六年级教案是教师根据教材内容和学生需求制定的一份教学指导书。在这里,小编为大家整理了一些六年级教案的范本,希望对大家写教案有所帮助。
最新六年级数学比例教案(精选12篇)篇一
1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。
2.能根据正比例的意义,判断两个相关联的量是不是成正比例。
3.结合丰富的事例,认识正比例。
1、结合丰富的事例,认识正比例。
2、能根据正比例的意义,判断两个相关联的量是不是成正比例。
能根据正比例的意义,判断两个相关联的量是不是成正比例。
一、课前预习。
预习书19~21页内容。
1、填好书中所有的表格。
2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?
3、把不理解的内容用笔作重点记号,待课上质疑解答。
二、展示与交流。
活动一:在情境中感受两种相关联的量之间的变化规律。
(一)情境一:
1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。
说说从数据中发现了什么?
3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。
说说你发现的规律。
(二)情境二:
1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:
2、请把下表填写完整。
3、从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(三)情境三:
1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
5、正比例关系:
(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。
(2)购买苹果应付的钱数与质量有什么关系?
6、观察思考成正比例的量有什么特征?
一个量随另一个量的变化而变化,在变化过程中这两个量的`比值相同。
(四)想一想:
1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2、小明和爸爸的年龄变化情况如下:
小明的年龄/岁67891011。
爸爸的年龄/岁3233。
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再集体汇报。
最新六年级数学比例教案(精选12篇)篇二
担任了几年毕业班的数学教学,到六年级的下学期,将有一半以上的课程是在复习和整理,保守的复习课让习题一道道出现,让同学仅仅停滞在"会"的目标上,这复习课究竟应该如何去上好,应该如何让同学感受学习的快乐和数学的魅力一直是我们思索的问题。在一次班会课上,同学自身组织了班会活动,他们采用了电视上娱乐节目的形式,玩得非常高兴,一瞬间,我就想,这样的形式是否可以植入我的数学课堂?这样是不是数学课上的我也可以和班会课一样成为同学的组织者,引导者和合作者,而不是课堂上的"权威"?本着"体现新理念,用活教材,练活习题,激活课堂"的思想,针对本节课的教学目标,我采用让同学分组竞赛的方法,把复习活动贯穿到课前、课中、课后,让同学在合作与竞争中理解本课重点,疏通知识脉络,建构知识网络,掌握复习方法。
最新六年级数学比例教案(精选12篇)篇三
1、通过自主尝试学会解比例的方法,进一步理解和掌握比例的基本性质。2、能运用解比例的方法解决实际问题。【教学重点】掌握解比例的方法,学会解比例。【教学难点】引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。
教学重难点。
【教学重点】掌握解比例的方法,学会解比例。
【教学难点】引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。
教学过程。
一、创设情境。
上节课我们学习了一些比例的意义,谁能说一说。
1、什么叫比例?
表示两个比相等的式子叫比例。
2、比例的基本性质是什么?
在比例里,两个外项的积等于两个内项的积。
3、应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
6︰10和9︰15()。
20︰5和4︰1()。
5︰1和6︰2()。
4、根据比例的基本性质,将下列各比例改写成其他等式。
3:8=15:403×40=8×15。
9/1.6=4.5/0.89×0.8=1.6×4.5。
5、这节课我们学习有关比例的应用的知识,即学习解比例。(板书课题,)。
二、引导探索,学习新知。
1、自学:什么是解比例?请看书第35页。
比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。
2、自主学习例2。
出示思考题:
思考:
(1)、埃菲尔铁搭模型的高与埃菲尔铁搭的高度的比是1:10。
也就是()的高度:()的高度=1:10。
还有几个项不知道?不知道的这个项我们把它叫做()项。
小组内讨论解决问题,汇报:。
(1)把未知项设为x。
(2)根据比例的意义列出比例:(x:320=1:10)。
(3)指出这个比例的外项、内项,弄清知道哪三项,求哪一项。
(4)根据比例的基本性质可以把它变成什么形式?
(5)这变成了原来学过的什么?(方程。)。
(6)让学生自己在练习本上计算完整。课件出示计算过程。
小结:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x,所以解比例也要写“解”字。
解比例的步骤是:
(1)、用比例的基本性质把比例改写成方程。
(2)、应用解方程的知识算出未知数。
3、教学例3。
出示例3:
思考:
(1)“这个比例与例2有什么不同?”(这个比例是分数形式。)。
(2)这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?
讨论:
(1)解这种分数形式的比例时,要注意什么呢?
