在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
初中数学教师资格证教学设计篇一
从历年真题来看,数学学科知识与教学能力考试的题型、题量、分值都没有变化,试卷分布为六大题型,其中案例分析题、教学设计题是考试的重头,主要考察教学技能方面的内容,占整个试卷的33.3%。
(一)历年试卷分析
(二)2016年上半年考纲与真题试卷对比统计
二、历年考点分布
(一)数学专业知识
对于数学专业知识,主要考试内容有大学专科数学专业基础课程、高中数学课程中的必修内容和部分选修内容以及初中数学课程中的内容知识。从历年真题看,主要是考高中和大学专业知识,具体的考点以及比重如下。
(二)数学教学论
对于数学教学论方面的考察,主要是从课程知识、教学知识、教学技能三大方面进行出题。具体的考试内容如下:课程知识主要是义务教学数学课程标准中的课程的性质、基本理念和目标;教学知识主要是教学方法、概念教学、命题教学、教学过程、中学数学学习方式、教学评价的基本知识和方法;教学技能主要是教学设计、教学实施、教学评价。
(三)历年教学技能的'考点分布
相关阅读:教师资格证考试注意事项
1、成绩查询。12月13日,考生可登录中小学教师资格考试网查询笔试考试成绩。考生如对本人的考试成绩有异议,可在考试成绩公布后10个工作日内向省辖市招办提出书面复核申请,申请须注明申请人姓名、身份证号、准考证号、复核科目、网上查询到的成绩、联系电话。省辖市招办每天向省招办汇总上报数据,省招办在接到考试中心复核结果后将反馈省辖市招办,市招办将以电话或短信通知考生。
2、违规处理。考试违规按照《国家教育考试违规处理办法》(中华人民共和国教育部令第33号)处理。
3、合格证明。笔试单科成绩有效期为2年,没有书面合格证明。笔试和面试均合格的考生,由教育部考试中心颁发《中小学教师资格考试合格证明》。该证明是申请教师资格认定的必要条件。
初中数学教师资格证教学设计篇二
教学目标:
1、理解并掌握三角形中位线的概念、性质,会利用三角形中位线的性质解决有关问题。
2、经历探索三角形中位线性质的过程,让学生实现动手实践、自主探索、合作交流的学习过程。
3、通过对问题的探索研究,培养学生分析问题和解决问题的能力以及思维的灵活性。
4、培养学生大胆猜想、合理论证的科学精神。教学重点:探索并运用三角形中位线的性质。
教学难点:
运用转化思想解决有关问题。教学方法:创设情境——建立数学模型——应用——拓展提高教学过程:情境创设:测量不可达两点距离。
探索活动:
活动二:探索三角形中位线的性质。应用练习及解决情境问题。
例题教学
操作——猜想——验证
拓展:数学实验室
小结:作业:p134/习题3.61、3
初中数学教师资格证教学设计篇三
>教师资格证考试:初中数学学科知识点能力,推理能力;模型思想;创新思想(提出问题,独立思考,归纳验证);应用意识。
义务教育阶段数学课程总目标
1) 获得适应生活要的知识技能思想和经验
2) 体会数学与生活,其他学科的联系。分析解决问题能力培养。
3) 了解数学价值,增加兴趣,信心,爱好。养成良好习惯,初步形成科学态度。
义务教育具有基础性发展性和普及性。
数学课程能使学生掌握以后生活工作备的基本知识,基本技能,思想方法;抽象能力和推理能力;促进情感态度价值观健康发展。为今后的生活,学习打下基础。
二次根式:就是开根号
目标:
了解意义,掌握字母取值问题,掌握性质灵活运用
通过计算,培养逻辑思维能力
领悟数学的对称性和规律美。
重点:根式意义;难点;字母取值范围
勾股定理
探索证明的基础上,联系实际,归纳抽象,应用解决实际问题。
通过探索分析归纳过程,提高逻辑能力和分析解决问题能力。
数学好奇心,热爱数学。
重点:应用
难点:实际问题转化为数学问题
