学生讨论)。
小结:用最不利原则设想,如果我们先让每个笔筒里放1枚金币,最多放3枚。剩下的1枚还要放进其中的一个笔筒。所以不管怎么放,总有一个笔筒里至少放进2枚金币。
二).探索比抽屉数多几的至少数。
师:那么把13枚金币放进3个盒子里呢?
(可以结合操作说一说)。
师:把13枚金币放进5个盒子里呢?
(留给学生思考的空间,师巡视了解各种情况)。
师:这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,得到这个结论呢?请同学们观察板书,小组研究、讨论。找一找其中的规律。
小结:至少数等于数的本数除以抽屉数,再用所得的商加1。
(板书:至少数=商+1)。
三).解析原理,加深认识。
师:同学们的这一发现,称为“抽屉原理”。抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称作“鸽巢原理”。
出示:7只鸽子飞回5个鸽舍,至少有两只鸽子飞进同一个鸽舍?学生回答后观看演示。
一).巩固应用一——扑克牌游戏。
16世纪的海盗们哪能摸得清什么抽屉原理呢?一听原理二字便昏头涨脑,不知什么时候早在下面玩起了扑克牌。这时,鲁宾逊灵机一动,将大家正玩的扑克牌中的大小王拿掉,说:每人抽五张牌,不管怎么抽取,至少有两张是同一花色的牌,你们相信吗?说着,给坐在旁边的海盗甲海盗乙每人任意抽取了5张牌。“如果有一个人手里的牌都不是同一花色,任由船长处置;如果每个人手里最少有2张花色相同的牌,请船长允许我回故乡赫尔去吧。”船长眼珠一转,同意了鲁宾逊的要求。
那么,事实是不是这样呢?同学们相信鲁宾逊的话吗?
教师发扑克牌,学生回答。
二).巩固应用二——分宝1。
鲁宾逊虽然证实了自己是正确的,可是狡猾的船长并没有答应他的要求,放他回家。鲁宾逊只好跟着海盗首领到处掠夺杀戮。
有一次,他们获得了很多宝贝,海盗首领非常高兴,对手下8个小海盗说,这些宝贝都给你们了,你们自己处理吧,没想到小海盗平时都抢惯了,一拥而上,有人拿得很多,有人很少,甚至有人一件宝贝也没拿到,看到小海盗们乱哄哄的样子,海盗首领非常生气,就想惩罚一下那些贪婪的海盗,机会终于来了!有一次:海盗们又获得了73件宝贝,海盗首领又叫8个小海盗自己分。且规定:1、必须分完。2、若某人拿10件或10件以上的宝贝,说明他是个过分贪婪的人,就把他扔进大海喂鲨鱼。
海盗们是否都能逃过这一劫呢?小组讨论后派代表说说想法,其他同学可以补充。无论怎样分,总有一个海盗至少会拿到10件,这个海盗怎么办呢?学生自由谈看法。
师:正在海盗们担心的时候,事情有了转机,聪明的鲁宾逊趁着天黑偷偷地把一件宝贝扔进大海,现在只剩下72件宝贝,大家都平安无事。
三).巩固应用三——分宝2。
师:海盗们终于逃过一劫,海盗首领回到自己屋里,闷闷不乐,夫人问他为什么不开心,海盗首领如实相告,夫人说是不是有人把一件宝贝扔到海里去了,海盗首领如梦方醒,决心下一次不再上当,又是在一个风急天黑的夜晚:海盗们获得了79件宝贝,首领还是要8个小海盗自己分,规则不变,还警告,79件宝贝已数得清清楚楚,谁要是作弊,也要受到惩罚。
师:小海盗们大惊失色,心想这下可能真的逃不过去了,只有聪明的鲁宾逊镇定自若,站出来对海盗首领说,既然宝贝比上次增加了6件,能不能把限定的10件提高1件?海盗首领心想,宝贝增加这么多,而限定只提高1件,还是肯定有人会受到惩罚,就同意了小海盗的请求。你认为首领的想法对吗?说说你是怎样想的。
学生先小组讨论,然后再叫几个学生来说说是怎样想的。老师再对学生的思路进行梳理。
师:靠着鲁宾逊的聪明才智,事情终于风平浪静,在以后的日子里鲁宾逊自己的智慧赢得了海盗首领的信任,有了独自驾驶小艇的权利,借着海盗首领拜访朋友的机会,鲁宾逊驾着小艇逃到了一个无人的荒岛,并搭救了一个野蛮人,起名“星期五”,有一天,他们俩无所事事,玩起了游戏。
让学生讲讲思路,老师再对学生的思路进行梳理。
四.拓展延伸。
鲁宾逊的故事今天先讲到这里,通过今天的学习你有什么收获?
