心得体会是指一种读书、实践后所写的感受性文字。心得体会可以帮助我们更好地认识自己,通过总结和反思,我们可以更清楚地了解自己的优点和不足,找到自己的定位和方向。以下是我帮大家整理的最新心得体会范文大全,希望能够帮助到大家,我们一起来看一看吧。
数学课程教师心得体会篇一
《数学课程标准》明确指出:“学生是学习的主人,教师是数学教学活动的组织者的发展、引导者和合作者”教师角色的转变,使学生真正成为学习的主人,体现了数学课程改革的基本理念。下面结合自身近年来参与小学数学课程改革的教学实践,浅谈几点感受。
一、从内容入手、引导学生进行自主学习。
自主学习具有几方面的特征,对小学生来说,最重要的是学习过程,学生能从学习内容入手、在教学中坚持两个原则、即学生能自己说出来的,教师不引导,学生能自己学会的,教师不教、课堂上教师将方法交给学生,然后放手让学生自学,如二年级的乘、除法计算中,都是先出现学生熟悉的,有意义的实际问题的场景,提出数学问题。接着组织学生用自己的方式,经验主动,探究解决问题的方法,并组织相互间的交流发祥总结算法,然后出现类似的数学问题或通过情境变式,让学生用适合自己的方法去解决。谈出自己的观点后,并作出自己的解释。教师再进行点拨。这样,教师从知识传授者的角色转变为课堂教学的引导者,和组织者,学生是学习的主人。这种学习过程,学生充满成就感,有了信心,这一切又激发他们投入到新的学习生活中。
二、教学过程中,创新教学活动探索。
三、在课堂教学中培养学生合作的意识。
新一轮课程要求学习自主探索、主动获取,进行合作学习。合作学习是指学生在小组为了完成共同任务,有明确责任分工的互相学习.合作学习如何在课堂上落实呢?让每个学生承担着不同的学习任务,每个人承担的角色随时改变,这样,每人都需要与他人交流、合作。《数学课程标准》十分重视教学中师生双边活动,这是学生的主体参与,通过教师和学生学习的`互相作用,使学生获得数学知识技能、发展数学能力,形成良好的个性品质。许多过去课堂上需要教师完成的工作,现在可以有学生小组合作完成。在这一过程中,学生的主体性得到了体现,产生了求知和探究的欲望,教师也真正成为学生学习过程的促进者。通过合作学习的形式,使每个学生都有机会提出自己解题的方法,同时有分享别人的解题方法,共同讨论不同方法的优缺点。这对于发展学生的解题思路、增强学生的自信心,培养创造性思维十分有利。
总之,数学教学要变学生被动学习为主动学习,让他们积极主动参与获取知识的全过程,让他们认识到数学价值,生活中离不开数学,使他们喜欢数学,乐于数学。
数学课程教师心得体会篇二
一、教材分析
本册教材内容分为4个单元:分数的认识(一)、小数、三步运算和应用、统计表和条形图。其中(1)数与运算的内容主要由分数的认识(一)、小数、三步计算和应用三个部分:分数的认识(一)这一单元包括分数的意义、分数的简单计算;小数单元包括小数的意义和性质、小数加减法、小数点位置移动引起小数大小的变化、小数乘整数、乘法运算定律、小数除以整数、单名数和复名数等内容;混合运算主要有两级运算的三步计算式题和应用,这类式题的运算顺序比较复杂,除第五册已出现的“不相连接的乘除同时进行脱式计算”以外,出现了三种新情况——小括号中含有两级运算、式题中的两个小括号同时脱式计算、第二级运算中含乘除混合运算,按照先乘除后加减来计算一个式题时,其中的乘除混合运算还要按照从左到右的顺序进行。(2)统计图表的教学内容整理数据、统计表、条形统计图。(3)数学思维专项训练的教学:本册教材中是将基础知识教学和基本技能训练与发展智力、培养能力紧密结合。一方面揭示知识之间的内在联系,挖掘知识的内在智力因素;另一方面在学生不断扩充数学知识的同时,在学习的适当阶段,联系所学知识,以“智力游戏”的形式有计划的安排了数学思维专项训练的内容。这些题目主要是数量关系和空间形式的概括与推理能力训练,培养学生发现规律和应用规律的能力。
二、教学目标
(一)知识和技能
1、理解分数的意义,初步学会计算简单的同分母分数的加减法和分数乘整数的乘法。
2、理解小数的意义和性质。比较熟练的进行小数加减法、小数乘整数、小数除以整数的笔算和简单的口算。比较熟练的进行小数四则计算(不超过三步)和简单的口算。会用四舍五入法截取积、商的近似值。掌握乘法运算定律,并能运用乘法运算定律进行简便运算。
3、掌握四则混合运算的顺序,会计算三步计算式题,会解答两步计算应用题和比较简单的三步计算应用题。
4、会制作简单的统计表,利用作图纸绘制简单的统计图。初步了解收集、整理数据的过程。会对统计图表进行一些简单的分析。
(二)数学思考
1、能结合具体情景,对有关的数学信息作出合理的解释,会用数、字母和图表描述,并解决现实生活中的简单问题。
2、在探索物体的位置关系、图形的特征、图形的变换以及设计图形的过程中,进一步发展空间观念。
3、能根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。
4、在解决问题的过程中,能进行有条理的思考,能对结论的合理性作出有说服力的说明。
(三)解决问题
1、能从现实生活中发现并提出简单的数学问题。
2、能够探索出解决问题的有效方法,并试图寻找其他方法。
3、在解决问题的活动中,初步学会与他人合作。
4、能够表达解决问题的过程,并尝试解释所得的结果。
(四)情感与态度
1、对周围环境中与数学有关的事物充满好奇,能够主动参与教师组织的数学活动。
2、在他人的鼓励与引导下,能够积极的克服数学活动中遇到的困难,有克服困难和运用知识解决问题的成功体验,对自己得到的结果正确与否有一定的抉择,相信自己在学习中可以不断的取得进步。