平行四边形及性质
经历探索平行四边形性质和概念,掌握性质,能够判别
体会操作转化的思想过程,积累问题解决的思想。
与他人交流,积极动手的习惯
四边形内角和:
量角器;内部做三角形;按照边做三角形;按照定点做三角形。
一次函数和二元一次方程的关系。数形结合
数学思想为主体;问题为贯穿;数形结合为工具;提高问题解决能力。
数学课程理念
内涵:人人获得良好数学教育,在数学上得到不同发展
内容:符合数学特点,认知规律,社会实际。层次性和多样性。间接与直接。
过程:师生交往
评价:多元发展
信息技术与课程 :现在信息技术改进教学方法,资源。
1) 信息技术开发资源,注重整合。
2) 教学方式的改善。
3) 理解原理的基础上,利用计算器,计算机。
4) 不能完全替代原有的有段。
合情推理:根据已有的结论,实践结果,直观等推测某些结论。便于发现问题。(归纳法:
n=1和 n 大于 1 成立的证明)
演绎推理:根据已有的结论,严格按照逻辑进行推理,用于证明。从一般到特殊直接证明:原命题直接逐步推理的到新命题。
间接证明:反证法
数学教学目标明确解决三个问题:为什么学习数学,应当学那些,将给学生带来什么。
数据课程概念
数感,符号意识,空间概念,几何观念,数据分析观念,运算能力,推理能力,模型思想,应用意识,创新意识。
论述:数学学科内涵是影响数学课程的主义因素,以一元二次论述内涵的意义。
1) 数学本身的内涵即知识方法和意义。
2) 一元二次方程有关概念基本解法和其他知识的联系,模型应用等。
3) 学科内涵作为教育任务,学习中可能存在困难。
过程性目标与结果性目标分析初中数学学段目标的知识技能。
数与代数:
体验具体情景中数学符号的抽象过程,理解有理数,无理数,实数,方程,函
数等;掌握要的运算技能;探索变化规律,掌握表达方法。包含了过程性和结果性目标。
体验探索 .为过程性目标;掌握 为结果性目标
图形与几何:掌握三角形,平行线,园,四边形基本性质判断,掌握基本作图技能,理解
探索图形变化,投影,理解坐标系和位置。包含了包含了过程性和结果性目标。体验探
索 .为过程性目标;掌握,理解 为结果性目标
统计与概率:
体验收集处理分析推断过程,理解抽样方法,体验用样本估计总体过程;进一步认识随机现象和概率。包含了包含了过程性和结果性目标。体验探索 .为过程性目标;掌握,理解 为结果性目标。
函数集中安排在不等式方程学习后不合理 ,函数学习不仅仅是掌握知识本身,还有认识现象,解决问题的方法 ;函数知识本身的内涵不单纯的包括定理定义等,还有内部的联系 。代数,方程,不等数与函数的联系密切相关, 认识过程要经历感性到理性的过程 ,不能仅仅的抽象符号利用。
举例子说明统计相关概念的教学重心。
例如平均数,重心在于帮助学生理解内涵,特点,可以表达的数据信息,容易产生的误导原因;而不是简单的快速计算公示。
综合与实践在初中课程中的作用,谈一谈。
1) 自主学习以问题为载体;将综合运用数与代数,图形与几何,统计与概率等知识和方法解决问题。目的在与培养学生解决实际问题的问题意识,创新意识和应用意识等。
2) 有效的调动了学生的积极性主动性,发展学生个性,提高多方面能力,促进学生情感态度价值观发展。对丰富学生经验,形成对自然,学科,自我整体的认识,发展创新实践精神。
3) 数与代数,图形与几何,统计与概率与综合实践内容都是数学课程的重要组成部分,可以课堂上完成,可以内外课堂结合。
统计与概率中数据随机性的内涵
1) 同样的事情每次收集的数据可能不同;足够的数据可以发现规律。
2) 举例子:红球。 。让学生感悟数据是随机的,数据很多时又具有稳定性,知道大概能出现多少次。
举例子说明课堂教学发生状况处理情况。
1) 在处理状况时将情感态度目标落实。
