在每个学期开始之前,教师都需要制定一份教学计划,以指导教学工作的开展。这是一份优秀的教学计划案例,可以帮助教师更好地编写自己的教学计划。
正弦定理教学设计(精选16篇)篇一
本节课夏老师先复习了上节课学习的圆的概念及弧、弦等概念。然后比较三幅图,找出共同点---轴对称图形。这节课的目的性很强,围绕一个知识系统“垂径定理及其逆定理”展开。首先,夏老师让学生画圆折纸,设计的问题都是典型问题,而且巧妙开放,层层递进,有效的调动学生学习兴趣,唤起学生的求知欲,激起了学生的积极思考。整节课抓住相关的基本图形、基本辅助线、基本几何结论的应用,使学生的思维得到训练和提升。
夏教师的课堂调控能力很强,课堂中问题的处理过程,大都是学生先有一定的时间自己思考,提出想法并向大家展示交流,然后共同解决问题,教师绝不包办,很好地体现了以学为主体的课标要求。教师肯花时间让学生大胆说出自己在思考过程中遇到的困难和障碍,呈现学生的思维盲点,然后通过学生之间的合作交流和教师的点拨启发帮助学生理清思路。
在教学方法与教材处理方面,夏老师能根据现在的教材特点及学情,在新课标理念的指导下,让学生在课堂上多动手、多观察、多交流,最后得出定理,这个方法符合新课程理念观点,也符合教师的主导作用与学生的主体地位相统一的原则。
正弦定理教学设计(精选16篇)篇二
一、教学内容:
本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。
二、教材分析:
1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书。数学必修5》(a版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。
2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。
三、教学目标:
1、知识目标:
2、能力目标:
(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。
(2)增强学生的协作能力和数学交流能力。
(3)发展学生的创新意识和创新能力。
3、情感态度与价值观:
(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。
(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。
本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下:
正弦定理教学设计(精选16篇)篇三
本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析。
对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:
培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。本节“正弦定理”的教学,将遵循这个原则而进行设计。
四、教学目标:
1、在创设的问题情境中,让学生从已有的几何知识和处理几何图形的常用方法出发,探索和证明正弦定理,体验坐标法将几何问题转化为代数问题的优越性,感受数学论证的严谨性.
2、理解三角形面积公式,能运用正弦定理解决三角形的两类基本问题,并初步认识用正弦定理解三角形时,会有一解、两解、无解三种情况。
3、通过对实际问题的探索,培养学生的数学应用意识,激发学生学习的兴趣,让学生感受到数学知识既来源于生活,又服务与生活。
五、教学重点与难点。
教学重点:正弦定理的探索与证明;正弦定理的基本应用。
教学难点:正弦定理的探索与证明。
主体下给于适当的提示和指导。
六、复习引入:
结论:
证明:(向量法)过a作单位向量j垂直于ac,由ac+cb=ab边同乘以单位向量。
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。
正弦定理教学设计(精选16篇)篇四
“垂径定理”是圆的重要性质之一,也是全章的基础之一,在整章中占有举足轻重的地位,是今后研究圆与其他图形位置关系和数量关系的基础,这些知识在日常生活和生产中有广泛的应用。由于垂径定理及其推论反映了圆的重要性质,是证明线段相等、角相等、垂直关系的重要依据,因此,它是整节书的重点及难点。
对本节课的教学我有以下几点反思:
1、本节课主要有两方面的内容:一是圆的轴对称性,二是垂径定理及其推论。开始以赵州桥的问题引入课题,带着问题进行学习,学习有目标,圆的轴对称性主要是通过动手操作得出结论,圆是轴对称图形,根据轴对称性进一步研究圆中相等的弦,弧得出垂径定理及其推论。利用此定理再去解决赵州桥问题,每一个环节都是环环相扣,不是孤立存在的。
2.在数学教学中,语言的严密性,逻辑性很重要的,而我在课堂上,尤其是知识点的联系方面的引导词,结论的表述,更加需要再努力钻研.今后我将在这方面下工夫,在去听其他数学老师的课时,要注意其他老师在知识点同知识点之间的过渡语句.