3、体验数学与日常生活的密切相关性,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表达和交流。
4、通过观察、操作、归纳、类比、推断等数学活动,体验数学问题的探索新和挑战性,感受数学思考过程的条理性和数学结论的正确性。
5、又对不同的地方和不同的.观点提出疑问的意识,并愿意对数学问题进行讨论,发现错误能及时纠正。
三、教学措施
(一)切实加强基础知识和基本技能的教学
基础知识和基本技能的教学一直是数学教学的核心内容,我在教学中也力求保持和发扬这一传统,并做好以下两点:(1)加强对小学数学基础知识的理解,教学时,在使学生掌握数学概念、法则、数量关系的同时,重视数学方法的训练,逐步形成良好的思维方式和运用数学的意识。(2)努力处理好基本训练与创造性思维发展及后继学习的关系。数学教学的核心是学生的“再创造”、数学学习的“再创造”过程,并非是机械地去重复历史上的“原始创造”,而应根据自己的体验并用自己的思维方式去创造有关的数学知识。小学的创造性思维是在数学学习的“再创造”过程中逐步得到发展的,而“再创造”的前提是通过必要的基本训练使学生形成扎实的基本功。
(二)重视引导学生自主探索,培养学生的创新意识和学习数学的兴趣。在数学活动中,学生是活动的主体。必须改变教师问、学生答的所谓“启发式”和教师精讲例题学生大量演练习题的所谓“精讲多练”的教学模式。努力转变角色,便数学知识的传授者为数学活动的组织者、指导者、参与者和研究者。给学生提供自主探索的机会和比较充分的思考空间,培养肯钻研、善思考、勤动手的科学态度;让学生在观察、实验、猜测、归纳、分析和整理的过程中,理解数学知识,感受到一个数学问题是怎样提出来的,一个观念是如何形成的,一个结论是怎样探索和猜测的;让学生有机会在不断探索与创造的气氛中培养解决问题的能力,体会数学的价值,激发学生学习数学的兴趣;并关注学生的个体差异,尊重学生的创造精神。
(三)重视培养学生的应用意识和实践能力。数学教学应努力体现“从问题情境出发,建立模型、寻求结论、应用与推广”的基本过程。根据学生的认知特点和知识水平,通过这样的过程使学生认识到数学与现实世界的联系,在观察、操作、思考、交流等一系列活动中逐步发展应用意识,形成基本的实践能力。在日常数学活动中,安排一些小课题研究和实习作业等实践活动,使学生体验数学与日常生活的密切联系,培养学生的应用意识和实践能力。
(四)把握教学要求,促进学生发展。教师要善于驾奴教材,把握知识的重点和难点,以及知识间的内在联系,根据学生的年龄特点和教学要求开展教学活动。在直观感知和广泛的背景下,通过自身体验,在分析和整理的过程中学习概念,不用死记硬背的方法学习计量单位、计算法则和基本数量关系。对计算的要求适当,充分考虑到学生之间计算速度存在的差异,不要求所有的学生达到同样的计算速度;鼓励学生尝试用多种算法,不用单一的思维理解算理。如本册应用题教学要重视常见数量关系的分析和实际应用的训练,教学力求题材内容生活化、呈现方式多样化、教学活动实践化。
(五)改进教学评估方法。教学评估有利于促进学生的发展,注重对学生学习过程的考察。在评估结果的处理上,注意多种方式的结合,是评估的方式和手段多样化。对知识和技能的评估,尽量做到试题类型多样化,难度适当,不出助长死记硬背的题目,着重观察计算的正确性,计算中的思考活动,对基本数量关系的理解和对空间关系的认识,解决简单的实际问题的能力,要更多的重视自身的纵向比较,更多的关注学生已经掌握了什么,具备了什么能力,而不是首先关注他们知识和能力上的缺陷。评价体现激励的作用,承认学生学习的个体差异,积极鼓励和肯定每一个学生的进步。
数学课程教师心得体会篇三
一、背景和意义19世纪末,20世纪初,一些心理学家首先对问题解决进行了研究,并对“问题解决”作了诸多的阐释。在国际数学教育界,从美国的波利亚首先对怎样解题作了详尽的探讨开始,逐渐对这个问题展开了研究。尤其是在美国,从60年代“新数运动”过分强调数学的抽象结构,忽视数学与实际的联系,脱离教学实际,到70年代“回到基幢走向另一个极端,片面强调掌握低标准的基础知识,数学教学水平普遍下降。在对于数学教育发展方向作了长期探索以后,“问题解决”和“大众数学(mathematicsforal)”已经成为美国数学教育的响亮口号,并产生国际影响。
什么是问题解决,由于观察的角度不同,至今仍然没有完全统一的认识。
有的认为,问题解决指的是人们在日常生活和社会实践中,面临新情景、新课题,发现它与主客观需要的矛盾而自己却没有现成对策时,所引起的寻求处理问题办法的一种心理活动。有的把学习分成八种类型:信号学习、……概念学习、法则学习和问题解决。问题解决是其中最高级和复杂的一种类型,意味着以独特的方式选择多组法则,并且把它们综合起来运用,它将导致建立起学习者先前不知道的更高级的一组法则。英国学校数学教育调查委员会报告《数学算数》则认为:把数学应用于各种情形的能力就是“问题解决”。全美数学教师理事会《行动的议程》对问题解决的意义作了如下说明:第一,问题解决包括将数学应用于现实世界,包括为现时和将来出现的科学理论与实际服务,也包括解决拓广数学科学本身前沿的问题;第二,问题解决从本质上说是一种创造性的活动;第三,问题解决能力的发展,其基础是虚心、好奇和探索的态度,是进行试验和猜测的意向;等等。
从上述对问题解决意义的阐述中,我们可以看到一些共性和相通之处。从数学教育的角度来看,问题解决中所指的问题来自两个方面:现实社会生活和生产实际,数学学科本身。问题的一个重要特征是其对于解决问题者的新颖性,使得问题解决者没有现成的对策,因而需要进行创造性的工作。要顺利地进行问题解决,其前提是已经了解、掌握所需要的基础知识、基本技能和能力,在问题解决中要综合地运用这些基础知识、基本技能和能力。在问题解决中,问题解决者的态度是积极的。此外,在学校数学教学中,所谓创造性地解决问题,有别于数学家的创造性工作,主要指学习中的再创造。因而,笔者认为,从数学教育的角度看,问题解决的意义是:以积极探索的态度,综合运用已具有的数学基础知识、基本技能和能力,创造性地解决来自数学课或实际生活和生产实际中的新问题的学习活动。