2) 例如:学生练习错误又不努力改正时,教师要求学生字句独立完成修改;自己对自己的事情负责;并且相信学生能够完成,增加学生改正错误的自信心。
3) 例如:学生不能正确回到问题时,要引导,不能简单的打断错误回答,要让学生理解
自己哪里的理解认识是错误的,而不是简单的否定。
数学教学中预设与生成的关系
1) 教学方案是预设,老师要理解钻研在钻研理解,以《义务教育数学课程标准》为依据,把握教材编写意图,和内容的教育价值。
2) 对教材的再创造,根据班级实际情况,选择贴切的教学素材和教学流程,体现基本理念和内容规定的要求。
3) 教学活动:将预设转为实际活动,会生成新的资源,要求老师即时把握,因势利导,即时调整,使活动收到更好的效果。
面向全体与关注个性差异的关系
1) 努力让全体达到目标要求,同时关注差异,促进在原有基础上发展。
2) 有苦难的,即时帮助,鼓励自己解决问题,点滴进步给予肯定;耐心引导错误原因,增加信心。
3) 有余力的学生,提供足够的思维空间和材料,发展才能。
4) 方式多样化,评价多样化,问题情境,主动参与,交流合作。
合情推理与演绎推理
1) 推理贯穿于整个数学教学的始终,形成和提高是一个长期的循序渐进的过程。
2) 年龄不同程度不同,注重条理性,不要过分强调形式。
3) 推理包括合情和演绎推理。
4) 设计适当的活动,通过观察,类比等发现规律,猜测结论,发展合情推理能力;通过实例让学生逐步意识到,结论的正确性需要演绎推理的确认。
5) 合情推理和演绎推理是相辅相成的。证明的教学应关注学生对证明要性的感受,对
证明基本方法 掌握和体验。证明过程应注重符合逻辑性,条理性,清晰性。多种思路。
举例说明教学活动中,如何引导积累数学活动,感悟思想。
1) 《义务教育数学课程标准》建议:引导学生积累经验,感悟思想。
2) 例如分类是一种重要的数学思想。数学学习中经常用分类问题,例如图形,代数式,函数分类等。
3) 实际问题中:通过分类解决实际问题,理解共性和抽象过程。
4) 逐步体会怎么分类,如何分类,标准,性质。
5) 反复积累,才能逐步感悟思想。
返回目录
1、普通话水平应当达到国家语言文字工作委员会颁布的《普通话水平测试等级标准》二级乙等以上标准。
2、各级各类学校非师范专业毕业生申请教师资格应按省教育厅部署补修教育学、心理学课程,并由省教育厅统一组织考试合格。(申请者学历为师范专业毕业人员免于教育学、心理学考试)
3、各级各类学校非师范专业毕业生申请教师资格应参加教师资格认定机构组织的说课(说课分为:面试、试讲)。(申请学历为师范专业毕业人员如能提供3个月或以上的教学证明,可免于面试、试讲)
4、具有良好的身体素质和心理素质,无传染性疾病,无精神病史,按《申请认定教师资格人员体检标准及办法》,在教师资格认定机构指定的县级以上医院体检合格。
5、报名需要学历证、身份证、照片。
返回目录
初中数学教师资格证教学设计篇四
能力,推理能力;模型思想;创新思想(提出问题,独立思考,归纳验证);应用意识。
义务教育阶段数学课程总目标
1)获得适应生活要的知识技能思想和经验
2)体会数学与生活,其他学科的联系。分析解决问题能力培养。
3)了解数学价值,增加兴趣,信心,爱好。养成良好习惯,初步形成科学态度。
义务教育具有基础性发展性和普及性。
数学课程能使学生掌握以后生活工作备的基本知识,基本技能,思想方法;抽象能力和推理能力;促进情感态度价值观健康发展。为今后的生活,学习打下基础。
二次根式:就是开根号
目标:
了解意义,掌握字母取值问题,掌握性质灵活运用
通过计算,培养逻辑思维能力
领悟数学的对称性和规律美。
重点:根式意义;难点;字母取值范围
勾股定理
探索证明的基础上,联系实际,归纳抽象,应用解决实际问题。
通过探索分析归纳过程,提高逻辑能力和分析解决问题能力。
数学好奇心,热爱数学。
重点:应用
难点:实际问题转化为数学问题
