学习总结是对自己在学习过程中所取得的成果和经验的总结和归纳。以下是小编为大家准备的知识点总结范文,希望能够给大家带来一些思考和启示。
数列求和公式方法总结篇一
10月19日下午第二与第三节课,我们学校举行了《数列求和》的同课异构活动。我有幸听到了知名教师杜锡金和过月圆老师的课,受益匪浅。
(一)课堂设计
数列在数学高考文科中所占的位置为17题,难道为中等,对于一般同学而言,是十有八九要做全对的。两位老师整堂课都通过一系列变式讲了数学求和法中的公式法、分组求和法、错位相减法及裂项相消法。目标明确,重点突出,完全符合高考的命题走向。
杜老师由的浙江文科高考卷入手,既体现了对高考命题的关注,也让学生对此题引起一定的重视。同样的.,过老师通过这五年浙江文科数学的高考题目剖析,说明数列求和的重要性。又通过绍兴市期末考试作为例题及引申,从简到难地介绍了公式法,错位相减法及裂项相消法。过老师主要通过对近五年试题的研究来决定数列求和的方法的讲解及其顺利,让我觉得很敬佩。
(二)师生互动
整堂课中,两位老师始终以学生为主体,主动叫学生来回答,并且让学生到黑板上进行板演。两位老师都对学生的板演做出了详细的评价,并且指出在解题过程中应注意的部分及学生容易犯错的地方,给学生指出了一条“光明之路”。
(三)教学素养
两位老师上课激情,声音抑扬顿挫,让我自愧不如。回想我自己上课的样子,有时候语速过快,很多时候语调平,没有重点突出,需要改进的地方还很多。尤其让人敬佩的是两位老师的板书,干净、整洁、漂亮,恰到好处。
总之,听了这两位老师的课,看到了大师们的风采。让我想到了自己,突然觉得自己真的很差,要学习和努力的东西还很多,先从语速和板书练起,认真对待,只要注意起来,一定是会有进步的!
数列求和公式方法总结篇二
1.基本公式法
2.错位相消法:
3.分组求和
把一个数列分成几个可以直接求和的数列,然后利用公式法求和。
4.裂项(拆项)求和
把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩下有限项再求和。
5.倒序相加法
根据有些数列的特点,将其倒写后与原数列相加,以达到求和的目的。
数列求和公式方法总结篇三
对等差数列、等比数列,求前n项和sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的`注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。
三。用裂项相消法求数列的前n项和
裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。
数列求和公式方法总结篇四
错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列{an·bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。
数列求和公式方法总结篇五
1、理解等差数列的概念,掌握等差数列的通项公式,并能运用通项公式解决简单的问题。
(3)能通过通项公式与图像认识等差数列的性质,能用图像与通项公式的关系解决某些问题。
2、通过等差数列的图像的应用,进一步渗透数形结合思想、函数思想;通过等差数列通项公式的运用,渗透方程思想。
3、通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,从而渗透特殊与一般的辩证唯物主义观点。