教学工作计划是教师根据学科特点和学生实际情况,制定的一种有针对性的教学安排,旨在提高教学效果和学生综合素质。在新的学期即将开始之际,制定一份教学工作计划是必不可少的任务。以下是小编为大家收集的教学工作计划范文,仅供参考,大家一起来看看吧。
最新数学勾股定理教案(汇总14篇)篇一
教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。
学生分析:
1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。
2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。
设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。
教学目标:
1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。
2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。
3、培养学生学习数学的兴趣和爱国热情。
4、欣赏设计图形美。
教学准备阶段:
学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。
老师准备:毕达哥拉斯、赵爽、刘徽等证明勾股定理的图片以及其它有关人物历史资料等投影图片。
(一)引入。
同学们,当你每天手握三角尺绘制自己的宏伟蓝图时,你是否想过:他们的边有什么关系呢?今天我们来探索这一小秘密。(板书课题:探索直角三角形三边关系)。
(二)实验探究。
设网格正方形的边长为1,直角三角形的直角边分别为a、b,斜边为c,观察并计算每个正方形的面积,以四人小组为单位填写下表:
(讨论难点:以斜边为边的正方形的面积找法)。
交流后得出一般结论:(用关于a、b、c的式子表示)。
(三)探索所得结论的正确性。
当直角三角形的直角边分别为a、b,斜边为c时,是否一定成立?
1、指导学生运用拼图、或正方形网格纸构造或设计合理分割(或补全)图形,去探索本结论的正确性:(以四人小组为单位进行)。
在学生所创作图形中选择有代表性的割、补图,展示出来交流讲解,并引导学生进行说理:
如图2(用补的方法说明)。
师介绍:(出示图片)毕达哥拉斯,公元前约500年左右,古西腊一位哲学家、数学家。一天,他应邀到一位朋友家做客,他一进朋友家门就被朋友家的豪华的方形大理石地砖的形状深深吸引住了,于是他立刻找来尺子和笔又量又画,他发现以每块大理石地砖的相邻两直角边向三角形外作正方形,它们的面积和等于以这块大理石地砖的对角线为边向形外作正方形的面积。于是他回到家里立刻对他的这一发现进行了探究证明……,终获成功。后来西方人们为了纪念他的这一发现,将这一定理命名为"毕达哥拉斯定理"。1952年,希腊政府为了纪念这位伟大的数学家,特别选用他设计的这种图形为主图发行了一枚纪念邮票。(见课本52页彩图2—1,欣赏图片)。
如图3(用割的方法去探索)。
师介绍:(出示图片)中国古代数学家们很早就发现并运用这个结论。早在公元前2000年左右,大禹治水时期,就曾经用过此方法测量土地的`等高差,公元前1100年左右,西周的数学家商高就曾用"勾三、股四、弦五"测量土地,他们对这一结论的运用至少比古希腊人早500多年。公元200年左右,三国时期吴国数学家赵爽曾构造此图验证了这一结论的正确性。他的这个证明,可谓别具匠心,极富创新意识,他用几何图形的割、来证明代数式之间的相等关系,既严密,又直观,为中国古代以"形"证"数",形、数统一的独特风格树立了一个典范。他是我国有记载以来第一个证明这一结论的数学家。我国数学家们为了纪念我国在这方面的数学成就,将这一结论命名为"勾股定理"。(点题)。
20xx年,世界数学家大会在中国北京召开,当时选用这个图案作为会场主图,它标志着我国古代数学的辉煌成就。(见课本50页彩图,欣赏图片)。
如图4(构造新图形的方法去探索)。
1、继续收集、整理有关勾股定理的证明方的探索问题并交流。
最新数学勾股定理教案(汇总14篇)篇二
学会观察图形,勇于探索图形间的关系,培养学生的空间观念。
2、过程与方法。
(1)经历一般规律的探索过程,发展学生的抽象思维能力。
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、情感态度与价值观。
(1)通过有趣的问题提高学习数学的兴趣。
(2)在解决实际问题的过程中,体验数学学习的实用性。
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。
教学难点:
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。
教学准备:
多媒体。
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)。
情景:
第二环节:合作探究(15分钟,学生分组合作探究)。
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算。
第三环节:做一做(7分钟,学生合作探究)。
教材23页。
李叔叔想要检测雕塑底座正面的ad边和bc边是否分别垂直于底边ab,但他随身只带了卷尺。
(1)你能替他想办法完成任务吗?