平行四边形及性质
经历探索平行四边形性质和概念,掌握性质,能够判别
体会操作转化的思想过程,积累问题解决的思想。
与他人交流,积极动手的习惯
四边形内角和:
量角器;内部做三角形;按照边做三角形;按照定点做三角形。
一次函数和二元一次方程的关系。数形结合
数学思想为主体;问题为贯穿;数形结合为工具;提高问题解决能力。
数学课程理念
内涵:人人获得良好数学教育,在数学上得到不同发展
内容:符合数学特点,认知规律,社会实际。层次性和多样性。间接与直接。
过程:师生交往
评价:多元发展
信息技术与课程:现在信息技术改进教学方法,资源。
1)信息技术开发资源,注重整合。
2)教学方式的改善。
3)理解原理的基础上,利用计算器,计算机。
4)不能完全替代原有的有段。
合情推理:根据已有的结论,实践结果,直观等推测某些结论。便于发现问题。(归纳法:
n=1和n大于1成立的证明)
演绎推理:根据已有的结论,严格按照逻辑进行推理,用于证明。从一般到特殊直接证明:原命题直接逐步推理的到新命题。
间接证明:反证法
数学教学目标明确解决三个问题:为什么学习数学,应当学那些,将给学生带来什么。
数据课程概念
数感,符号意识,空间概念,几何观念,数据分析观念,运算能力,推理能力,模型思想,应用意识,创新意识。
论述:数学学科内涵是影响数学课程的主义因素,以一元二次论述内涵的意义。
1)数学本身的内涵即知识方法和意义。
2)一元二次方程有关概念基本解法和其他知识的联系,模型应用等。
3)学科内涵作为教育任务,学习中可能存在困难。
过程性目标与结果性目标分析初中数学学段目标的知识技能。
数与代数:
体验具体情景中数学符号的抽象过程,理解有理数,无理数,实数,方程,函
数等;掌握要的运算技能;探索变化规律,掌握表达方法。包含了过程性和结果性目标。
体验探索。为过程性目标;掌握为结果性目标
图形与几何:掌握三角形,平行线,园,四边形基本性质判断,掌握基本作图技能,理解
探索图形变化,投影,理解坐标系和位置。包含了包含了过程性和结果性目标。体验探
索。为过程性目标;掌握,理解为结果性目标
统计与概率:
体验收集处理分析推断过程,理解抽样方法,体验用样本估计总体过程;进一步认识随机现象和概率。包含了包含了过程性和结果性目标。体验探索。为过程性目标;掌握,理解为结果性目标。
函数集中安排在不等式方程学习后不合理,函数学习不仅仅是掌握知识本身,还有认识现象,解决问题的方法;函数知识本身的内涵不单纯的包括定理定义等,还有内部的联系。代数,方程,不等数与函数的联系密切相关,认识过程要经历感性到理性的过程,不能仅仅的抽象符号利用。
举例子说明统计相关概念的教学重心。
例如平均数,重心在于帮助学生理解内涵,特点,可以表达的数据信息,容易产生的误导原因;而不是简单的快速计算公示。
综合与实践在初中课程中的作用,谈一谈。
1)自主学习以问题为载体;将综合运用数与代数,图形与几何,统计与概率等知识和方法解决问题。目的在与培养学生解决实际问题的问题意识,创新意识和应用意识等。
2)有效的调动了学生的积极性主动性,发展学生个性,提高多方面能力,促进学生情感态度价值观发展。对丰富学生经验,形成对自然,学科,自我整体的认识,发展创新实践精神。
3)数与代数,图形与几何,统计与概率与综合实践内容都是数学课程的重要组成部分,可以课堂上完成,可以内外课堂结合。
统计与概率中数据随机性的内涵
1)同样的事情每次收集的数据可能不同;足够的数据可以发现规律。
2)举例子:红球。。让学生感悟数据是随机的,数据很多时又具有稳定性,知道大概能出现多少次。
举例子说明课堂教学发生状况处理情况。
1)在处理状况时将情感态度目标落实。
2)例如:学生练习错误又不努力改正时,教师要求学生字句独立完成修改;自己对自己的事情负责;并且相信学生能够完成,增加学生改正错误的自信心。