(2)在这个比例里,哪些是外项?哪些是内项?
让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。课件出示计算过程。
课件出示:做一做,独立完成后订正。
4、总结解比例的过程。
刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)。
变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)。
从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)。
三、巩固应用:。
(一)、填空。
1、解比例x:12=2:24第一步24x=12×2是根据()。
2、把0、3:1、2=0、2:0、8可改写成。
()×()=()×()。
3、把4×5=10×2改写成比例是():()=():()。
4、若甲:乙=3:5,甲=30,则乙=()。
5、在比例中,如果两个内项的积上36,其中一个外项是9,
另一个外项是()。
(二)、判断下列的说法是否正确。
1、含有未知数的比例也是方程。()。
2、求比例中的未知项叫解比例。()。
3、解比例的理论依据是比例的基本性质。()。
4、比就是比例,比例也是比。()。
(三)、根据题意,先写出比例,再解比例。
1、8与x的比等于4与32的比。
2、14与最小的质数的比等于21与x的比。
四、课堂总结:
今天你有什么收获?指生说收获。老师小结。
最新六年级数学比例教案(精选12篇)篇四
1、完成第63页的“练一练”。
先让学生独立思考并作出判断,再要求说明判断理由。你是怎样判断的?
2、做练习十三第1~3题。
第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。
第2题先让学生独立进行判断,再指名说判断的理由。
第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。
填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。
最新六年级数学比例教案(精选12篇)篇五
学生发现:时间变化,路程也随着变化,路程和时间是两种相关联的量。(补充板书)。
(二)探索两个变量之间的关系。
1、谈话:请同学们进一步观察表中的数据,找一找这两种量的变化有什么规律?
启发学生从“变化”中去寻找“不变”。
学生可能会从不同的角度去寻找规律。
2、教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。
如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。
路程。
根据学生的回答,教师板书关系式:时间=速度(一定)。
4、教师对两种量之间的关系作具体说明:当路程和对应时间的比的比值总是一定,也就是速度一定时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
(板书:路程和时间成正比例)。
反问:在什么条件下行驶的路程和时间呈正比例?
最新六年级数学比例教案(精选12篇)篇六
教科书第52页例1,第55页课堂活动第1题及练习十二1,2,3题。
1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。
2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。
认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。
理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
教具:多媒体课件。
学具:作业本,数学书。
(1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。
(2)揭示课题。
教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。
用课件在刚才准备题的表格中增加几列数据,变成表。
教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。
教师根据学生的回答将表格完善,并作必要的板书。
教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。
板书:相关联
教师:你们还发现哪些规律?
学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:
教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。
板书:
教师:我们再来研究一个问题。
课件出示第52页下面的试一试。
学生先独立完成。
教师:你能用刚才我们研究例1的方法,自己分析这个表格中的`数据吗?
教师根据学生的回答归纳如下:
表中的路程和时间是相关联的量,路程随着时间的变化而变化。
时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。
路程与时间的比值是一定的,速度是每时80 km,它们之间的关系可以写成路程时间=速度(一定)
教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?
引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。
教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。
教师:请大家说一说生活中还有哪些是成正比例的量。
(1)完成练习十二的第1题。
教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?
学生独立思考,先小组内交流再集体交流。
(2)完成练习十二的第2题。
教师:这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?
最新六年级数学比例教案(精选12篇)篇七
学生思考回答(挖掘学生生活经验)。
同学们知道的真多,说明同学们平时认真观察,是个有心人。
二、引导探究,自主建构。
活动一:探究比例的意义。
1.你了解到哪些关于国旗大小的知识?
学生交流,给学生充分的交流机会。
(1)猜测。
预设:生1、长和宽的比值相等;生2、宽和长的比值相等,
(2)小组验证。
每个小组任选两种规格国旗,验证一下每种国旗长和宽之间存在的规律。
(3)展示交流小组验证结果,学生到黑板前板书得出结论。
预设:每种国旗的长和宽的比都是3:2,他们的比值相等。
每种国旗的宽和长的比是2:3,他们的比值相等。
怎么判断两个比是不是成比例?
试一试,判断下面哪组中的两个比可以组成比例。
2:3和6:94:2和28:405:2和10:420:5和1:4。
活动二:探究比例的基本性质。
2.小组内验证猜测结果。
3.展示验证猜测情况。得出结论,
预设:
“在比例里,两个外项相乘的积就等于两个内项相乘的得数”。
“在比例里,把两个外项乘起来,再把两个内项乘起来,它们的得数是一样的”。
教师归纳总结。
同学们说得对,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
板书:比例的基本性质。
谁能用分数形式表示以上比例?怎样求两个内项和两个外项的积呢?(分子和分母交叉相乘)。
三、强化训练、应用拓展。
同学们学习了比例的意义与性质,那么能利用它们解决实际问题吗?
