直线与圆的位置关系教学设计方案(热门17篇)

时间:2023-11-14 作者:翰墨直线与圆的位置关系教学设计方案(热门17篇)

计划书范文中常常包含了对风险和挑战的预测和分析,帮助我们在实施计划过程中更好地应对问题。以下是小编为大家收集的计划书范文,希望能够为大家提供一些参考和启示。

直线与圆的位置关系教学设计方案(热门17篇)篇一

本节课的教学内容是点和圆的位置关系,看似内容少而简单,但让学生真正理解如何由图形关系得出数量关系,以及从数量关系联想到图形的位置关系,却并非简单。如果忽略了这一过程,学生会做题,却无法体验数学的本质,无法体验数形结合思想。所以本节课中引导学生由图形联想到数量关系,即有点和圆的位置关系联想到点到圆心的距离与半径的大小关系。我是分两步的得出的:

第一步让学生从图形上直观的认识点和圆的三种位置关系,第二步引导学生从数量上判断图形位置,是为了让学生更好的体验数形结合思想。数量关系的探索是这节课的一个重点内容,也是这节课的.难点所在。为解决这个问题,在课前布置了学生进行预习,预习内容为以下6点:

2、经过一个点可以作几个圆?

3、经过两个点可以作几个圆?圆心有什么特点?

4、经过不在同一直线上的三点可以作几个圆?

5、过在同一直线上的三点能作圆吗?如果不能如何证明。

6、过在不在同一直线上的三点能作圆吗?如果能,能做几个,如果不能,请说明理由。

通过课堂上的提问反馈,可以感受到学生通过预习,在自主学习的基础上能更好的理解知识,从而进一步提高课堂听课的效率。

新课标指出,自主探究、动手实践、合作交流应成为学生的主要学习方式,教师应引导学生主动的从事观察、实验、猜测、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。本节课中“不在同一直线上的三点可以确定一个圆”让学生经历了循序渐近的探究过程,即通过画图、观察、分析、发现经过一个已知点可以画无数个圆,经过两个已知点也可以画无数个圆,但其圆心分布在连接两点线段的垂直平分线上,经过不在同一直线上的三点可以确定一个圆。

通过这节课,学生们深切感受到预习在学习中的重要作用,也通过自己的预习对所学知识有理更深入的理解,从而提高了课堂效率;同时,通过对这节课的反复推敲设计,我也深切感受到对教材研究的重要性。

直线与圆的位置关系教学设计方案(热门17篇)篇二

已知直线都是正数)与圆相切,则以为三边长的三角形是________三角形.

三、解答题。

当为何值时,直线与圆有两个公共点?有一个公共点?无公共点?

四、填空题。

若直线与圆相切,则实数的值等于________.

圆心为且与直线相切的圆的方程为________.

直线与圆相切,则实数等于________.

直线与圆相切,则________.

过点作圆的切线,且直线与平行,则与间的距离是________.

过点,作圆的切线,则切线的条数为________条.

过点的圆与直线相切于点,则圆的方程为________.

五、解答题。

过点作圆的切线,求此切线的方程.。

圆与直线相切于点,且与直线也相切,求圆的方程.。

六、填空题。

由直线上的一点向圆引切线,则切线长的最小值为_____________.

七、解答题。

求满足下列条件的圆的切线方程:

(1)经过点;

(2)斜率为;

(3)过点.。

已知圆的方程为,求过的圆的切线方程.。

八、填空题。

直线被圆截得的弦长等于________.

直线被圆截得的弦长等于________.

直线被圆所截得的弦长为________.

圆截直线所得弦的长度为4,则实数的值是________.

设直线与圆相交于两点,若,则圆的面积为________.

直线被圆截得的弦长为________.

直线被圆所截得的弦长为________.

圆心坐标为的圆在直线上截得的弦长为,那么这个圆的方程为________.

过点的直线被圆截得的弦长为,则直线的斜率为________.

过原点的直线与圆相交所得弦的长为2,则该直线的方程为________.

九、解答题。

圆心在直线上,圆过点,且截直线所得弦长为,求圆的方程.。

十、填空题。

过点作圆的弦,其中最短弦的长为________.

十一、解答题。

已知圆,直线.

(1)求证:对,直线与圆总有两个不同的交点;

(2)若直线与圆交于两点,当时,求的值.。

设圆上的点关于直线的对称点仍在圆上,且直线被圆截得的弦长为,求圆的方程.。

已知圆,直线.。

证明:不论取什么实数,直线与圆恒交于两点。

求直线被圆截得的弦长最小时的方程,并求此时的弦长。

十二、填空题。

圆上到直线的距离等于1的点有________个.

在平面直角坐标系中,已知圆上有且仅有四个点到直线的距离为1,则实数的取值范围是________.

设圆上有且仅有两个点到直线的距离等于1,则圆半径的取值范围是________.

直线与曲线有且只有一个公共点,则b的取值范围是_________。

若直线与圆恒有两个交点,则实数的取值范围为________.

已知点满足,则的取值范围是________.