五.布置作业。
每人编2道抽屉类问题作为今天的作业,让自己的同桌来证明或解答。
最新教学设计原理说课稿(优秀17篇)篇十二
加涅对学习结果进行了分类,提出了五种学习结果:言语信息、智力技能、认知策略、动作技能和态度。
1、智慧技能。加涅认为,智慧技能的实质是人们应用符号办事的能力。可以细分为四个亚类:由简单到复杂分别是辨别、概念、规则和高级规则。最简单的智慧技能是辨别,即区分物体差异的能力。较高一级的智慧技能是概念。即对同类事物的共同木质特征的认识。因此而有对事物作出分类的能力。再上去是规则。当规则支配人的行动时,我们便说,人在按规则办事。运用概念、规则办事的能力就是技能的木质。最高级的智慧技能是高级规则,是指运用简单规则解决复杂问题的能力。
2、认知策略。
加涅认为认知策略是一种特殊的智慧技能,它与智慧技能的区别是:智慧技能是个体学会使用符号与环境发生作用,是处理外部世界的能力,而认知策略是对内组织的技能,它的功能是调节监控概念和规则的使用,是处理内部世界的能力,是个体对认知过程进行调节与控制的能力。认知策略使用的先决条件是具备相应的智慧技能。
3、言语信息。
杂程度,加涅区分出二类不同的言语信急形式:符号学习、事实学习、有组织的言语信息的学习。
4、动作技能。
加涅认为.动作技能有两个成分:一是操作规则,一是肌肉协调能力。动作技能的学习就是使一套操作规则支配人的肌肉协调。是指个体不仅仅完成某种规定的动作,而且指这些动作组织起来构成流畅、合规则和准确的整体行为。
5、态度。
加涅认为态度是一种能够影响人对某一类物、某一类事或某一类人作出个人选择的内部状态。它是通过学习而建立起来的一种影响人选择自己行动的内部状态。态度包括认知、情感和行为二种成分。
加涅认为,“学习是人的倾向或能力的改变”。因此,“学习结果是使人的。
各种作业成为可能的持久状态”。“为了强调这些状态具有习得的持久性质,可以管它们叫做能力和倾向”。由于预期的学习结果也就是教育所要达到为目标,所以,加涅揭示了习得的是能力和倾向,便为他的教育目标分类确定了统一的基点。2.以习得各种能力所需学习条件的异同作为划分教育目标类别的依据加涅认为,不同种类的习得结果需要不同的学习条件。包括内部和外部的学习条件。内部学习条件是指学习者本身具有的,影响习得新能力的变量。诸如己经习得的能力等。外部学习条件是指由教学提供的,用以支持或加强习得能力的变量。诸如,教师的期待,教师创设的教学情境等。从内部学习条件来看,不同种类的学习结果需要不同的内部学习条件。比如,学习者要习得定义概念,必须先具有具体概念。从外部学习条件来看,不同种类的学习结果也需要不同的外部学习条件。比如,仅用口头指导来促进运动技能的学习之无效果是众所周知的事。
3.把智慧技能分成由多个层次组成的阶梯。
精心设计的学习的外部条件系统。这一思想正在改变人们对教学及教学设计的传统看法。加涅的学习结果分类的研究不仅为我们提供了一个新的视角,而且还为我们提供了教学设计的原则、方法、技术与依据。对此我们应当虚心接受用其所长。
最新教学设计原理说课稿(优秀17篇)篇十三
近日读了《教学设计原理》,让我对教学设计和教育技术学有了更加深刻的理解。我想从六个方面谈谈我的读后感。