3在教案设计方面,在时间上把握得不够准确。有点前松后紧。前面在复习的部分应该加些关于勾股定理的计算的题目,使学生在后面解直角三角形时能够更加快,更熟练;在多媒体中,题目的梯度设计虽然很好但时间紧练习题量太小。
4,其实这节课还有个作图思想要灌输给学生,即教学生如果见到弦心距,弦,那么直接连半径构成直角三角形;如果就是只知道一条弦的题目,就要连弦心距都要作出来,应加强两种题目的训练。.
通过反思这一课的课堂教学,我认识到要善于处理好教学中知识传授与能力培养的关系,巧妙地引导学生解决生活中的数学问题。不断地激发学生的学习积极性与主动性,培养学生思维能力、想象力和创新精神,使每个学生的身心都能得到充分的发展。这些问题给了我一个今后的努力的方向.在今后的教学中,我会更加努力。
正弦定理教学设计(精选16篇)篇五
垂直于弦的直径也叫垂经定理,是初中九年级人教版第二十四章第2节内容,它是圆中有关计算方面比较重要的一节。
本节课主要经过了三个环节:第一个环节是让学生通过折自制的圆形图片得出圆是轴对称图形,每一条经过圆心的直线都是它的对称轴,它有无数条对称轴。第二个环节是让学生通过探究得出垂经定理的内容。第三个环节是利用垂经定理解决有关方面的计算。其中,第二个环节是本节课的重点,也是我这节课的一个亮点。具体经过以下5个步骤:
(1)让学生拿出自己手中的圆形图片对折圆,找出圆心。(学生很感兴趣,有些同学折的是两条互相垂直的直径得出圆心,有些同学折的是两条斜交的直径得出圆心,但方法都很好。)。
(2)让两条互相垂直的直径其中一条不动,另一条直径向下平移,变成一条普通的弦,并且和原来的一条直径仍然保持垂直关系。
(3)让学生在自己的图片上画出与直径垂直的弦,并让他们把圆形图片沿直径对折,问学生会发现什么结论?(平分弦,也平分弦所对的两条弧)。
(4)问学生在什么样条件下得出这些结论的?
(5)最后引导学生归纳出垂经定理的内容,教师再补充、强调并板书。
通过这一探究过程,大部分学生参与到课堂中去,并培养了学生动手操作和创新的能力,也激发了学生探究问题的兴趣,学生就在这种轻松、愉快的活动中掌握了垂径定理,实现了教学的有效性,这是在这节课中我感觉最成功的地方。
当然,整节课也有许多不足之处。例如,在对垂经定理有关计算方面的安排上欠妥,具体表现在:
(1)把课本中赵州桥的问题作为第一个练习题让学生解决稍微偏难,应该先解决一些简单的类型题。比如:已知弦的长度和圆心到弦的距离,求圆的半径这类题,这样的话学生不但巩固了垂经定理,而且也能体会到成功的喜悦,等再处理赵州桥的问题就变成水到渠成的事情了。
(2)垂经定理中平分弦的证明过程尽量给学生留点时间让学生板书出来,这样可以防止学生缺少主动性,并且会有更多的学生参与到课堂中去。
(3)应该给学生渗透一些情感教育,让学生知道数学来源于生活,又应用于生活。总之,在教学设计和课堂教学中应充分了解学生,研究学生,我们不仅要备教材,而且还要备学生。要真正树立以学生的发展为本的教学理念。只有这样,才能为学生提供充分的教学活动和交流的机会,使学生从单纯的的知识接受者变为数学学习的主人。
正弦定理教学设计(精选16篇)篇六
知识与技能:
了解勾股定理的一些证明方法,会简单应用勾股定理解决问题。
在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。
通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。
1、创设情境。
师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。
设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。
观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界。
追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?