若过点的直线与曲线有公共点,则直线的斜率的取值范围为。

直线与圆的位置关系教学设计方案(热门17篇)篇三

本节课由蔡**老师执教,主要有三部分组成。首先前面两个问题通过复习前几课学过的点到直线的距离公式以及两条直线的位置关系的判定,为下面例子中判断直线与圆的位置关系作好铺垫。紧接着通过回顾直线与圆的三种位置关系引入新课,并结合图形深入探究每种关系中圆心到直线的距离d与圆的半径r的大小关系以及交点个数的情况。再通过例题的讲解与练习的训练去总结直线和圆的位置关系所反映出来的数量关系。最后师生对本节课知识点进行共同小结,完成本节课的整体教学内容。

听了这节课之后,我认为本节课的整体思路清晰、流畅,结构合理,重点突出,较好地完成了本节课的教学目标。在引导学生归纳出直线与圆的`位置关系的数量关系后再进行相关的例题讲解和习题训练,确保了学生对本节课重点知识的掌握。不过,个人认为本节课还是有一些值得探讨的问题:1、例1是对本节课所学知识的应用,是本节课的重点及难点,应该着重分析这块。学生对带有绝对值符号的c的范围并不能很好地理解,因涉及先前学过的内容,可举个适当小例子帮助学生回顾,如:,则的范围是什么等等。2、个人觉得练习一中判断直线与圆的位置关系时,圆心到直线的距离计算得d=,让学生求k的范围难度太大。本来学生才刚掌握点到直线的距离公式,还不能很好熟练的运用,现在式子中又有绝对值又有根号求k的范围,学生的积极性很容易被打压,应当换个适当难度的,及时提高学生的积极性,培养他们的兴趣。3、应让学生多动手、动口回答问题,及时巩固所学知识。

本节课是在直线和直线的基础上进一步学习的内容,也是后面学习直线与圆的方程的应用的基础,起着承上启下的作用,而且三种位置关系的研究方法和思路基本一直,都是从研究位置关系开始进而研究位置关系而发生的数量关系,教师可以用类比的教学方式使学生掌握这种学习方法。其实,一堂课的教学很大程度上受教学细节的影响,比如:语言的描述是否准确,是否及时对学生进行表扬等。每次听完课,我都会拿自己进行比较,看看还有哪些自己没做到的,或是没注意的,然后多多实践,尽量充实自己,收获不少啊。

直线与圆的位置关系教学设计方案(热门17篇)篇四

1、课件教学中在探索圆和圆的位置关系、探索两圆相切时的对称性、探索两圆相切时圆心距d和两圆半径r和r的数量关系时多次运用flash动画展示,给学生以直观感受,便于学生理解,同时,增加上课的生动性。

2、授课方式采用分组教学,对课程内容提出问题后先要学生在小组内动手交流并整理所获得的信息内容,然后在课堂上展示组内成果,从而调动起学生的学习积极性。

3、对练习题的设计由浅入深、层层递进,突出本节课的重点、突破了难点。

4、授课中贯穿了观察、猜想、验证等过程,使学生经历了知识的探索过程,“过程与方法”的目标落实比较好。

在授课时适时引导,使尽可能多的学生真正参与进来,可以采取小组之间竞争评比打分以提高学生的注意力、合作交流、积极发言等各方面的参与情况。当学生回答问题后,无论回答的结果如何,要进行不同程度的关注:对回答结果清晰、正确者给予鼓励;对回答不准确或不正确者,在其他学生纠正的同时也要给予积极参与、回答问题积极方面的鼓励,使不同层次的同学都体会成功的喜悦、参与的必要。

在问题的设计上,一要根据学生的实际情况设计问题,问题难度由浅入深、层层递进,既要有梯度又要给学生留有思考的空间。二要考虑到题量的适度,加大练习量,更好地落实知识与技能目标。

垂径定理教学反思:

垂径定理的推证是以圆是轴对称图形的性质为依据的,因此,垂径定理既是圆的性质---轴对称性质的重要体现,也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据。本节内容是本章基础,是圆的有关计算和圆的有关证明的一个重要工具。

的能力。

由于明确了教学目标,因此在授课中,新知识的引入与使用过程显得更为流畅,学生也更加的投入。经过这节课的学习,学生基本掌握了垂径定理的本质:2个条件和2个结论,并能在垂径定理的基础上推出其推论。且能应用它们进行简单的计算和证明,较好的达到了教学目标,完成了教学任务,教学效果良好。

本节课也存在着不足和需改进之处:

1、在得出结论后,没有留出足够的时间给学生对定理进行理解和记忆。致使一些中等以下的学生对定理的内容运用时不熟练。2、在训练中题目较容易,应适当提高学生对新知识的理解体会。不仅要把基础的东西训练牢固,还要适当提高题目的高度,让不同的学生都有所获,都能体会到成功的快乐,长此以往学生便对数学产生兴趣,提高成绩也就容易了.