首先,加涅在第二章中提出教学设计是教育技术的核心,我想这个说法我们都已经非常的清楚,但是究竟我们应该怎样对教育技术学下一个准确的定义,我们应该如何去具体深刻的理解教育技术学作为一门学科它的真正意义。我曾经询问过好多师姐师哥,想让他们给我一个确定的答复,但是他们的回答都真的令我非常的失望,至今为止我听过的最多的回答就是教育技术是指通过技术手段来促进教学且这个技术手段基本是与媒体,信息技术相关的硬技术。可能这是国内好多专家和学者都认同的观点吧,但是加涅在这本书中给我们定义了一个等式:教学设计+教育技术=教育技术学,他讲到教育技术学可以被定义为将理论和其他有组织的知识在教学设计和开发任务中的系统运用,它还包括探求有关人们如何学习和如何最好地设计教学系统和材料的新知识。他所认为的教育技术学更多的类似于国内教学论和课程论研究的范畴。我国教育技术学发展起步较晚,而且一些基本的理论都是吸取国外的专家的,但是毕竟东西方不只是在文化经济等上有差异,在教育方面都是有很大的差异的,所以我国的教育技术学是在汲取了国外的理论的基础上又结合了本国教育的特色以及技术方面的发展情况而最终形成的。
其次,加涅在绪论中认为教学设计具有系统性,因为在教学设计的每一个决策点上都要注意技术知识的一致性和相容性,这一点在我们曾经学过的.《教学系统设计》(何克抗主编,北京师范大学出版社)的题目中就可以得出,这本书之所以成为“教学系统设计”而不是“教学设计”,就是吸取了加涅认为的教学设计具有系统性的观点,他认为每一阶段的输出都是下一阶段的输入,这具有明显的控制论的特点,反映出信息加工理论受到计算机科学影响的特征。
第四,加涅是通过对学习发生的过程及学习发生所需要的内、外部条件来研究教学的,他认为教学是通过安排一系列符合学习者内部条件和外部条件(事件)来促使学习的发生,这正是他对于教学理论的贡献。他的教学理论是建立在坚实的心理学研究基础上,具有更强的可靠性和更具体的指导性。加涅认为学习的行为是千差万别的,千差万别的学习行为都可以归入上述五类习得的学习结果中。每类学习的行为表现不同,所需的内部条件和外部条件也不同。因此,我们应针对不同类型的学习进行教学设计,包括确定目标、任务分析、教学过程及结果测评。
第五,加涅提出了“学习层级”这样一种新的研究体系,由此提出了新的教学论体系,并在这些工作的基础上提出了完整的教学设计原理与技术。我们设计智慧智能序列时要以学习层次为基础,这些层次是通过从终点目标倒推的方式获得的,这样做我们就能分析将要学习的技能序列,当学习者能够回忆出构成新技能的子技能时,它们就会最顺利的完成新技能的学习。
第六,按照迪克和凯里的教学设计模式,作业目标是写于任务分析之后的。加涅认为为了明确终点目标并对要学习的技能加以分类并做进一步的分析,作业目标是写于任务分析过程中的。因此,我们先阐述作业目标,然后讨论任务分析。
以上六点就是我在阅读此书的过程中的感想。作为对教育技术学有重大影响的人物之一,加涅的贡献在学习理论、教学设计乃至教育技术学基础理论的研究和构建上,并因其教学理论而闻名。他在心理学上的研究,不囿于某以流派思想,而采折衷主义兼取行为、完形及认知三方面的学习理论,并配合教学实践构建了他的教学理论。通过阅读对这本书,让我对教学设计有了更加深刻的体会,在今后的教学中我会好好的将这些理论运用到实践中,并在不断的反思中充实自己,建构自己的知识理念。
最新教学设计原理说课稿(优秀17篇)篇十四
1.通过再次学习统计,感知数学在生活里的作用。
2.经历数据的整理过程,再次认识统计表,获得统计的结果。理解和掌握复式统计表。
3.在合作与交流的学习中,学会肯定自己和倾听他人的意见。
教学流程。
一、提供质疑,唤起意识。
师:学校读书节你读了那么书,要知道同学们最喜欢那些书,我们怎么办?