简言之,就数学教育而言,问题解决就是创造性地应用数学以解决问题的学习活动。
问题解决中,问题本身常具有非常规性、开放性和应用性,问题解决过程具有探索性和创造性,有时需要合作完成。
二、“问题解决”的重要性
问题解决已引起国内外数学教育界的广泛重视,把它和数学课程紧密联系起来,已是国际数学教育的一个趋势。究其原因,笔者认为主要有以下几方面:
(一)时代呼唤创新
在国际竞争日益激烈的当今世界,各国政府乃至普通老百姓都越来越清楚认识到,国家的富强,乃至企业的兴衰,无不取决于对科学技术知识的学习、掌握及其创造性的开拓和应用。但创造能力并非与生俱有,必须通过有意识的学习和训练才能形成。学校教育必须重视培养学生应用所学知识进行创造性工作的能力。问题解决正反映了这种社会需要。
(二)我国数学教育的成功和不足
我国的中学数学教学与国际上其它一些国家的中学数学教学比较,具有重视基础知识教学,基本技能训练,数学计算、推理和空间想象能力的培养等显著特点,因而我国中学生的数学基本功比较扎实,学生的整体数学水平较高。然而,改革开放也使我国数学教育界看到了我国中学数学教学的一些不足。其中比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的`数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多;学生机械地模仿一些常见数学问题解法的能力较强,而当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。面对这种情况,我国数学教育界采取了一些相应措施。例如,北京、上海等地分别开展了中学生数学应用竞赛,在近年高校招生数学考试中,也加强了对学生应用数学意识和创造性思维方法与能力的考查等。虽然这些措施收到了一定的成效,然而要从根本上改变现状,还应在中学数学课程设计上有所突破。一些学者认为,在中学数学课程中体现问题解决的思想,是解决上述问题的有效途径。
(三)数学观的发展
数学发展至今,人们对数学的总的看法由相对静态的观点转向静态和动态相结合的观点。对于数学是什么,经典的是恩格斯的定义:数学是研究现实世界空间形式和数量关系的科学。恩格斯对数学的观点是相对静止的,它主要指出了数学的客观真理性,然而,当今的社会实践告诉人们还应该用动态的观点去认识数学,即从数学与人类实践的关系去认识数学。就数学教育而言,学生之所以要学习数学,除了数学的客观真理性,更在于数学是改造客观世界的重要工具。学数学,首先是为了应用。应用数学是学数学的出发点和归宿。所以,数学教学的主要任务是教给学生在实际生活和生产实践中最有用的数学基础知识,并在教学过程中有意识地培养学生应用这些知识分析和解决实际问题的能力。
(四)问题解决过程和方法的一般性
在解决来自实际和数学内部的数学问题中,问题解决的过程和方法是基本相同的。不仅如此,这种过程和方法与解决一般的、其它学科中问题的过程和方法有很多共同之处。在数学问题解决中学习的过程和方法可以迁移到其它学科的问题解决过程中。此外,相对于其它学科的问题来学,解决数学问题所需要的工具和材料要少得多,有时只需要一支笔,一张纸。因而通过数学问题解决,可以较快地教给学生一般的问题解决的过程和思想方法,具有较高的效率。
三、“问题解决”和中学数学课程
实际情况出发,重要的是在中学数学课程中去体现问题解决的思想精髓,这就是它所强调的创造能力和应用意识。就是说,在中学数学课程中应强调以下几点:
(一)鼓励学生去探索、猜想、发现
要培养学生的创造能力,首先是要让学生具有积极探索的态度,猜想、发现的欲望。教材要设法鼓励学生去探索、猜想和发现,培养学生的问题意识,经常地启发学生去思考,提出问题。
学生学习的过程本身就是一个问题解决的过程。当学生学习一门崭新的课程、一章新的知识、乃至一个新的定理和公式时,对学生来说,就是面临一个新问题。例如,高中数学课是在学生学习了初中代数、几何课以后开设的,学生对数学已经有比较丰富的感性认识,教科书中是否可以提出,或者说应该教学生提出以下的一些问题:高中数学课是怎样的一门课?高中数学课和小学数学、初中代数、初中几何课有什么关系?数学是怎样的一门科学?这门科学是怎样产生和发展起来的?高中数学将要学习哪些知识?这些知识在实际中有什么用?这些知识和以后将要学习的数学知识、高中其它学科知识有些什么关系,有怎样的地位作用?要学好高中数学应注意些什么问题?当然,对这些问题,即使是学完整个高中数学课程以后,也不一定能完全回答好,但在学这门课之前还是要引导学生去思考这些问题,这也正是教科书编者所要考虑并应该尽可能在教科书中回答的。笔者认为,在高中数学课中可以安排一个引言课。同样,在每一章,乃至每一单元都应该考虑类似的问题。在这一点,初中《几何》的引言值得参考。在教科书中经常提一些启发性的问题,就会让学生逐步养成求知、好问的习惯和独立思考、勇于探索的精神。
无论是教科书的编写还是实际教学,在讲到探索、猜想、发现方面的问题时要侧重于“教”:有时候可以直接教给学生完整的猜想过程,有时候则要较多地启发、诱导、点拨学生。不要在任何时候都让学生亲自去猜想、发现,那样要花费太多的教学时间,降低教学效率。此外,在探索、猜想、发现的方向上,要把好舵,不要让学生在任意方向上去费劲。
(二)打好基础