一、有时由于时间紧张,没有给学生系统的将知识串一下,只是就题讲题,只是给学生了几条鱼,而没有给他们渔;所以首先应对本章的知识点进行系统的梳理。复习课要把旧知识进行整理归纳,这一过程,就是将平时相对独立的知识点串成线,连成片,结成网。如果教师对复习问题面面俱到,学生会感到乏味,引不起兴趣,往往不能深入思考,张口就来,老师成了课堂的主角,学生则是被动接受,老师感到累而学生思维受到限制。因此,在课堂上通过问题的解决整理归纳学过的知识,把学习的主动权交给学生,取得效果较好。

二、其次要提炼方法形成知识结构,圆有哪些性质?三大性质定理学生首先要明确,以及各自适用的的题型。点与圆、线与圆、圆与圆的关系分别是什么?有关的题型又是什么?在讲课时通过典型的代表性的题目的讲练结合,学生可以通过解题后的反思提炼方法,形成知识结构,加深了对定理的理解。复习不是知识的简单再现,在复习过程中,教师也应是坚持启发引导学生发现思维误区,总结方法为主,辅之以精讲。充分发扬教学民主,给学生以足够的思维空间,对于解题思路的探讨过程,让学生真正理解,从而提高复习质量和复习效率。

三、再有要留给学生足够的时间来消化一节课中所学到的知识;切记不能为了赶课程而让学生获得的知识成为“夹生饭”应让学生自己先整理一下知识点,上课教师再补充一下,使学生能系统的掌握知识;老师们往往有这样的感觉:上复习课时间总是不够用。即使这样我们也要给学生足够的消化吸收的时间,否则,老师的任务完成了,而学生大都在一片迷糊中,这样的课就没有什么效果了。圆这一部分的复习我是安排了四节课,相对来说,效果还是不错的。

直线与圆的位置关系教学设计方案(热门17篇)篇五

c.掌握直线和圆的位置关系判定的应用,会求已知圆的交线和切线方程。

(2)能力目标

让学生通过观察,分析,总结归纳出根据直线与圆的方程来判断直线与圆的位置关系的方法,培养学生分析问题解决问题的能力,让学生对坐标法有进一步的了解,并能用参数法、数形结合的方法去分析、解决相应的数学问题,同时训练学生数学思维,培养学生寻求一题多解的能力。

(3)情感目标

通过学生自己动手实验和探索,培养学生动手能力和发现问题的能力;通过师生互动,生生互动的教学活动过程,形成学生的体验性认识,体会成功的愉悦,提高数学学习的兴趣,树立学好数学的信心,培养锲而不舍的钻研精神和合作交流的科学态度。

重点:直线和圆的三种位置关系

难点:直线和圆的三种位置关系的性质和判定的应用

教学方法:问题探究式、启发式引导、参与式探究、互动式讨论

学习方法:自主探究、观察发现、合作交流、归纳总结。

教学手段:借助多媒体动态演示,构建学生探究式学习的教学环境。

1、创设情景、引入新课;

2、引导启发、探索新知;

3、讲练结合、巩固新知;

4、知识拓展、深化提高;

5、小结新知,画龙点睛

6、布置作业,复习巩固;

重新阅读课本本节相关内容并预习下一节课内容。

直线与圆的位置关系是高考的考点之一,是在学生已有的平面几何知识基础上进行教学,以点与圆的位置关系上升为直线与圆的位置关系,从简单到复杂,从几何特征到代数问题(坐标法)的教学过程,它应用比较广泛,同时也为后面圆和圆的位置关系作了铺垫,对后面的解题及相关数学问题的解决将起到重要的作用,且本节是直线与圆锥曲线位置关系的基础,故要求学生充分掌握。

针对上述情况,我精心设计教学过程,借助多媒体动态演示直线和圆的位置关系,直观形象地展示了直线与圆的位置关系,化抽象为具体,以便学生更好的.理解他们之间的关系及其几何特征,再引导学生把几何形式的结论转化为代数形式;教学过程中采用问题探究式、参与式探究、互动式讨论等教学方法,为学生自主探究、合作交流构建一个好的平台;分层次设置例题,让全体学生都得到提升;讲解例题时应用启发式引导教学方法,不断训练学生数学思维,借助图象分析题意,加深学生对数形结合思想了解;新课结束后,引导学生小结本课内容,培养学生归纳总结的能力。

直线与圆的位置关系教学设计方案(热门17篇)篇六

20xx.11.17早上第二节授课班级:初三、1班授课教师:

过程与方法目标:

2.通过例题教学,培养学生灵活运用知识的解决能力。

情感与态度目标:让学生从运动的观点来观察直线和圆相交、相切、相离的关系、关注知识的生成,发展与变化的过程,主动探索,勇于发现。从而领悟世界上的一切物体都是运动变化着的,并且在一定的条件下可以转化的辩证唯物主义观点。

利用多媒体放映落日的动画,初中数学教案《数学教案-直线和圆的位置关系(公开课)》。引导学生从公共点个数和圆心到直线的.距离两方面体会直线和圆的不同位置关系。

学生看投影并思考问题。

调动学生积极主动参与数学活动中.。

探究新知。

1、通过观察直线和圆的公共点个数得出直线和圆相离、相交、相切的定义。

布置作业。

1、课本第101页7.3a组第2、3题。

2、课余时间,留心观察周围事物,找出直线和圆相交,相切,相离的实例,说给大家听。

直线与圆的位置关系教学设计方案(热门17篇)篇七

一、教学目标:

根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为:

(1)知识目标:

a、知道直线和圆相交、相切、相离的定义。

会根据直线和圆相切的定义画出已知圆的切线。

c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。

2)能力目标:

让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。

3)情感目标:

在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。

二、教材的重点难点。

直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。

三、教学重点和难点。

解决重点的方法主要是:(1)由学生观察老师展示的一轮红日从海平面升起的照片提出问题,能不能我们学过的知识把它们抽象出几何图形再展示出来(让学生尝试通过日出的情境画出几种情况),(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。是什么?)。

在说直线与圆的位置关系时,如何突破这个难点:(1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定(因为直线和圆有三个或三个以上的公共点,那么这与不在同一条直线上的三点就可以作一个圆,相矛盾)。

(2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。

(3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公共点,它与有一个公共点的含义不同)。

(4)突破直线和圆的位置关系的(如果圆o的半径为r,圆心到直线的距离为d,

3.直线l与圆o相离=dr。

(上述结论中的符号“=”读作“等价于”)。

式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。

四、教学程序。

[提问]通过观察、演示,你知道直线和圆有几种位置关系?