生:统计……。
师:具体方法?
生答。
二、提供探索,激活意识。
1.动手实践、自主探索。
(1)分类理一理。
师:怎么整理?
生说。
指名学生到黑板前分类整理,哪种方法比较好?通过比较,学生再熟知方法。
师:分类后一个对一个地排好,是“分类理一理”。
(2)语言描述。
看了这张图你能告诉你什么呢?请你和同桌说一说,同桌在说的时候,你要仔细听,听听他说的是否和你说的一样。(学生互相说。)。
刚才同学们交流得很认真,现在谁能站起来响亮地说给大家听。
像这样整理有什么好处?
2.独立操作、体会过程。
师:航模组各多少人,怎么整理制表?
学生汇报分类整理的结果。教师板书,并让学生说说从表中知道了什么?先同桌说,再指名说。
三、联系生活实际应用1、用所学“统计”知识选出同学最喜欢哪几门功课?
师:请同学利用我们所学的统计知识选出我们班喜欢的功课是什么?然后完成你手上的统计表和统计图。
师:要完成这个统计,你们会用什么方法来收集数据呢?
生答。
四、课堂小结师:通过本节课的学习,你有那些收获?你还对老师或者同学说些什么吗?
反思。
学生是学习的“主人”,新课程要求遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。《统计》这一课意在让学生主动地参与数学活动,并通过亲手实践,经历和体会整理简单数据的过程,理解统计的思想和方法。
统
将本文的word文档下载到电脑,方便收藏和打印。
最新教学设计原理说课稿(优秀17篇)篇十五
可以把教学系统定义为对用于促进学习的资源和程序的安排。教学系统是创建教学系统的过程。这一过程既是系统的也是科学的。因为在一般应用中是可验证的、可重复的,而且能够产生可预测的结果。然而,在发现与解决教学问题方面,它仍需要创造,教学系统设计包括分析、设计、开发、实施与评价几个阶段。
若干假设:1、教学系统也可被称为学习环境,因为这两个术语都是指一套在促进、支持学习活动的过程中相互作用的因素;2、教学系统设计并不暗含一种具体的教学法或学习论;3、教学系统设计是另一个更大过程的特例,这一过程被称为人类工效技术。
二、学习和教学的基本过程。
一)教学的结果教学设计是一种有目的的活动,是达成终点的一种方式。这些终点被描述为教学的目的或目标。目的是对预期结果宽泛的陈述,而目标则更为具体。
教育与培训的区别是什么?通常是预期结果的目的或具体性。教育发展的是潜在的性能与倾向,而有效的培训依赖于所教任务的可接受的表现水平。
习得的性能有不同的类型,布卢姆等人识别出三大领域(动作、认知和情感)。加涅相信,通过把学习目标归入五种类型可以简化教学计划的制定:
1、智慧技能对智慧技能最好的描述是我们利用符号做事,例如把事物划分成不同的类别,应用规则与原理及问题解决。这些技能使个体能应用符号或概念与他们的环境相互作用。智慧技能的学习适用基本的读写算技能的学习,而进行到哪一水平是与个体的兴趣和智力相一致的。
2、认知技能认知策略是一种技能,是支配个体自身的学习、记忆和思维行为的性能。人们期待个体能经过较长时间的研究,学习和思维这类技能。多数的认知策略是“专门领域”的,但有些认知是一般的,通常认知策略是从经验发展而来的。派特森把学生所使用的从网络上获取信息的策略划分为五种类别:浏览、分析性的、经验性的、已知站点与相似的性。元认知是一种特殊的认知策略。元认知是“认知的认知”或对认知过程的自我监控。像反思与自我调节的策略是元认知过程。
3、言语信息言语信息是一种我们能够陈述的知识,它是“知道什么”或“陈述性知识”。学习者通常从正规教学中获得大量的信息,许多信息也可以通过偶然的方式习得。其中惰性观念是“接受并储存在大脑中但未被利用、测验或形成新颖组合的观念。”很清楚地是:没有得到使用或练习的言语信息会很快被遗忘,因为没有与之相联系的有意义的场景。
4、动作技能动作技能是最明显的人类技能之一。作为一种技能,这种技能的功能只是使动作表现成为可能。
5、态度态度影响着学生对他们的行动的过程的选择。作为一种人类性能,态度是预先安排个体行为选择的一种持续状态。
三、设计教学。
(一)确定表现性目标。
如何陈述传递期望的目标?1、习得的结果得以表现的情境;2、所进行的学习的类型;3、行为表现的内容或对象;4、可观察的行为;5、适用于行为表现的工具、限制或特殊条件。
(二)学习任务分析。
教学设计通常开始于教程目的的识别与学习目标的任务分析。教学设计者最初提出的问题并非是学生要学什么,而是学生学完后将指导什么或会做什么。
任务分析的类型分为:第一类是程序任务分析,有时也叫信息加工分析,第二类是学习任务分析。程序任务分析描述了完成某一任务的步骤。程序任务分析分解为学习者完成任务而必须执行的步骤。信息加工分析主要有两种用途:第一种是提供对终点目标的清晰描述,包括程序中所涉及的步骤。第二个用途是揭示了可能并不明显的个别步骤。一旦终点目标确定,就可以用另一个分析来确定先决能力或使能能力。在教学设计中,终点目标和使能目标都需要考虑。
最新教学设计原理说课稿(优秀17篇)篇十六