第四环节:巩固练习(10分钟,学生独立完成)。
2.如图,台阶a处的蚂蚁要爬到b处搬运食物,它怎么走最近?并求出最近距离。
第五环节课堂小结(3分钟,师生问答)。
内容:如何利用勾股定理及逆定理解决最短路程问题?
第六环节:布置作业(2分钟,学生分别记录)。
作业:1.课本习题1.5第1,2,3题.。
要求:a组(学优生):1、2、3。
b组(中等生):1、2。
c组(后三分之一生):1。
文档为doc格式。
最新数学勾股定理教案(汇总14篇)篇三
教学目标:
1、知识与技能目标:理解和掌握勾股定理的内容,能够灵活运用勾股定理进行计算,并解决一些简单的实际问题。
2、过程与方法目标:通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
3、情感、态度与价值观目标:了解中国古代的数学成就,激发学生爱国热情;学生通过自己的努力探索出结论获得成就感,培养探索热情和钻研精神;同时体验数学的美感,从而了解数学,喜欢几何。
教学重点:
引导学生经历探索及验证勾股定理的过程,并能运用勾股定理解决一些简单的实际问题。
教学难点:
课前准备:
多媒体ppt,相关图片。
教学过程:
(一)情境导入。
1、多媒体课件放映图片欣赏:勾股定理数形图,1955年希腊发行的一枚纪念邮票,美丽的勾股树,国际数学大会会标等。通过图形欣赏,感受数学之美,感受勾股定理的文化价值。
已知一直角三角形的两边,如何求第三边?
学习了今天的这节课后,同学们就会有办法解决了。
(二)学习新课。
最新数学勾股定理教案(汇总14篇)篇四
一、整个课堂设计完整、结构紧凑、逻辑严密、前后呼应,准备得比较充分,能引导学生循序渐进,思路很清晰,讲解也很到位。
二、不搞题海战术,精讲精练,举一反三、触类旁通。题型设计选题有针对性、典型性、层次性,亦有梯度,两位老师都设计了分层练习,作业分层设计精巧,适合满足不同层次学生的要求。
三、两位老师引入新课都很自然,两位老师都能从学生的实际水平出发,面向全体学生,因材施教,分层次开展教学工作,全面提高学习效率。
教师在整个教学过程中老师敢于让学生探索、体验,给了学生以最大的自由运用和探索规律的开阔的地带。特别是新塘三中的曾老师在教学中,通过教师有序的导、学生积极的学习参与、体验、讨论与交流,培养学生具有主动、负责、开拓、创新的个性特征和科学的思维方式。将知识与技能,过程与方法,情感态度和价值观完美结合。在整个教学活动中始终面对全体学生,让每一个学生都有收获,都得到成功的体验,充分体现了全面育人的新课标精神。建议新塘二中老师尽量少讲,让学生多思,多想,多做。......
最新数学勾股定理教案(汇总14篇)篇五
一、学情分析:
知识技能基础:学生在小学已经学过分数的乘除法,掌握了分数的乘除法法则,在学习分式的乘除法法则时可通过与分数的乘除法法则进行类比学习。在前面学习了整式乘法和因式分解,为分式的运算和结果的化简奠定基础。
能力基础:在过去的数学学习过程中,学生已初步具备观察、分析、归纳的能力和类比的学习方法。
二、教学目标:
知识目标:1、分式的乘除运算法则。
2、会进行简单的分式的乘除法运算。
能力目标:1、类比分数的乘除运算法则,探索分式的乘除运算法则。
2、能解决一些与分式有关的简单的实际问题。
情感目标:1、通过师生讨论、交流,培养学生合作探究的意识和能力。
2、培养学生的创新意识和应用意识。
三、教学重点、难点。
重点:分式乘除法的法则及应用。
难点:分子、分母是多项式的分式的乘除法的运算。
三、教学过程:
第一环节复习旧知识。
复习小学学的分数乘除法法则,
活动目的:
复习小学学过的分数的乘除法运算,为学习分式乘除法的法则做准备。
第二环节引入新课。
活动内容。
你能总结分式乘除法的法则吗?与同伴交流。
分式的乘除法的法则:。
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;。
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
活动目的:
让学生观察运算,通过小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。
第三环节知识运用。
活动内容。
例题1:。
(1)(2)例题2。
(1)(2)活动目的:
通过例题讲解,使学生会根据法则,理解每一步的算理,从而进行简单的分式的乘除法运算,并能解决一些与分式有关的简单的实际问题,增强学生代数推理的能力与应用意识。需要给学生强调的是分式运算的结果通常要化成最简分式或整式,对于这一点,很多学生在开始学习分式计算时往往没有注意到结果要化简。
第四环节走进中考。
(2012.漳州)第五环节课时小结。
活动内容:
1.分式的乘除法的法则。
2.分式运算的结果通常要化成最简分式或整式.