师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。
设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论。
问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。
师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。
正弦定理教学设计(精选16篇)篇七
大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。
一、教材分析。
本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的`兴趣。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
二、教法。
正弦定理教学设计(精选16篇)篇八
首先讲下这节课,我的一些思路:
在教学方法与教材处理方面,根据现在的教材特点,教学内容以及在新课标理念的指导下,最后决定让学生在课堂上多动手、多观察、多交流,最后得出定理,这个方法符合新课程理念观点,也符合教师的主导作用与学生的主体地位相统一的原则。
同时,在教学中,我充分利用教具和投影仪,提高教学效率。在实验,演示,操作,观察,练习等师生的共同活动中启发学生,培养学生直觉思维能力,结合学生实际情况作适当的拓广。
我参加这次教学技能大赛,获益良多主要体现在以下几个方面:
(1)在数学教学中,一些结论的表述是很重要的,而我在这节课上有些表述确实不是很正确;而且我在课堂上,尤其是知识点的联系方面的引导词,更加需要再努力钻研。今后我将在这方面下工夫,在去听其他数学老师的课时,要注意其他老师在知识点同知识点之间的过渡语句。
(2)一些该让学生知道的知识点,讲得不够透彻。如cd是直径,其实应该可以拓展为过圆心的直线(要多强调,而不是一笔带过);不能够用数量关系求的,应该要适当地引导学生设未知数。而不是直接告诉学生这种题目就是要设未知数。同样在已知一条边,不够条件求解时,也要引导学生利用未知数来解题的这种题目,引导得不够,或者话引导得不够深刻,学生就会觉得是老师直接将知识倒向他,而他不一定能接受。
(3)在学案设计方面,在时间上把握得不够准确,设计的学案内容太多,在这节课上如果估计过量已经足够的话,垂径定理的推论其实可以放在下节课。这样就不会使得后面讲推论的时间太短,太仓促。前面复习用的时间太长,在复习的部分应该多加些关于勾股定理的计算的题目,使学生在后面解直角三角形时能够更加快,更熟练;而学案中练习题的量太少,而且是题型太单一,可以再做多些找相等的量的基础训练,对b班的学生更加熟悉垂径定理,基础题目的掌握对b班大有好处。
(4)其实这节课还有个作图思想要灌输比学生,即是教学生如果见到弦心距,弦,那么直接连半径构成直角三角形;如果就是只知道一条弦的题目,就要边弦心距都要作出来,而这两种题目我的训练都不到位。
最后,这些失误给了我一个今后的努力的方向。在今后的学习中,我努力钻研教材改正自己缺点。
正弦定理教学设计(精选16篇)篇九
《动能和动能定理》是高中物理必修2第五章《机械能及其守恒定律》第七节的内容,我从:教材分析、目标分析、教法学法、教学过程、板书设计和教学反思六个纬度作如下汇报:
1.内容分析。
《动能和动能定理》主要学习一个物理概念:动能;一个物理规律:动能定理。从知识与技能上要掌握动能表达式及其相关决定因素,动能定理的物理意义和实际的应用。
通过例题2的探究,理解正负功的物理意义,初步从能量守恒与转化的角度认识功。在态度情感与价值观上,在尝试解决程序性问题的过程中,体验物理学科既是基于实验探究的一门实验性学科,同时也是严密数学语言逻辑的学科,只有两种方法体系并重,才能有效地认识自然,揭示客观世界存在的物理规律。
2.内容地位。
通过初中的学习,对功和动能概念已经有了相关的认识,通过第六节的实验探究,认识到做功与物体速度变化的关系。将本节课设计成一堂理论探究课有着积极的意义。因为通过“动能定理”的学习,深入理解“功是能量转化的量度”,并在解释功能关系上有着深远的意义。为此设计如下目标:
1、三维教学目标。
(一)、知识与技能。
1.理解动能的概念,并能进行相关计算;
(二)、过程与方法。
1.掌握恒力作用下动能定理的推导;
2.体会变力作用下动能定理解决问题的优越性;
(三)、情感态度与价值观。
体会“状态的变化量量度复杂过程量”这一物理思想;感受数学语言对物理过程描述的。
简洁美;
2.教学重点、难点:
重点:对动能公式和动能定理的理解与应用。
难点:通过对动能定理的理解,加深对功、能关系的认识。
学生的学法采取:任务驱动和合作探究;
选取多媒体展示、尝试练习题和“任务驱动问题”本节课为一课时。
设计成6个教学环节:提出问题,导入新课;任务驱动,感知教材;合作探究,分享交流;精讲点拨,释疑解惑;典例引领,内化反思;课堂总结,布置作业。
正弦定理教学设计(精选16篇)篇十
1、知识目标:
(2)学会利用勾股定理进行计算、证明与作图;。
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;。
(2)通过问题的解决,提高学生的运算能力。
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;。
(2)通过有关勾股定理的历史讲解,对学生进行德育教育.