[讨论]一轮红日从海平面升起的照片。

[新授]给出相交、相切、相离的定义。

[类比]复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。

直线与圆的位置关系教学设计方案(热门17篇)篇八

设计这节课的指导思想是以培养学生的观察、类比、归纳等数学能力为核心,通过主体性教学,充分调动学生学习的积极性,主动性和创造性,使学生以多种方式、多种途径主动参与到学习中来,培养学生主动学习的习惯及实事求是的学习态度。

1、教材的地位和作用。

本节内容选自《普通高中课程标准实验教科书·数学2·必修(a版)》第四章第2节,它既是对圆的方程应用的延续和拓展,又是研究圆与圆的位置关系的基础,为后续研究直线与圆锥曲线的位置关系奠定思想基础,具有承上启下的作用。

本节课是学生在已获得一定的探究方法的基础上的进一步深化,是学习直线与圆的方程之后,进一步的理性分析,定量研究,而解决问题的主要方法是坐标法。坐标法是解析几何中最基本的研究方法,不仅是定量判断直线与圆的位置关系的方法,同时也是培养同学们的空间想象能力和逻辑思维能力的重要内容。在直线与圆的位置关系的判断方法的建立过程中蕴涵着诸多的数学思想方法,这对于进一步探索、研究后续内容有很强的启发与示范作用。

2、教学目标。

《新课程标准》指出:在平面解析几何初步的教学中,教师应帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何意义,最终解决几何问题。这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。

学生在初中已经学习了直线与圆的位置关系,知道可以利用直线与圆的交点的个数以及圆心与直线的距离d与半径r的大小比较两种方法判断直线与圆的位置关系,但是这两种方法都是以结论性的形式呈现,在高一学习了解析几何以后要求学生掌握用直线和圆的方程来判断直线与圆的位置关系,让学生经历知识的发生和发展过程,领悟解决问题的思想方法,提高分析和解决问题的能力,体验成功的喜悦,增强探究知识的欲望和热情,养成一种良好的思维品质和习惯。

3、教学问题诊断。

本节主要内容:直线与圆的位置关系的判定,弦长问题。为了突出重点,突破难点,落实本节设定的教学目标,安排了创设情境、探究新知、典例剖析、变式训练等环节,通过讲练结合,解决以下三个问题:直线与圆的位置关系的判定及弦长问题;代数法、几何法的理解及应用;数形结合思想的培养。

典例剖析直接应用新知解决数学问题,难度不大,教学时应为学生规范表达数学过程做出示范。体会用代数方法解决几何问题,渗透数形结合的思想方法。变式训练1难度系数增加,直线方程、圆的方程中含有参数,这样使学生进一步熟练掌握直线与圆的位置关系的判断方法,为后续学习直线与圆锥曲线含参数问题做好铺垫。变式训练2中所求直线方程中有一条斜率不存在,学生容易忽略,应引导学生判断符合条件的直线有几条,注意直线方程点斜式的适用条件,及时做到查漏补缺。学生练习时,教师巡查,观察学情,及时从中获取反馈信息。对学生练习中出现的独到解法提出表扬和鼓励,对其中偶发性错误进行辨析、指正。通过形成性练习,培养学生的应变和举一反三的能力,逐步形成技能。

4、教法特点及预期效果。

教和学的矛盾是贯穿教学过程始终的基本矛盾,学是中心,会学是目的。高一学生对解析几何有很高兴趣,但学习主动性有待调动,在教学中要指导学生学会学习,引导学生在问题情境中探索研究,主动地寻找解决问题的思路和方法,在探究的过程中实现自己对新知识体系的构建,在掌握新知识和技能的同时形成自己的学习方法。教是为了不教,注重培养学生良好的数学思维。

利用多媒体辅助教学,激发学生的学习热情,启迪学生的思维,突破教材难点。创设情景,引发学生的好奇心;探究新知,分段递进,层层深入,调动学生的积极性,培养合作意识;典例剖析,规范表达数学过程,渗透数形结合的思想方法;变式训练,培养学生独立思考的能力,激发学生的创新思维;归纳小结,查缺补漏,以便调控教学。

直线与圆的位置关系教学设计方案(热门17篇)篇九

这节课是义务教育课程标准实验教科书九年级上册第二十四章第2节第2课时的内容。本人在教学过程中紧紧围绕新课程理念展开教学,主要从以下几方面介绍闪光点:

一、创设情境。

1、组织学生发现,寻找,搜集和利用学习资源。

现代课程观认为课程是由教师、教材、学生和环境四要素构成的,教师和学生是课程的开发者和创造者。组织学生发现,寻找,搜集和利用学习资源是教师的一项重要职责。因此,在教学中,本人把日出这一自然现象作为课程资源引入数学教学,学生通过回想日出的景象画出图画:一幅是美术图画;一幅是一条直线和一个圆。在学生都欣赏艺术图画的美时,教师引导学生欣赏一条直线和一个圆的数学美和它的价值,它的价值在于抽象和简化,便与研究它的性质。让学生们看见了自然现象中的数学价值,同时也反应了自然现象和数学之间的联系。然后,我引导学生把变化着的自然现象再抽象成数学问题,引出直线和圆的相交、相切、相离三种关系。