这里的基础有两重含义:首先,中学教育是基础教育,许多知识将在学生进一步学习中得到应用,有为学生进一步深造打基础的任务,因而不能要求所学的知识立即在实际中都能得到应用。其次,要解决任何一个问题,必须有相关的知识和基本的技能。当人们面临新情景、新问题,试图去解决它时,必须把它与自己已有知识联系起来,当发现已有知识不足以解决面临的新问题时,就必须进一步学习相关的知识,训练相关的技能。应看到,知识和技能是培养问题解决能力的必要条件。在提倡问题解决的时候,不能削弱而要更加重视数学基础知识的教学和基本技能的训练。
教给学生哪些最重要的数学基础知识和基本技能,是问题的关系。目前,《全日制普通高级中学数学教学大纲(供试验用)》中关于课程内容的确定,已为更好地培养我国高中学生运用数学分析和解决实际问题的能力提供了良好的条件。我们要继承高中数学教材编写中重视数学基础知识和基本技能的优良传统和丰富经验,编出一套高质量的高中数学教材,以下仅对数学概念的处理谈点看法。
数学概念是数学研究对象的高度抽象和概括,它反映了数学对象的本质属性,是最重要的数学知识之一。概念教学是数学教学的重要组成部分,正确理解概念是学好数学的基矗概念教学的基本要求是对概念阐述的科学性和学生对概念的可接受性。目前,对中学数学概念教学,有两种不同的观点:一种观点是要“淡化概念,注重实质”,另一种观点是要保持概念阐述的科学性和严谨性。高中数学课程的建设也面临着同样的问题。笔者认为,对这一问题的处理应该“轻其所轻,重其所重”,不能一概而论。提出“淡化概念,注重实质”是有针对性的,它指出了教材和教学中的一些弊端。一些次要和学生一时难以深刻理解但又必须引入的概念,在教学中必须对其定义作淡化(或者说浅化)的处理,有的可以用白体字印刷,来表明概念被淡化。但一些重要概念的定义还是应以比较严格的形式给出为妥,否则,虽然老师容易判定这些概念的定义是被淡化的,但是学生容易对概念产生误解和歧义,关键在于教师在教学中把握好度,突出教学的重点。还有一些概念,在数学学科体系中有重要的地位和作用,对这类概念,不但不能作淡化处理,反之,还要花大力处理好,让学生对概念能较好地理解和掌握。例如,初中几何的点概念、高中数学的集合等概念,是人们从现实世界广泛对象中抽象而得,在教材处理中要让学生认识到概念所涉及的对象的广泛性,从而认识到概念应用的广泛性,另外学生也在这里学到了数学的抽象方法。对于数学概念,应该注意到不同数学概念的重要性具有层次性。总之,对于数学概念的处理,要取慎重的态度,继承和改革都不能偏废。
(三)重视应用意识的培养
用数学是学数学的出发点和归宿。教科书必须重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。可以考虑把与现实生活密切相关的银行事务、利率、投资、税务中的常识写进课本。
当然,并不是所有的数学课题都要从实际引入,数学体系有其内在的逻辑结构和规律,许多数学概念是从前面的概念中通过演绎而得,又返回到数学的逻辑结构。
此外,理论联系实际的目的是为了使学生更好地掌握基础知识,能初步运用数学解决一些简单的实际问题,不宜于把实际问题搞得过于繁复费解,以致于耗费学生宝贵的学习时间。
(四)教一般过程和方法
在一些典型的数学问题教学中,教给学生比较完整的解决实际问题的过程和常用方法,以提高学生解决实际问题的能力。
由于实际问题常常是错综复杂的,解决问题的手段和方法也多种多样,不可能也不必要寻找一种固定不变的,非常精细的模式。笔者认为,问题解决的基本过程是:1.首先对与问题有关的实际情况作尽可能全面深入的调查,从中去粗取精,去伪存真,对问题有一个比较准确、清楚的认识;2.拟定解决问题的计划,计划往往是粗线条的;3.实施计划,在实施计划的过程中要对计划作适时的调整和补充;4.回顾和总结,对自己的工作进行及时的评价。
问题解决的常用方法有:1.画图,引入符号,列表分析数据;2.分类,分析特殊情况,一般化;3.转化;4.类比,联想;5.建模;6.讨论,分头工作;7.证明,举反例;8.简化以寻找规律(结论和方法);9.估计和猜测;10.寻找不同的解法;11.检验;12.推广。
(五)创设问题情景
1.一个好问
题或者说一个精彩的问题应该有如下的某些特征:(1)有意义,或有实际意义,或对学习、理解、掌握、应用前后数学知识有很好的作用;(2)有趣味,有挑战性,能够激发学生的兴趣,吸引学生投入进来;(3)易理解,问题是简明的,问题情景是学生熟悉的;(4)时机上的适当;(5)难度的适中。
2.应该对现有习题形式作些改革,适当充实一些应用题,配备一些非常规题、开放性题和合作讨论题。
(1)应用题的编制要真正反映实际情景,具有时代气息,同时考虑教学实际可能。
(2)非常规题是相对于学生的已学知识和解题方法而言的。它与常见的练习题不同,非常规题不能通过简单模仿加以解决,需要独特的思维方法,解非常规题能培养学生的创造能力。
(3)开放性问题是相对于“条件完备、结论确定”的封闭性练习题而言的。开放性问题中提供的条件可能不完备,从而结论常常是丰富多彩的,在思维深度和广度上因人而异具有较大的弹性。
对于这类问题,要注意开放空间的广度,有时可以是整个三维空间、二维空间、扇形区域中,有时也可以限于一维空间甚至若干个点上,把问题的讨论限制在一定的范围内。
(4)合作讨论题是相对于常见的独立解决题而言的。有些题所涉及的情况较多,需要分类讨论,解答有较多的层次性,需要小组甚至全班同学共同合作完成,以便更好地利用时间和空间。这种题可以编入课堂练习题中。实际教学中可以把学生分成若干小组,通过分类讨论得到解决。合作讨论题能使学生互相启发、互相学习,激发灵感。英国的smp高中数学教科书中的一些问题可供参考。
数学课程教师心得体会篇四