教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育。
教学用具:直尺,微机。
教学方法:以学生为主体的讨论探索法。
文档为doc格式。
正弦定理教学设计(精选16篇)篇十一
教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。
学生分析:
1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。
2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。
设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的`民族自豪感和探究创新的精神。
教学目标:
1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。
2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。
3、培养学生学习数学的兴趣和爱国热情。
4、欣赏设计图形美。
教学准备阶段:
学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。
老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。
(一)引入。
同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。(板书课题:探索直角三角形三边关系)。
(二)实验探究。
1、取方格纸片,在上面先设计任意格点直角三角形,再以它们的每一边分别向三角形外作正方形,设网格正方形的边长为1,直角三角形的直角边分别为a、b,斜边为c,观察并计算每个正方形的面积,以四人小组为单位填写下表:
(讨论难点:以斜边为边的正方形的面积找法)。
交流后得出一般结论:(用关于a、b、c的式子表示)。
(三)探索所得结论的正确性。
当直角三角形的直角边分别为a、b,斜边为c时,是否一定成立?
1、指导学生运用拼图、或正方形网格纸构造或设计合理分割(或补全)图形,去探索本结论的正确性:(以四人小组为单位进行)。
在学生所创作图形中选择有代表性的割、补图,展示出来交流讲解,并引导学生进行说理:
如图2(用补的方法说明)。
师介绍:(出示图片)毕达哥拉斯,公元前约500年左右,古西腊一位哲学家、数学家。一天,他应邀到一位朋友家做客,他一进朋友家门就被朋友家的豪华的方形大理石地砖的形状深深吸引住了,于是他立刻找来尺子和笔又量又画,他发现以每块大理石地砖的相邻两直角边向三角形外作正方形,它们的面积和等于以这块大理石地砖的对角线为边向形外作正方形的面积。于是他回到家里立刻对他的这一发现进行了探究证明……,终获成功。后来西方人们为了纪念他的这一发现,将这一定理命名为"毕达哥拉斯定理"。1952年,希腊政府为了纪念这位伟大的数学家,特别选用他设计的这种图形为主图发行了一枚纪念邮票。(见课本52页彩图2—1,欣赏图片)。
如图3(用割的方法去探索)。
师介绍:(出示图片)中国古代数学家们很早就发现并运用这个结论。早在公元前2000年左右,大禹治水时期,就曾经用过此方法测量土地的等高差,公元前1100年左右,西周的数学家商高就曾用"勾三、股四、弦五"测量土地,他们对这一结论的运用至少比古希腊人早500多年。公元200年左右,三国时期吴国数学家赵爽曾构造此图验证了这一结论的正确性。他的这个证明,可谓别具匠心,极富创新意识,他用几何图形的割、来证明代数式之间的相等关系,既严密,又直观,为中国古代以"形"证"数",形、数统一的独特风格树立了一个典范。他是我国有记载以来第一个证明这一结论的数学家。我国数学家们为了纪念我国在这方面的数学成就,将这一结论命名为"勾股定理"。
20xx年,世界数学家大会在中国北京召开,当时选用这个图案作为会场主图,它标志着我国古代数学的辉煌成就。
本节课学习的勾股定理用语言叙说为:
1、继续收集、整理有关勾股定理的证明方的探索问题并交流。
正弦定理教学设计(精选16篇)篇十二
“正弦定理”既是初中“解直角三角形”内容的直接延拓,也是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是第七章的第一课时:“正弦定理”教学的第一节课,其主要任务是证明正弦定理并准确应用正弦定理。在备课中有两个问题需要精心设计.一个是定理的证明,一个是正弦定理的应用的问题串。
课本通过一个实际问题引入,但没有深入展开下去,只是点出继续学习“解三角形”问题的`意义;正弦定理的证明方法很多,如利用三角形的面积公式、利用三角形的外接圆、利用向量证明等。
从中职学生的认知出发,设计从直角三角形出发,通过学生的探究活动,引导学生提出问题,通过证明、归纳、应用为线索,把问题展现给学生,从而引入并证明正弦定理。因此,做好“正弦定理”的教学既能复习巩固旧知识,也能让学生掌握新的有用的知识,有效提高学生解决问题的能力。本节设计注重知识建构过程和学生主题地位的体现,从学生熟悉的直角三角形边角关系,到锐角三角形、钝角三角形的讨论,渗透了分类讨论思想和数形结合思想。从学生的“最近发展区”入手去设计问题,从特殊到一般,从归纳猜想到实验证明,培养学生的探究问题的科学方法,思路自然,是学生们易于接受的一种证明方法。但在具体的推导时,要注意尊重学生思维的发展的过程,这是一种理念,也是一种能力.