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过操作发展学生的类推能力,形成比较抽象的数学思维。
3、通过“抽屉原理”的灵活应用感受数学的魅力。
经历“抽屉原理”的探究过程,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
一、问题引入。
1、游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。
2、讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗?
游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。
引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
二、探究新知。
(一)教学例1。
师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。
板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。
问题:
(1)“总有”是什么意思?(一定有)。
(2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?)。
学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)。
总结:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。
2、完成课下“做一做”,学习解决问题。
问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?
(1)学生活动—独立思考自主探究。
(2)交流、说理活动。
引导学生分析:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。
总结:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。
(二)教学例2。
(留给学生思考的空间,师巡视了解各种情况)。
2、学生汇报,教师给予表扬后并总结:
总结1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。
总结2:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。
问题:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?用“商+2”可以吗?(学生讨论)。
引导学生思考:到底是“商+1”还是“商+余数”呢?谁的'结论对呢?(学生小组里进行研究、讨论。)。
总结:用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。
师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。
(三)学生自学例题3并进行自主交流,试着用手中的用具模拟演示场景。
三、解决问题。
四、全课小结。
最新教学设计原理说课稿(优秀17篇)篇十七
本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的`结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。
1、知识与技能:引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感态度与价值观:
(1)体会数学与生活的紧密联系,体验学数学、用数学的乐趣。
(2)理解知识的产生过程,受到历史唯物注意的教育。
(3)感受数学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。
重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。
难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。
这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。
1、让学生经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画草图的`方式进行“说理”。通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。
2、有意识地培养学生的“模型”思想。当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。
3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。