数学课程问题一直是数学教学改革的中心问题,也是数学教育科学研究的中心问题之一。从1958年以来笔者参加了多次数学课程设计、教材编写、实验研究,从三十余年的实践中形成了关于数学课程发展规律的一些认识。影响、制约、决定数学课程发展的因素主要是三个方面:社会、政治、经济方面的需求,数学发展和教育发展的需求。数学课程的发展决定于这三个方面需求的和谐统一,本文基于《中学数学实验教材》(以下简称《实验教材》)的实验着重探讨这三者如何和谐统一推动数学课程的发展。一、我国社会发展对数学课程的要求
促进数学课程发展的众多动力中,没有比社会发展这一动力更大的了,社会发展的需要主要包括:社会生产力发展的需要,经济和科学技术发展的需要和政治方面的要求。 我国社会发展对数学课程提出了以下要求。
(一)目的性
教育必须为社会主义经济建服务。这就要求数学课程要有明确的目的性,即要为社会主义经济建设培养各级人才奠定基础,为提高广大劳动者的素质做出贡献。当今社会正由工业社会向信息社会过渡,在信息社会里多数人将从事信息管理和生产工作;社会财富增加要更多地依靠知识;知识更新、技术进步周期和人的职业寿命都在日益缩短,要适应日新月异的社会,必须把劳动者的素质、才能提到极重要的位置,而且要使他们具备终身学习的能力。
(二)实用性
数学课程的内容应具有应用的广泛性,可以运用于解决社会生产、社会生活以及其他学科中的大量实际问题;运用于训练人的思维。应该精选现代社会生和生活中广泛应用的数学知识作为数学课程的内容。另外,还要考虑其他学科对数学的要求。数学课程还应满足现代科学技术发展的需要,加进其中广泛应用的数学知识,如计算机初步知识、统计初步知识离散概率空间、二项分布等概率初步知识。
数学不仅是解决实际问题的工具,而且也广泛用来训练人的思维,培养有数学素养的社会成员,要使学生懂得数学的价值,对自己的数学能力有信心,有解决数学问题的能力,学会数学交流,学会数学思想方法。
(三)思想性和教育性
我们培养的人应该有理想、有道德、有文化、有纪律、热爱社会主义祖国和社会主义事业,具有国家兴旺发达而艰苦奋斗的精神;应当不断追求新知、实事求是、独立思考、勇于创新,具有辩证唯物主义观点。这就要求数学课程适当介绍中国数学史,以激发学生的民族自豪感。用辩证唯物主义观点来阐述课程内容,有意识地体现数学来源于实践又反过来作用于实践的辩证唯物主义观点。体现运动、变化、相互联系的观点。
《实验教材》用“精简实用”的选材标准来满足这些要求。
二、数学的发展对数学课程的要求
(一)中学数学课程应当是代数、几何、分析和概率这四科的基础部分恰当配合的整体
数学研究对象是现实世界的数量关系和空间形式。基础数学的对象是数、空间、函数,相应的是代数、几何、分析等学科,它们是各成体系但又密切联系的。现代数学中出现了许多综合性数学分支,都是在它们的基础上产生并发展起来的,研究的思想方法也是它们的思想方法的综合运用。代数、几何、分析在相邻学科和解决各种实际问题中都有广泛应用,所以中学数学课程应当是它们恰当配合的整体。曾经出现过的把中学课程代数结构化(如“新数”)的设计方案。“以函数为纲”使中学数学课程分析化的设计方案都不成功,正是没有满足这一要求。
(二)适当增加应用数学的内容
应用数学近年来蓬勃发展,出现了许多新的分支和领域,应用范围也在日益扩大,这种形势也要求在中学数学课程中有所反映。从“新数运动”开始,各国数学课程内容中陆续增加了概率统计和计算机的初步知识。这一方面说明概率统计和计算机知识在社会生产和社会生活中的广泛应用,另一方面也说明数学的发展扩大了它的基础,对中学数学课程提出了新的要求。
由于计算机科学研究的需要,“离散数学”越来越显得重要。因此,中学数学课程中应当增加离散数学的比重。
(三)系统性
基础数学,包括代数、几何、分析到19世纪末都相继奠定了严格的逻辑基础。到本世纪30年代法国布尔巴基学派用公理化方法,使整个数学结构化。任何一个数学系统都可以归结为代数结构、序结构和拓扑结构这三种母结构的复合。经过用公理化方法的整理,使数学成为一个逻辑严密、系统的整体结构。因此,作为符合数学知识结构要求的中学数学课程就必须具有一定的系统性和逻辑严密性。
(四)突出数学思想和数学方法
现代数学进行着不同领域的思想、方法的相互渗透。许多曾经认为没有任何共同之处的数学分支,现在已建立在共同的统一的思想基础上了。
数学思想和方法把数学科学联结成一个统一的有结构的整体。所以,我们应该体现突出数学思想和数学方法。
《实验教材》以“反璞归真”的指导思想来满足数学学科发展的要求。
三、教育、心理学发展对数学课程的要求
教育、心理学的发展,对教学规律和学生的心理规律有了更深入的认识。数学课程的设计要符合学生认知发展的规律。认知发展,要经历多种水平,多种阶段。认知的发展呈现一定的规律。基于这些规律,要求数学课程具有:
(一)可接受性
教学内容、方法都要适合学生的认知发展水平。获得新的数学知识的过程,主要依赖于数学认知结构中原有的适当概念,通过新旧知识的相互作用,使新旧意义同化,从而形成更为高度同化的数学认知结构的过程,它包括输入、同化、操作三个阶段。因此,作为数学课程内容要同学生已有的数学基础有密切联系。其抽象性与概括性不能过低或过高,要处于同级发展水平。这样才能使数学课程内容被学生理解,被他们接受,才能产生新旧知识有意义的同化作用,改造和分化出新的数学认知结构。
(二)直观性
生提示抽象概念的来龙去脉和其本质。也就是要“反璞归真”。
(三)启发性
苏联心理学家维果斯基认为儿童心理机能“最近发展区”的水平。表现为发展程序尚未成熟,正处于形成状态。儿童还不能独立地解决一定的靠智力解决的任务,但只要有一定的帮助和自己的努力,就有可能完成任务。数学课程的启发性就在于激发、诱导那些正待成熟的心理机能的发展,不断地使“最近发展区”的矛盾得到转化,而进入更高一级的数学认知水平。