问题是思维的起点,是学生主动探索的动力.本节课通过对课本引例的解决、展开,引导学生在问题解决中发现结论.符合认识问题的思维规律,对激发学生探究问题兴趣是非常有益的.传统式的课传授完新知识后,一般教师都会马上以“举一反三”的模式来巩固新知识。但在此我进行了小小的设计,让学生分析正弦定理的特点和几种变形;涉及了三角形哪些元素?可以解决哪类数学问题?让学生做到“学会数学,会学数学”。新的环节引起了学生浓厚的兴趣,教室内学生热烈的讨论,争论也出现了,特别是已知二边一角的问题,哪种能直接应用,哪种不能直接应用,学生有一个系统的认知。这又为后续课程—余弦定理打下了伏笔。
本节课虽然在教师的引导下,基本完成了教学任务,由于教学时间的超时,说明教学存在对学生情况的把握不够准确到位,教学设计的是否恰当?教学过程中时间的分配不够适当,师生配合的程度是否默契?教学语言不够精简,今后一定避免此类问题,争取更大的进步。
正弦定理教学设计(精选16篇)篇十三
正弦定理是高中新教材人教a版必修五第一章1.1.1的内容,是学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形的边长与角度之间的数量关系。提出两个实际问题,并指出解决问题的关键在于研究三角形的边、角关系,从而引导学生产生探索愿望,激发学生的学习兴趣。在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导,并引导学生分析正弦定理可以解决两类关于解三角形的问题:
(1)已知两角和一边,解三角形;。
(2)已知两边和其中一边的对角,解三角形。
本节授课对象是高二学生,是在学生学习了必修四基本初等函数和三角恒等变换的.基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。高二学生对生产生活问题比较感兴趣,由实际问题出发可以激发学生的学习兴趣,使学生产生探索研究的愿望。
知识与技能目标。
能准确写出正弦定理的符号表达式,能够运用正弦定理理解三角形、初步解决某些测量和几何计算有关的简单的实际问题。
过程与方法目标。
通过对定理的证明和应用,锻炼独立解决问题的能力和体会分类讨论和数形结合的思想方法。
情感态度价值观目标。
通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识。
重点。
难点。
正弦定理的推导与正弦定理的运用。
运用“发现问题——自主探究——尝试指导——合作交流”的教学方式,整堂课围绕“一切为了学生发展”的教学原则,突出:师生互动、共同探索,教师指导、循序渐进。
新课引入——提出问题,激发学生的求知欲。掌握正弦定理的推导证明——分类讨论,数形结合动脑思考,由一般到特殊,组织学生自主探索,获得正弦定理及证明过程。
例题处理——始终由问题出发,层层设疑,让他们在探索中得到知识。巩固练习,深化对正弦定理的理解。
(一)导入新课。
我采用的是设疑导入,进行口头提问:
设计意图:通过生活中的知识引入,激发学生学习需要和学习期待,以问题引起学生学习热情和探索新知的欲望。让学生积极主动的参与到课堂里面来,更好的调动学习氛围。
(二)新课教学。
1.复习旧知。
带动学生回忆以前学过的知识,并设置如下问题引导学生思考,减少学生对新知识的陌生感。
正弦定理教学设计(精选16篇)篇十四
在备这节课时,我有两个问题需要精心设计。一个是问题的引入,一个是定理的证明。本节课以学生为主体,“问题提出---问题解决为主线”,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
上完这节课,让我有这样一些体会:
1、问题是思维的起点,是学生主动探索的动力。本节课在教学过程中充分发挥学生主体作用,始终以问题的形式引导学生主动参与,在师生互动、生生互动中让学习过程成为学生心灵愉悦的主动认知过程,做到了把握重点、突破难点。
2、在教学中恰当地利用多媒体技术,是突破教学难点的一个重要手段。本节课利用《几何画板》探究比值,的值,由动到静,取得了很好的效果。”
3、做练习时,有学生提出解三角形时,正弦定理可以解决哪些问题?学生有这样归纳的意识,在课堂及时肯定,表扬,并在课后刻意留一道思考题,任务后延,自主探究,使学生发现用正弦定理解决两边一对角问题时可能会出现两解,一解或无解的情况,那么自然过渡到下一节内容,已知两边和其中一边的对角解三角形时判断解的个数问题。