2、创设丰富的教学情境,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性。本人在教学第一环节用现实生活中日出这一景观,让学生享受美的情境中,在充分的想象中,从生活中抽象出数学模型,因此让学生画出两种不同的日出图画,美术的图画让学生看见了生活中的美。但在教学中本人着重引导学生欣赏另一种图画是抽象的数学美,在欣赏美的同时,体会生活中的数学,从而激发学生的求知欲。

3、给学生提供合作交流的空间和时间。首先给学生的自主学习提供时间,让学生自己画出日出情景,接着合作交流两种日出的图画,这样为学生创设合作交流的空间。

4、组织学生营造教室中的积极的心理氛围。本人在教学中注重这一方面的渗透。教学第一环节中,学生画出两种不同的画面后,及时反馈,给予表扬和鼓励。尤其是教学过程中,我班田文洁同学由于偏科、数学底子薄弱,我发现她在画图中碰到老师的目光马上避开,老师意识到她画图中可能有问题,我便走到她面前,与她交流,启发她如何着手,并且诱导她从数学角度思考又该怎样画,这就给了她知识上的启发和心理上的支持。还有看见胡海林没有动笔和本,便走过去摸摸他的头,并用温和的目光问:“没有思路吗?”我启发引导后,让他和同桌交流,让同桌再帮助他。这样体现了对学生的信任、关心和理解。学生在老师的关爱下,学生的帮助下、受到激励和鼓励,激发了学习的兴趣,从而用自己的爱心与学生一起营造了一个平等,尊重、信任、理解和宽容的教学氛围。这正是新课程理念所倡导的。

二、新课讲解(探究新知)。

这一部分的教学中主要渗透以下几个基本理念:

1、让课堂教学充满创新活力。

(1)合作学习有利于培养学生的创新精神与创新能力。讲述直线和圆相交、相切、相离的概念时,通过师生合作交流得出两种方法,即交点的个数及点到直线的距离d与半径r之间的关系,在合作交流中学生加深了对知识的理解和掌握、同时也有利于创新精神和创新能力的培养。

(2)探究过程是培养创新精神和创新能力的重要途径。例:在讲概念时,提出这一个问题:“通过回忆刚才画出日出的图画,同学们发现直线与圆有三种位置,各自有什么特点?”这就为学生提供了探究的空间,学生很容易得出交点个数,及时抓住探究过程中这一创新的“火花”,给予欣赏和激励,从而掌握基础知识和基本技能。

2、教学活动中尊重学生已有的知识和能力。

(1)尊重学生已有的知识和学生的经验。在讲d与r的关系时,复习了上节所学点和圆的位置关系,这样,学生学习新知识是在原有知识基础上自我构建的过程,了解学生的知识基础是老师备课的一项重要内容。

(2)尊重学生独特的感受和理解。由于学生间认知上、情感上的差异,这一部分教学很多学生对点到直线的距离即d与r关系很难表述,甚至想不到,所以曾多次激励学生谈独特的见解。

(3)把新知识纳入到原有认知结构中去。新知识是学生已获得的知识,是学生自我建构后获得的知识,新知识在获得后,还有一个重要的任务就是把新知识以一定的方式组织起来,纳到原有的认知结构中去,便于记忆和提取。这一环节充分体现,即讲完两种方法后便出示表格进行归纳和总结,从而帮助学生不断优化认知结构。

3、提倡自主,合作,探究的学习方式。这一理念在这一环节的教学中又得到充分体现。采用独立思考、分组讨论,合作交流得出本节的重要内容即本节的重点。

4、注重教师是学习活动的参与者。教师应引导学生在自主探索和合作交流中达到对新知识的理解。教学中我发现冯成同学的第二种方式是大部分学生没有想到的,并且讲述很好,过渡自然。因此异常兴奋,我与同学们同时鼓掌,即达到高潮。充分体现了师生间共同分享感情和认识。

三、巩固练习(深化练习)。

1、练习符合学生的认知规律,难易度适中。

2、练习量适中,题型多样,有选择题,填空题、解答题。

3、注重分层教学和能力培养、持续发展,设计了必做题,选做题。

四、课堂小结:

课堂小结是一个重要的环节,本人给学生一定的思考和交流的空间,除了让学生自己总结本节知识外,还用表格的形式又展现给大家,让同学们再次回顾、反思、记忆。更重要的是让学生总结本节的数学方法和数学思想,以及生活中处处充满数学,数学为生活服务等理念。

不论从新课程理念,还是教学效果来看,这都是一节比较满意的课。另外,教学过程凸现双基,目标落实,教学结构完整有序,层层推进。教师对学生的尊重和爱护也都随处体现,教师对知识的精益求精,让这一节课所有的知识点都清晰地呈现在学生面前,教师对学生间的相互评价,相互合作无疑又为学生间的友谊注入新的动力,作业设计分层教学,有必做题和选做题。

当然,这节课仍有需要改进的地方:

一、语言有待锤炼,在整节课中,老师的提问过于频繁,其中不乏有很多较好的提问起到点拔、引导作用,但仍有一些问题不必要的,且提问时废话较多。

二、时间分配的不太合理,练习时间稍有不足,因前面内容即创设情境和探究新知识占用较多时间,所以后面的练习时间相对较短,对于分层教学处理练习就显得仓促。

三、板书不够规范,因本节书本没有例题,所以应在黑板上板书作业格式,这样在以后作业中有格式示范,书写规范。

四、教学过程不太注重数学思想渗透,例:创设情境中画图,导出直线与圆的三种位置关系,要启发诱导学生采用了什么数学思想。

针对以上问题,在以后的教学中,要加强语言锤炼,要注重分层教学,注重能力培养,要注重数学思想和方法渗透。

总之,这是我对自己本节课的一些教学反思,或者说是对新课程理念的浅薄认识。

直线与圆的位置关系教学设计方案(热门17篇)篇十

《直线和圆的位置关系的复习》一课的教学,可以说非常成功。教学设计充分体现了新的教学理念,重点突出、层次清楚、构思新颖,整个教学过程教师采用多样化的呈现方式为学生搭建参与探究的平台,高度重视学生的主动参与,有意识地为学生创设了良好的数学交流情境。注意学生的情感与态度,知识与技能的形成和发展,使每个学生都有表现的机会和获得成功的体验。

由于本节课综合性强,涉及到的知识面广,对学生的能力水平要求高。教师结合本节课的教学目标,突出重点,突破难点。采用教师启发引导,学生合作交流的方式来组织本节课的教学。注重解题思路分析和方法引导,善于引导学生寻找图形中的数量关系,选用适当的知识和方法正确解答问题。

在学习知识的同时,注意数学思想方法的渗透。在教学中,数学知识是一条明线,数学思想方法是一条暗线。崔老师在引导学生学习的同时,教给学生思考方法、学习方法和解决问题的方法,为学生未来发展服务,让学生在脑海里留下数学意识,长期下去,学生将终身受用。

板书条理分明,布局合理,文字与图形完美结合,板书设计不仅让学生对直线和圆的位置关系图形的特征一目了然,而且也便于揭示它们之间的区别和联系。体现了板书的形式美和简洁美,真正使板书起到了画龙点睛的作用。

充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使题意理解更清楚,结论更准确。

教师教态自然,语言清晰,数学语言表述准确,操作演示熟练,提问率高,体现素质教育面向全体学生的要求。

教师注意培养学生的自信心,在教学过程的设计上体现了层次性和梯度性。防止学生对一些问题出现畏惧情绪,鼓励学生敢于知难而进,让学生树立战胜困难的勇气和决心。例题的设计,按照由易到难的顺序呈现,关于直线和圆的复习教学中能利用一个图形提出尽可能多的问题,并尽可能的覆盖到圆的大多数知识,尽可能的加强知识间的横纵的联系,尽可能渗透多种数学思想和方法,最大限度的榨取它的利用价值,达到了一线串珠的目的。体现了综合性例题的大容量、大综合的特点,非常有效地达成本节课的教学目标。

直线与圆的位置关系教学设计方案(热门17篇)篇十一

:通过观察、实验、讨论、合作研究等数学活动使学生了解探索问题的一般方法;由观察得到“圆心与直线的距离和圆半径大小的数量关系对应等价于直线和圆的位置关系”从而实现位置关系与数量关系的转化,渗透运动与转化的数学思想。

:创设问题情景,激发学生好奇心;体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的辨证唯物主义思想。

二、教学重、难点。

难点:学生能根据圆心到直线的距离d与圆的半径r之间的数量关系,揭示直线与圆的位置关系;直线与圆的三种位置关系判定方法的运用。

三、教学设计。

问   题。

设计意图。

师生活动。

2.图形中的圆与直线的位置都是一样的吗?

师:让学生之间进行讨论、交流,引导学生观察图形,导入新课.

生:看图,并说出自己的看法.

师:引导学生利用类比、归纳的思想,总结直线与圆的位置关系的种类,进一步深化“数形结合”的数学思想.

问   题。

设计意图。

师生活动。

使学生回忆初中的数学知识,培养抽象概括能力.

师:引导学生从几何的角度说明判断方法和通过直线与圆的方程说明判断方法.

生:利用图形,寻找两种方法的数学思想.

师:指导学生阅读教科书上的例1.

生:阅读科书上的例1,并完成教科书第128页的练习题2.

师;分析例1,并展示解答过程;启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有总结思考的时间.

生:交流自己总结的步骤.

师:展示解题步骤.

7.通过学习教科书上的例2,你能说明例2中体现出来的数学思想方法吗?

进一步深化“数形结合”的数学思想.

师:指导学生阅读并完成教科书上的例2,启发学生利用“数形结合”的数学思想解决问题.

问   题。

设计意图。

师生活动。

8.通过例2的学习,你发现了什么?

明确弦长的运算方法.

师:引导并启发学生探索直线与圆的相交弦的求法.

生:通过分析、抽象、归纳,得出相交弦长的运算方法.

9.完成教科书第128页的练习题1、2、3、4.

师:引导学生完成练习题.

生:互相讨论、交流,完成练习题.

10.课堂小结:

教师提出下列问题让学生思考:

作业:习题4.2a组:1、3.