要使数学课程真正具有启发性,需要克服两种偏向:第一,内容过于简单,缺乏思考余地。没有挑战性,不能激发学生思维,甚至不能满足学生学习愿望。第二,内容过于复杂、抽象。超过了学生数学认知结构中“最近发展区”的水平,学生将会由于不能理解它,产生畏惧心理,最后厌恶学习数学。
布鲁纳曾指出,向成长中的儿童提出难题,激励他们向下一阶段发展,这样的努力是值得的。在这种思想的指导下,他的数学课程采用螺旋式上升的原则,这是课程内容启发性的体现。
《实验教材》用“顺理成章、深入浅出”的指导思想来体现以上诸要求。
四、三方面需求的和谐统一
上面分别考查了三个方面对数学课程提出的要求,这些要求有时互为前题,互相补充,而有时却是彼此矛盾的。这导致了数学课程设计的复杂性和艰巨性。如何才能使这三方面的要求和谐统一呢?从《实验教材》的实验中形成了16字指导数学课程设计的思想,比较恰当的统一了以上三方面的需求。这16字的指导思想是“精简实用、反璞归真、顺理成章、深入浅出”。
“精简实用”是个基本的指导思想,它恰当地表现了理论和实际的正确关系。由实际到理论,就是由繁精简,把实际中多样的事物、现象,经过分析、综合,归纳出简单而又具有普遍性的道理,这就是理论。而只有精而简的理论才能用来“以简驭繁”。所以“精简实用”在科学上的意义就是要寻求真正具有普遍性、简明扼要的理论。要做到精简,必须抓住重点。教材中普遍实用的最基础部分,那些具有普遍意义的通性、通法就是重点。中学数学课程内容应是代数、几何、分析和概率这四科的基础部分恰当配合的整体,这样做既可满足社会的需要、数学知识结构的要求,又可满足可接受性的要求。其中普遍实用的最基础部分是代数中的数系,最普遍有用的是数系的运算律(“数系通性”);解代数方程;多项式运算;待定系数法。几何中的重要内容是教导学生研习演绎法,要点在于让学生逐步体会空间基本性质的本质与用法。平行四边形定理、相似三角形定理、勾股定理可以说是欧氏平面几何的三大支柱,它们也就是把空间结构全面代数化的理论基础。用向量把几何学全面代数化,讲向量身体、解析几何及其原理,这些就是几何课的重点。分析的重要内容除函数、极限、连续等分析学的基本概念之外,变化率是要紧的概念。分析中最基本的方法是逼近法。
“反璞归真”就是着重于教学生以基础数学的本质,而不拘泥于抽象的形式。初等代数最基本的思想、最重要的本质就是那些非常简单的数的运算律,它们是整个代数学的根本所在。把它形式化,也就是多项式的运算和理论。传统的代数教学从多项式的形式理论开始,学生不解其义,感到枯燥。《实验教材》反璞归真,先讲代数的基本原理就是灵活运用运算律,首先用以解决一次方程的实际问题,学生自然地觉得应该有一个多项式理论,然后再讲多项式,这样学生易于理解多项式的来源与本质。“这就是反璞归真”的一个实例。
基本的数学思想与数学方法是基础数学的本质,突出其教学是把知识教学与能力训练统一起来的重要一环。把知识看作一个过程,弄清它的来龙去脉,掌握思想脉络,学生的数学才能才发展起来,要学生“会学”数学,就必须让学生掌握基本的数学思想和方法,会“数学地”提出问题,思考问题、解决问题。
《实验教材》一开始就突出了用符号(字母)表示数的`基本思想和方法。集合的思考方法,在几何和代数中都十分重视。经常训练学生从考虑具体的数学对象到考虑对象的集合,进而考虑分类等问题。
函数的思考方法,考虑对应,考虑运动的变化、相依关系,由研究状态过渡到研究过程。分解和组合的方法。对数学问题的分析与综合、转化、推广与限定(一般化与特殊化)、类比、递推、归纳等基本的数学思想与方法都分别得到强调。
“顺理成章”就是要从历史发展程序和认识规律出发,“顺理成间”地设计数学课程。数学是一种演绎体系,有时甚至本末倒置。这正是数学本身的要求和学生心理发展的要求相矛盾的所在。正确处理这个矛盾,使这两方面的要求和谐统一,课程设计就既不能违背逻辑次序。更要符合认识程序。因此,要参照数学发展历史,用数学概念的逐步进化演变过程作为明镜,用基础数学的层次与脉络作为依据来设计数学课程。数学的历史发展经历过若干重要转折。学生的认识过程和数学的历史发展过程(人类认识数学的过程)有一致性。数学教材的设计要着力于采取措施引导学生合乎规律地实现那些重大转折,使学生的数学学习顺理成章地由一个高度发展到另一个新的高度。在基础数学范围内,主要经历过五个大的转折。
由算术到代数是一个重大的转折。实现这个转折,重要的是要向学生讲清代数的基本精神是灵活运用运算律谋求问题的统一解法。由实验几何到论证几何是第二个重大转折。要对空间的基本概念与基本性质加以系统的观察、分析与实验,建立“空间通性”的一个明确体系,达到“探源、奠基与启蒙”三个目的,然后引进集合术语并以集合作工具,讲清一些基本逻辑关系、推理格式,再转入欧几里得推理几何。第三个转折是从定性几何到定量几何,即从综合几何到解析几何。要对几何问题谋求统一解法,出路在代数化,首先要把一个基本几何量代数化,就得到向量的概念,然后运用欧氏空间特有的平移、相似与勾股定理等基本性质引起向量的加法、倍积与内积这三种向量运算。这样就把窨的结构转化为向量和向量运算。这样就把空间的结构转化为向量和向量运算这种代数体系,因而空间的基本性质也就转化成向量运算的运算律。换句话说,向量的运算律也就是代数化的几何公理。这样就实现定性几何到定量几何的转折。向量是这个转折的枢纽。第四个转折是从常量数学到变量数学,这在概念和方法论方面都有相当大幅度的飞跃,需要早作准备。初中二年级已引入三角函数的初步概念,初三正式研究各种函数,到高一、高二的代数与解析几何中,就逐步讲座到连续性、实数完备性、切线等概念。数列、逼近的思想也早有渗透,到高三进一步突出逼近法研究极限、连续、微分、积分等变量数学问题。第五个转折是由确定性数学到随机性数学。在代数之后引起概率论初步。