1.判断下面哪组中的两个比可以组成比例?
(1)6:9和9:12。
(2)1/2:1/5和5/8:1/4。
(3)1.4:2和7:10。
(4)0.5:0.2和10:4。
2.判断。
(1)表示两个比相等的式子叫做比例()。
(2)0.6:1.6与3:4能组成比例()。
(3)如果4a=5b,那么a:b=4:5()。
3.填空。
5:2=80:()。
2:7=():5。
1.2:2.5=():4。
在一个比例里,两个外项互为倒数,其中一个内项是6,另一个内项是()。
在一个比例里,两个内项的积是12,其中一个外项是2.4,另一个外项是()。
4.写出比值是5的两个比,并组成比例。
5.根据3a=5b把能组成的比例写出来。
四、自主反思、深入体验。
通过这节课的学习你有什么收获?
最新六年级数学比例教案(精选12篇)篇八
1、使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
认识反比例关系的意义。
掌握成反比例量的变化规律及其特征。
一、铺垫孕伏:
1、正比例关系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2、下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
4、引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)。
二、自主探究:
1、教学例1。
出示例1某运输公司要运一批300吨的货物。让学生计算并完成填表任务。
每天运的数量(吨)1020304050。
所需的天数3015107.5。
在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答讨论结果得出:
(1)、每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)、每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)、可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是300。提问:这里的300是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的'吨数和天数的积一定)。
2、教学例2。
出示例2。
3、概括反比例的意义。
(1)、综合例1、例2的共同点。
提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?
(2)、概括反比例意义。
例1、例2里两种相关联的量,它们是什么关系的量呢?说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。
4、具体认识。
(2)、提问:看两种相关联的量成不成反比例,关键要看什么?
(3)、判断。
现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,那它们就是成反比例的量,相互之间的关系就是反比例关系。
最新六年级数学比例教案(精选12篇)篇九
在上面的数量部系式中,如果加工零件总数一定,每小时加工零件和加工时间是什么关系?如果应付的总钱数一定,每本书的价钱和本数是什么关系?如果总产量一定,每公亩产量和公亩数是什么关系?这就是今天我们学习的内容:反比例的意义(板书)。
最新六年级数学比例教案(精选12篇)篇十
1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
最新六年级数学比例教案(精选12篇)篇十一
1.知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。
2.过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。
3.情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。
最新六年级数学比例教案(精选12篇)篇十二
3、感知生活中的数学知识。
1、通过具体问题认识反比例的量。
2、掌握成反比例的量的变化规律及其特征。
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
预习24---26页内容。
1、什么是成反比例的量?你是怎么理解的?
2、情境一中的两个表中量变化关系相同吗?
3、三个情境中的两个量哪些是成反比例的量?为什么?
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。
情境(一)。
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
情境(二)。
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每。
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。
同桌交流,用自己的语言表达。
写出关系式:速度×时间=路程(一定)。
观察思考并用自己的语言描述变化关系乘积(路程)一定。
情境(三)。
写出关系式:每杯果汁量×杯数=果汗总量(一定)。
5、以上两个情境中有什么共同点?
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的`两个数的乘积是一定的。这两种量之间是反比例关系。
活动四:想一想。
1、判断下面每题是否成反比例。
(1)出油率一定,香油的质量与芝麻的质量。
(2)三角形的面积一定,它的底与高。
(3)一个数和它的倒数。
(4)一捆100米电线,用去长度与剩下长度。
(5)圆柱体的体积一定,底面积和高。
(6)小林做10道数学题,已做的题和没有做的题。
(7)长方形的长一定,面积和宽。
(8)平行四边形面积一定,底和高。
2、教材“练一练”p33第1题。
3、教材“练一练”p33第2题。
4、找一找生活中成反比例的例子,并与同伴交流。
两个相关联的量,乘积一定,成反比例。
关系式:x×y=k(一定)。
本课时教学设计特点:一是情景设置和几个表格的设计,都注重从现实题材出发,让学生感受到反比例在现实生活中的广泛应用。二是通过让学生自己去分类整理、自主探究、合作交流得出反比例的意义,有利于发展学生的数学思维。