3)例如:学生不能正确回到问题时,要引导,不能简单的打断错误回答,要让学生理解
自己哪里的理解认识是错误的,而不是简单的否定。
数学教学中预设与生成的关系
1)教学方案是预设,老师要理解钻研在钻研理解,以《义务教育数学课程标准》为依据,把握教材编写意图,和内容的教育价值。
2)对教材的再创造,根据班级实际情况,选择贴切的教学素材和教学流程,体现基本理念和内容规定的要求。
3)教学活动:将预设转为实际活动,会生成新的资源,要求老师即时把握,因势利导,即时调整,使活动收到更好的效果。
面向全体与关注个性差异的关系
1)努力让全体达到目标要求,同时关注差异,促进在原有基础上发展。
2)有苦难的,即时帮助,鼓励自己解决问题,点滴进步给予肯定;耐心引导错误原因,增加信心。
3)有余力的学生,提供足够的思维空间和材料,发展才能。
4)方式多样化,评价多样化,问题情境,主动参与,交流合作。
合情推理与演绎推理
1)推理贯穿于整个数学教学的始终,形成和提高是一个长期的循序渐进的过程。
2)年龄不同程度不同,注重条理性,不要过分强调形式。
3)推理包括合情和演绎推理。
4)设计适当的活动,通过观察,类比等发现规律,猜测结论,发展合情推理能力;通过实例让学生逐步意识到,结论的正确性需要演绎推理的确认。
5)合情推理和演绎推理是相辅相成的。证明的教学应关注学生对证明要性的感受,对
证明基本方法掌握和体验。证明过程应注重符合逻辑性,条理性,清晰性。多种思路。
举例说明教学活动中,如何引导积累数学活动,感悟思想。
1)《义务教育数学课程标准》建议:引导学生积累经验,感悟思想。
2)例如分类是一种重要的数学思想。数学学习中经常用分类问题,例如图形,代数式,函数分类等。
3)实际问题中:通过分类解决实际问题,理解共性和抽象过程。
4)逐步体会怎么分类,如何分类,标准,性质。
5)反复积累,才能逐步感悟思想。
初中数学教师资格证教学设计篇五
>教师资格证初中数学考点归纳从历年真题来看,数学学科知识与教学能力考试的题型、题量、分值都没有变化,试卷分布为六大题型,其中案例分析题、教学设计题是考试的重头,主要考察教学技能方面的内容,占整个试卷的33.3%。
(一)历年试卷分析
(二)20_年上半年考纲与真题试卷对比统计
二、历年考点分布
(一)数学专业知识
对于数学专业知识,主要考试内容有大学专科数学专业基础课程、高中数学课程中的必修内容和部分选修内容以及初中数学课程中的内容知识。从历年真题看,主要是考高中和大学专业知识,具体的考点以及比重如下。
(二)数学教学论
对于数学教学论方面的考察,主要是从课程知识、教学知识、教学技能三大方面进行出题。具体的考试内容如下:课程知识主要是义务教学数学课程标准中的课程的性质、基本理念和目标;教学知识主要是教学方法、概念教学、命题教学、教学过程、中学数学学习方式、教学评价的基本知识和方法;教学技能主要是教学设计、教学实施、教学评价。
(三)历年教学技能的'考点分布
相关阅读:教师资格证考试注意事项
1.成绩查询。 12月13日,考生可登录中小学教师资格考试网查询笔试考试成绩。考生如对本人的考试成绩有异议,可在考试成绩公布后10个工作日内向省辖市招办提出书面复核申请,申请须注明申请人姓名、身份证号、准考证号、复核科目、网上查询到的成绩、联系电话。省辖市招办每天向省招办汇总上报数据,省招办在接到考试中心复核结果后将反馈省辖市招办,市招办将以电话或短信通知考生。
2.违规处理。 考试违规按照《国家教育考试违规处理办法》(中华人民共和国教育部令第33号)处理。
3.合格证明。 笔试单科成绩有效期为2年,没有书面合格证明。笔试和面试均合格的考生,由教育部考试中心颁发《中小学教师资格考试合格证明》。该证明是申请教师资格认定的必要条件。
返回目录