直线与圆的位置关系教学设计方案(热门17篇)篇十二

3、教学方法与手段:

教学方法:问题探究式、启发式引导、参与式探究、互动式讨论。

学习方法:自主探究、观察发现、合作交流、归纳总结。

教学手段:借助多媒体动态演示,构建学生探究式学习的教学环境。

4、教学过程:

1、创设情景、引入新课;2、引导启发、探索新知;3、讲练结合、巩固新知;

4、知识拓展、深化提高5、小结新知,画龙点睛6、布置作业,复习巩固。

环节。

重新阅读课本本节相关内容并预习下一节课内容。

直线与圆的位置关系是高考的考点之一,是在学生已有的平面几何知识基础上进行教学,以点与圆的位置关系上升为直线与圆的位置关系,从简单到复杂,从几何特征到代数问题(坐标法)的'教学过程,它应用比较广泛,同时也为后面圆和圆的位置关系作了铺垫,对后面的解题及相关数学问题的解决将起到重要的作用,且本节是直线与圆锥曲线位置关系的基础,故要求学生充分掌握。

针对上述情况,我精心设计教学过程,借助多媒体动态演示直线和圆的位置关系,直观形象地展示了直线与圆的位置关系,化抽象为具体,以便学生更好的理解他们之间的关系及其几何特征,再引导学生把几何形式的结论转化为代数形式;教学过程中采用问题探究式、参与式探究、互动式讨论等教学方法,为学生自主探究、合作交流构建一个好的平台;分层次设置例题与练习,让全体学生都得到提升;讲解例题时应用启发式引导教学方法,不断训练学生数学思维,借助图象分析题意,加深学生对数形结合思想了解;新课结束后,引导学生小结本课内容,培养学生归纳总结的能力。

文档为doc格式。

直线与圆的位置关系教学设计方案(热门17篇)篇十三

新课程指出:学生是学习的主体,是发展的主体。在课堂教学中,教师要将课堂的主动权让给学生,作为教师应以“探究过程,探究方法,探究结果,运用结果”为主线安排教学进程,应高度重视学生的主动参与、亲自研究、动手操作,让学生从中去体验学习知识的过程,引导学生在发现问题、分析问题、解决问题的同时,培养学生的自主学习能力和创新意识。

在《直线和圆的位置关系》这节课中,我首先由生活中的情景——日落引入,让学生发现地平线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。

1.由日落的三张照片(太阳与地平线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。

2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

3.新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生被动的接受,对概念的理解不是很深刻,可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2.虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。

3.对“做一做”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解“做一做”时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,巩固和扩大知识,吸收、内化知识。

总之,新课程的课堂教学要让学生作为课堂教学的主体参与到课堂教学过程中来,充分展现自己的个性,施展自己的才华,使学生在参与和体验的过程中真正成为学习的主人,养成勇于探索、敢于实践的个性品质。与此同时,教师还要为学生的学习创造探究的环境,营造探究的氛围,促进探究的`开展,把握探究的深度,评价探究的效果。

直线与圆的位置关系教学设计方案(热门17篇)篇十四

“国培计划”初中数学——陈晓峰(江西省宁都五中)。

节课的教学,我认为成功之处有以下几点:

1.由日落的三张照片(太阳与地平线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。

2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

3.新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:

1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生被动的接受,对概念的理解不是很深刻,可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2.虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。

直线与圆的位置关系教学设计方案(热门17篇)篇十五

这节课,我由生活中的情景——日落引入,让学生发现地平线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:

1。由日落引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到数学无处不在,无时不有。

2。在探索直线和圆位置关系所对应的数量关系时,让学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

3。新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

“国培计划”初中数学——陈晓峰(江西省宁都五中)。

节课的教学,我认为成功之处有以下几点:

1.由日落的三张照片(太阳与地平线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。

2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

3.新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:

1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生被动的接受,对概念的理解不是很深刻,可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2.虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。

直线与圆的位置关系教学设计方案(热门17篇)篇十六

本节课研究圆与圆的位置关系,重点是研究两圆位置关系的判断方法,并应用这些方法解决有关的实际问题。《圆与圆的位置关系》在旧教材中比重不大,但是在新课标中,被作为一个独立的章节,说明新课标对这一章节的要求已经有所提高。教材是在初中平面几何对圆与圆的位置关系的初步分析的基础上得到圆与圆的位置关系的判断方法,北师大版教材中着重强调了根据圆心到直线的距离与圆的半径的关系进行判断,对用方程的思想去处理位置关系没作要求,但用方程的思想来解决几何问题是解析几何的精髓,是平面几何问题的深化,它将是以后处理圆锥曲线的基本方法,因此,我增加了用方程的思想来分析位置关系,这样有利于培养学生数形结合、经历几何问题代数化等解析几何思想方法及辩证思维能力,其基本思维方法和解决问题的技巧在今后整个圆锥曲线的学习中有着非常重要的意义。

作为解析几何的一堂课,判断圆与圆的位置关系,体现的正是解析几何的思想:用方程处理几何问题,用几何方法研究方程性质。所以我在教材处理上,对判断两圆位置关系用了方程的思想和几何两种方法,两种方法贯穿始终,使学生对解析几何的本质有所了解。