3.学会类比的数学方法。
第六环节当堂检测。
文档为doc格式。
最新数学勾股定理教案(汇总14篇)篇六
1、知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。
2、过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力。
3、情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。
最新数学勾股定理教案(汇总14篇)篇七
本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。
采用“七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。
最新数学勾股定理教案(汇总14篇)篇八
教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
最新数学勾股定理教案(汇总14篇)篇九
我对本节课的教学过程是这样设计的:
通过欣赏xxxx年在我国北京召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,引入课题。
接下来,让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。
这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。
通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。
在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。
先了解赵爽的证明思路,然后让学生利用学具自己剪拼,并利用图形进行证明。
由于难度比较大,组织学生开展小组合作学习。教师要巡回辅导,给予学生必要的帮助。
一是让学生自己回顾总结本节的收获。(当然多数为具体的知识和方法)。二是教师要引导学生学习科学家敏锐的观察力和勤于思考的作风,不断提高自己的数学素养,适时对大家进行思想教育。
主要练习勾股定理的其它证明方法。
请你利用网络资源,收集有关勾股定理的证明方法来进行学习。写出有关勾股定理知识的小论文。一个月过去了,我已忘记了这一项特殊的作业,但部分学生却写出了出乎意料的小论文。
通过这节课的两种不同的上法,以及学生的不同表现与收获,让我更深刻地认识到:
(3)要相信学生的能力,为学生创造自我学习和创造的机会(如布置开放性的学习任务:数学实践活动、研究学习、写小论文等)。
我相信:只要坚持不懈地这样去做,不但能很好地实施新课改,实现教育的本来目标,而且也一定能让学生“考出”好的成绩;不过,这样教师一定不会轻松。
最新数学勾股定理教案(汇总14篇)篇十
教学目标:
1、知识目标:
(2)学会利用勾股定理进行计算、证明与作图;
(3)了解有关勾股定理的历史。
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;
(2)通过问题的解决,提高学生的运算能力。
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过有关勾股定理的历史讲解,对学生进行德育教育。
教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育。
教学用具:直尺,微机。
教学方法:以学生为主体的讨论探索法。
教学过程:
1、新课背景知识复习。
(1)三角形的三边关系。
(2)问题:(投影显示)。
直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?
2、定理的获得。
让学生用文字语言将上述问题表述出来。
勾股定理:直角三角形两直角边的平方和等于斜边的平方。
强调说明:
(1)勾――最短的边、股――较长的直角边、弦――斜边。
(2)学生根据上述学习,提出自己的问题(待定)。
3、定理的证明方法。
方法一:将四个全等的直角三角形拼成如图1所示的正方形。
方法二:将四个全等的直角三角形拼成如图2所示的正方形。
方法三:“总统”法、如图所示将两个直角三角形拼成直角梯形。
以上证明方法都由学生先分组讨论获得,教师只做指导、最后总结说明。
4、定理与逆定理的应用。
5、课堂小结:
已知直角三角形的两边求第三边。
已知直角三角形的一边,求另两边的关系。
6、布置作业:
a、书面作业p130#1、2、3。
b、上交作业p132#1、3。
最新数学勾股定理教案(汇总14篇)篇十一
思路点拨:要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙两人的距离.(13千米)。
最新数学勾股定理教案(汇总14篇)篇十二
这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标。
知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。
情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。
(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。
教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。
最新数学勾股定理教案(汇总14篇)篇十三
2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;。
二数学思考。
1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;。
2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.
三解决问题。
通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.
四情感态度。
2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神.
最新数学勾股定理教案(汇总14篇)篇十四
教学目标1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题。
教学重点:平行四边形的判定方法及应用。
教学难点:平行四边形的判定定理与性质定理的灵活应用。
引
二.探。
阅读教材p44至p45。
利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?
(5)你还能找出其他方法吗?
从探究中得到:
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2对角线互相平分的四边形是平行四边形。
证一证。
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
证明:(画出图形)。
平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。
证明:(画出图形)。
三.结。
两组对边分别相等的四边形是平行四边形。
对角线互相平分的四边形是平行四边形。
四.用。