4、正弦定理的证明方法很多,如利用三角形的面积公式、利用三角形的外接圆、利用向量证明等,本节课将斜三角形的边角关系转化为直角三角形的边角关系导出正弦定理,采用转化,分类讨论的的数学思想,是学生们易于接受的一种证明方法。但在具体的推导时,发现学生可以想到对三角形进行分类讨论,并将斜三角形转化成直角三角形证明,但在转化时,不仅可以通过作高,还可以有别的方法,比如外接圆法。但在证明时只用了作高这种方法,这种思路虽然简单,但不是从学生的头脑中产生的,而是教师强加给学生的,只注意教学的结果而没有注意学生思维过程的发展,思路再好对学生的也没有指导意义。所以今后要注意尊重学生思维的发展的过程,这是一种理念,也是一种能力。上好一堂课不仅有好的教学设计,还应有灵活应变的能力,要尊重学生的思路,善于发现学生的闪光点,并及时引导,才不会为了进度而导下,将学生强拉进自己事先设计好的轨道。
5、在教学设计和课堂教学中应充分了解学生、研究学生,备课不仅是备知识,更重要的是备学生。作为教师只有真正树立以学生的发展为本的教学理念,才能尊重学生思维过程的发生、发展,才能从学生的知识水平和理解能力出发,创设合理的教学情境,才能为学生提供充分的数学活动和交流的机会,使学生从单纯的知识接受者转变为数学学习的主人。
正弦定理教学设计(精选16篇)篇十五
“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验“观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。
二、学情分析。
我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。
三、教学目标。
1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。
过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。
情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。
2、教学重点、难点。
教学重点:正弦定理的发现与证明;正弦定理的简单应用。
四、教学方法与手段。
为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的`学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。
五、教学过程。
为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:
(一)创设情景,揭示课题。
问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题,其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)。
[设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。
(二)特殊入手,发现规律。
引导启发学生发现特殊情形下的正弦定理。
(三)类比归纳,严格证明。
[设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。
文档为doc格式。
正弦定理教学设计(精选16篇)篇十六
正弦定理是初中数学中比较重要和难理解的部分,很多同学甚至老师都对其感到头疼。但是,正弦定理不仅是数学中的重要概念,还有着丰富的实际应用。在学习正弦定理后,我从中学到了很多有益的知识和经验,下面我将分享我的心得体会。
正弦定理是指一个三角形中,边长和对应的角度的关系公式。其中一个角度的正弦等于与其对边的长度之一的比例,即sinA=a/b。正弦定理可以通过cosB,cosC的余弦公式而推出,可以方便计算三角形的边长和角度。对于初学者来说,重要的是能够理解公式的本质,同时也体会到了科学的推理方法。
第三段:在计算中的应用。
正弦定理在生活和学习中都有很大的应用价值。例如,在航海和导航中,我们经常需要利用正弦定理计算船或车等运动物体的位置和角度。在建筑方面,正弦定理甚至可以计算出大楼、桥梁和塔等构造物的高度和角度。除此之外,正弦定理在数学应用中也是非常重要的,能够解决许多难题,如解三角函数方程、求角度等。
第四段:学习体会。
在学习正弦定理的过程中,我发现一个重要的问题就是需要对三角函数有清晰的认识。也就是说,在学习正弦定理之前,我们需要认真学习三角函数的其他部分,例如正切和余弦等。同时,不断练习,多做习题对于记住和掌握公式也是非常有益的。此外,我也学会了在认真理解和熟练应用的同时,将其运用到实际问题的解决中,这不仅可以提高学习兴趣,还能拓展解决问题的思路。
第五段:结论。
总体来说,正弦定理不仅是数学中的重要概念,也有广泛而且实际应用价值。学习正弦定理可以提高数学应用能力和推理思维能力,同时也能减少发生计算错误的可能。在学习的过程中,我们需要认真学习和理解每一个公式,多经过练习和应用,最后将其应用到实际问题中。相信一定可以有所收获,提高自身的学习和应用能力。