第一,学生学习新知识必须在已有知识和经验的基础上自主建构与形成。所以,我一开始便提出了三个问题,即复习此节相关的知识点,通过问题解决,以旧引新,提出新的问题,以类比的方法研究圆与圆的位置关系。配合几何画板的动画演示,启发学生思考当初是怎样研究判断直线与圆的位置关系的方法?这种方法是不是同样可以运用到研究圆与圆的位置关系上来?能不能用来判断圆与圆的位置关系?使学生很自然地从直线与圆的位置关系的判断方法类比到圆与圆的位置关系的判断方法。

第二,新的课程标准非常重视学生的自主探究,这是学习方式的一次革命,老师的教授过程固然重要,但学生对知识的掌握是在学生自己对知识有体验、有独立的思考和探讨的基础上,才能成为可能。所谓“学在讲之前,讲在关键处”,学生先有一个对知识的认识过程,老师再在关键处进行讲解,使学生真正完成对知识感知、形成和巩固的过程,才是对知识最好的吸收。

第三,学生的学习是在教师引导下的有目的的学习,从而教学的过程就是在教师控制下的学生自主学习和合作探究学习的过程,这个过程中的关键点是怎么样有效地控制学生自主学习和合作探究学习的时间和空间,在教学的过程中,我较好地处理了学生学习的空间与时间,既留给学生充分思考与探索的时间与空间,又严格限定时间,由此培养学生思维的敏捷性,提高课堂效率。

对于问题探究的题型选择的一些思考:

第二个问题研究是研究一个半径变化的圆与定圆相切,求题中参数变化的问题,这道题中同样要注意的是相切的两种情况,并且对于内切,要充分结合数形结合的思想,判断出两圆的半径大小关系。两题都有一定难度,处理时必须牢牢掌握知识,灵活运用。

2、时间把握。课前复习是有必要的,是为了学生类比旧知识,联想新知识,但复习旧知识的时间应该限定在三分钟以内,复习时间长会导致巩固练习的时间不足和问题展开不够充分。

3、限时训练。限时训练的目的是为了让学生更有效率地做题,限定时间过长或是过短都不利于学生提高数学能力,这点还有待研究。

直线与圆的位置关系教学设计方案(热门17篇)篇十七

重点:的性质和判定。因为它是本单元的基础(如:“切线的判断和性质定理”是在它的基础上研究的),也是高中解析几何中研究的基础。

难点:在对性质和判定的研究中,既要有归纳概括能力,又要有转换思想和能力,所以是本节的难点;另外对“相切”要分清直线与圆有唯一公共点是指有一个并且只有一个公共点,与有一个公共点含义不同(这一点到直线和曲线相切时很重要),学生较难理解。

3.教法建议。

本节内容需要一个课时。

(2)在中,以“形”归纳“数”,以“数”判断“形”为主线,开展在组织下,以学生为主体,活动式.

第12页。

相关范文推荐

    企业年度总结心得体会(专业17篇)

    年度总结是一个自我审视和自我评价的过程,可以帮助我们更好地发现自己的问题和不足。特别为大家整理了一些优秀的年度总结范文,希望能够在写作过程中给予你一定的灵感和借

    出去玩感想和体会(精选19篇)

    通过写下心得体会,我们可以更好地与他人分享自己的经验和体会,帮助他人更好地解决问题和面对挑战。为了帮助大家更好地理解心得体会的写作方式,下面是一些经典的心得体会

    工作心得体会十(专业16篇)

    工作心得体会可以帮助我们总结经验,提炼出工作中成功的要素,从而指导未来的工作。下面是一些关于工作心得体会的实例和案例,希望能够对大家的工作有所启发和帮助。

    竞技体育与心得体会和感想(优秀21篇)

    通过写心得体会,我们可以更深入地认识自己的优势和不足,从而做出相应的调整和改进。以下是小编为大家搜集整理的经典心得体会范文,供大家参考和学习。作为一个喜欢运动的

    扶贫活动心得(优秀18篇)

    心得体会是我们在学习、工作或生活中得出的宝贵经验和感悟。小编为大家准备了一些关于心得体会的范文,希望能在写作中给大家一些指导和参考。_中央政治局常委、中央书记处

    理想信念心得体会总结(专业20篇)

    心得体会是对过去一段时间内的经历进行反思和总结的一种方式。如果你对写心得体会有一些迷茫和困惑,不妨参考一下下面的范文,相信能给你一些灵感和帮助。我们的信念和理想

    读书心得报告(专业17篇)

    读书心得是在读完一本书后,对书中内容和自己的感悟进行总结和归纳的一种文字记录。以下是一些读书心得的范文,它们展示了不同人的不同思考方式和文笔风格,希望能为大家提

    班队心得体会(专业19篇)

    我们不断经历着各种各样的事情,对这些经历加以总结和概括,可以更好地指导未来的行动。以下是一些优秀心得体会的典型案例,可以帮助我们更好地理解这一篇文章的写作要求。

    宿管工作人员的心得体会范文(22篇)

    通过撰写工作心得体会,我们可以回顾自己的成长历程,总结出成功的经验和需要改进的方面。小编整理了一些经典的工作心得体会范文,希望对大家写作有所帮助。作为院学生会宿

    做人力资源的心得体会(通用22篇)

    人力资源是指企业内部的人员,他们的能力、素质和态度对企业的绩效和竞争力有着重要影响。我们来看看一些成功企业的人力资源管理经验,或许能给我们带来启发和思考。