上述数学课程设计,既遵循历史发展的规律,又突出了几个转折关头,缩短了认识过程。有利于学生掌握数学思想发展的脉络,提高数学教学的思想性。
如果没有掌握到这种枢纽性的理论,就无法回头用理论来统一一系列繁复多样的实际。所以数学课程的设计要用学生易于接受的形式引导学生去掌握枢纽性的理论。“占领制高点”,才能居高临下,一目了然。把数学课程搞得浅薄,砍掉具有枢纽地位的基础理论,把数学课程变成一本支离破碎的流水帐,一来难懂,二来无用,所以深入浅出的要点在于教好那些具有枢纽地位的基础理论。
《实验教材》的实验证明,16监察院指导思想恰当地处理了理论和实际的关系,数学科学与数学学科的关系,数学知识教学与数学能力培养的关系,数学课程完整性与发展性的关系等,充分满足了三方面的要求,五个转折都顺利地实现了。《实验教材》内容多、要求高、负担重,有待进一步精简。
《实验教材》的实验研究取得了效果和经验。但是数学课程发展的规律、指导发展的理论尚待探索和逐步建立,尚需使用历史分析的方法,比较研究和实验研究的多种方法,研究古、今、中、外的数学课程,从中探索出规律,建立数学课程发展的系统理论,以指导今后的数学课程改革和设计的实践。
数学课程教师心得体会篇五
感受了校园环境之后更想感受一下这里的课堂,下午听了两节课,周五上午又听了三节课,五节课中充分感受到了学校的教学模式“学程导航”。教师在这样的教学模式下进行课堂教学,感觉每一节课都有那么多地方值得去学习,同时也有值得思考的地方,总结一下感受如下:
一、有趣的课前游戏
常见的课堂一般从老师精心设计的情境入手,将学生在情境中感受数学知识,从而进入本节课的教学,但海南小学的老师没有这样做的,他们的课堂从猜谜游戏开始,让学生从猜谜中感受到猜谜中有时候也有数学知识。如张瑜六年级《解决问题的策略—转化》一课就是从猜字谜开始的,学生开动脑筋才出“72小时”、“15天”、“100厘米”各打什么字,老师就相机提问刚才猜字谜的过程中用到了什么策略,简单快速地让学生感受到转化策略的运用,也体现了学习策略的必要性,自然地进入新课内容。在听《2、5的倍数的特征》一课的时候也有这样巧妙的引入,老师从数学王国中选择的两个数,引起了学生学习的好奇,有了学习新课的欲望,自然进入新课的学习。在我们的教学中,有时候为了设计较好的情境绞尽脑汁,有时候还达不到理想的效果,其实这样的时候不妨试一试从最简单的小游戏入手,或许有意想不到的效果。
二、预习单贯穿课堂
“学程导航”教学模式要将“教师教”转化为“学生学”,这样的转化需要学生有较强的素质,需要学生会学,能主动地学,当然教师的辅导也是至关重要的,听课中,老师都是通过预习单来进行新课学习的,有课前完成的预习题,也有上课交流的预习题,简单的知识学生基本上都是在课前预习中就掌握的,课上就省下来一部分时间。有难度的知识又通过预习单上设计好的问题,经过课前独立思考,课上小组讨论和全班交流,各个击破难点。同时预习单上还设计了相应的练习题和拓展题,让新知识及时地得到巩固,也通过拓展题让学有余力的学生有了提升自己的空间。一张张学习单也反正了学生学习的过程,真的是由“教师教”到“学生学”的教学模式。
三、分类练习发展能力
听完了课,感觉每一节课中练习的时间都足够多,这样的练习时间既让学生进行了及时的巩固练习,也让学有余力的学生有了发展自己能力的机会,每一节课中,老师都设计了拓展题,记得《倍数和因数》一课中,顾校长在每一个学习目标后都设计了相应的练习巩固知识,最后课堂作业中又设计了综合性的练习题让学生练习,选做题也让学的快的同学多了练习的机会,很好地让每一个同学都努力完成练习,这让我想起我自己的课堂,练习的时候,比较好的学生完成了之后往往会坐在那里没有事干,行为习惯好一点的学生会考虑其他学生在做题,默默地看书,而行为习惯没有那么好的学生,很有可能去影响其他人,影响其他人完成作业。要是这个时候给这些学生做一些提高能力的题目,不仅提高了他们自己的能力,也能让其他同学有一个安静的练习环境,同时也让这些能力强的学生成为其他学生的榜样,在以后的练习中提高自己的做题速度和正确率,提高自己的能力。
四、数学从生活中来
生活中到处都是数学,我们要会用好生活中的资源更好地学习数学,在《圆柱和圆锥的特征》一课中,老师先让学生在生活中找到圆柱和圆锥,每一个学生都能积极主动地思考自己生活中哪里见过这些立体图形,想的过程也是学习的过程,判断生活中见到的是不是圆柱就会用到圆柱的特征,在思考中也就意识到圆柱的这些特征,为后面特征的学习做好铺垫。学完圆柱的特征时,老师给出了一组立体图形,让学生进行判断,同时也通过生活中的一次性纸杯引出了圆锥,恰到好处地让学生进入了圆锥特征的学习中。在《圆的认识》一课中,也让找出了生活中的圆,通过视频让学生知道了体育老师画圆的方法,让学生感受到学习画圆的必要性,也让学生感受到就在我们的生活中。
五、数学知识有效拓展
“一尺之锤,日取其半,万世不竭”、“完美数”、“语文中的关联词”、“寻找宝物”等等,在数学课中都出现了,这些都是数学知识的有效拓展,将分数加法与《庄子》进行结合,将于倍数和因数密切关系的完美数作为了课外阅读材料,将语文中的关联词用到数学课堂中,宝物的位置与圆密切联系。每一个都能让学生充满着兴趣,也让学生体会数学与其他知识的多重联系,感受数学的魅力。
数学课程教师心得体会篇六
2011年8月13日,我参加了海口市龙华区组织的暑期培训,还有2011年,我参加了海南省 - 2011年“国培计划”——中西部农村中小学教师远程培训的初中数学的课程培训,现将我培训后的心得体会总结如下:
培训为我即将面临的实际工作提供了许多方法和策略。在培训中,很多专家根据自己的实际经验给我们介绍了一些当好教师的要点和方法,给我留下了深刻的印象。在谈到教师的专业发展问题上,各位专家都强调了适时调整和更新自身知识结构、终身学习的做法;在谈到面对困难如何克服的问题上,各位专家还提出了如何加强教师之间团结合作的方法;在教学教法经验方面,通过反思适时改进教学方法和策略,工作上争取精益求精。
培训使我对未来的工作充满了信心和动力。而本次培训中,尤其是教师心理调适方面得到了很大的平衡,并获得了更多的方法,这对自己是一种鼓励。鼓励新教师适应教学环境、生活环境、人际关系环境;鼓励我们要更加理性地认识社会、认识自己的角色;鼓励我们要做一名终身学习型老师,做一名能够不断适应新知识新问题新环境的老师;鼓励我们要坚持创新,在教学中发挥自己的聪明和才智,争取在教学中获得更大的发展。这些鼓励,使我对未来的工作充满了信心和动力。
培训是我对研究型教师有了更深的理解。教师教书是一方面,但是科研也很重要,我们要学做一名研究型教师。对于我们教师来说可能参与一个大的课题比较难,但是科研意识却不能忘记,它应该伴随着我们的成长。因为这种实践加理论的科学方法可以加快我们的成长速度。例如,我们的教后反思。把每次的成功之处和不足、困惑记录下来。可以方便我们从中找到不足,总结经验。当然,不足要通过教育专家或者向专家、老教师请教解决。
培训是我们认识到教育是个大工程。专家讲座使我们对家庭教育的意义有了进一步的认识,家庭教育并不是孤立的,它与学校教育、社会教育紧密配合,共同形成了我国社会主义的严密的教育体系。家庭教育是学校教育的基础,社会教育是学校教育的补充和继续,家庭教育是其他教育机构不能替代的。
在新课程理念的指引下,对“教师”这个职业有了新的认识。首先,教师是文化的传递者,“师者,传道、授业、解惑也”,这是从知识传递的角度来反映教师的重要性。第二,教师是榜样,学高为师,身正为范也正是这个意思,这里主要涉及做人的问题,学生都有向师性,实际上是做人的一种认同感;同时学生受教育的过程是人格完善的过程,教师的人格力量是无形的、不可估量的,教师要真正成为学生的引路人。第三,教师是管理者,教师要有较强的组织领导、管理协调能力,才能使教学更有效率,更能促进学生的发展。第四,教师是父母,作为一名教师,要富有爱心,教师对学生的爱应是无私的、平等的,就像父母对待孩子,所以我们说教师是父母。并且,教师还要善于发现每一个学生的闪光点和发展需要。第五,教师是朋友,所谓良师益友,就是强调教师和学生要交心,师生之间的融洽度、亲和力要达到知心朋友一样。最后,教师是学生的心理辅导者。教师必须要懂教育学、心理学、健康心理学等,应了解不同学生的心理特点、心理困惑、心理压力等,以给予及时的帮助和排解,培养学生健康的心理品质。作为教师,不仅具有一定的专业水准,更要具有优秀的心理品质与道德意识。
1、树立终身学习的观念。我们不仅要提升自身的专业知识,还要学习更多方面,如教育学、心理学、课程改革理念等等。同时我们也要学会做事与人际交往。教师从事的是和人打交道的工作,如果能善于观察、研究、思考;处理好与学生、家长、同事之间的关系,那么相对来说,工作起来就会更得心应手。
2、提升个人的人格魅力。作为一名教师,首先要让学生喜欢你,喜欢听你的课,进而喜欢听你的指导。这就要求个人魅力不断提升,在积累经验中获得一种平和优雅的心境,在和学生相处的过程中获得学生的信赖。热爱学生,真诚可以是一面镜子,也可以是一种无敌的武器,对待学生,对待花样年龄的青少年,除了真诚还能用什么方式来打动他们,获得他们的信任呢?在教师生涯中,我将本着对学生对职业的热爱,坚决地走下去。
3、在实践中反思自我。做一位优秀的人民教师就要不断反思,书是最好的老师,多读书,提升自己,要想从工作中不断提高自己的教学水平就少了这个环节;不断的反思、改进。教师职业没有最好,只有更好。在不断的反思与积累中获得属于自己的经验与方法,并且能将这种方法深化为一种理论,这便是做一名教师的最高境界了。
一份付出,一份收获,在这短暂的十几天里,我收获的是那一份份充实,当然在我的教学中还存在许多的不足,我会虚心向教师们请教的。我会用我的心去教诲我的学生,我用我的情去培育我的学生,用愉快的心情对待每一天的工作,争取做一名研究型教师。我无悔于人类灵魂的'工程师的称号。
数学课程教师心得体会篇七
起初我是被分配到高二政治组,进行政治教学,而我自己想教的确是语文,于是与德育处办公室里的一位语文老师商议,他欣然同意先让我在高二_班先讲一篇语文课文,所以我开始教授语文,我觉得这些课堂教学才是我真正教师生涯的开始。一个好的语文老师必须自身拥有良好的文学与语言素养,而且这还不够,他还具有人文精神,包括人道主义关怀与宽容的精神。
我自己对这次语文讲课的机会非常珍视,同时也有些忐忑不安,害怕自己的知识与素养不够,不能胜任这样一个优秀班级的语文教学。由于时间很充分,我备了两个星期的《秋水》,之前也在__校区乘着教室没人在那里试讲过,当时效果不是很好,但是还是硬着头皮开始了第一堂语文课。开始的紧张到讲台上渐渐消失了,我充分意识到自己之前准备的重要性,包括教学设计、ppt课件制作与老师商讨一些文言知识,而正是这些充分的准备才让我能在课堂上很快摆脱了害怕、担忧与紧张。这样在第一节课结束后,虽然时间把握的不是很好,但还是得到了指导老师的肯定:不像一个新老师的样子,好像是个老手。这样我又精心准备了第二堂课,效果还不错,至少老师满意,学生也认真听讲。但是我在备课与讲课中就明显感觉自己无论是中文相关知识还是文学表达与迁移的素养不够,备课中、课堂上明显会有“挤不出来”的感觉,原因是自己里面“牙膏”不多呀!我想要做好一个优秀的语文老师,中文专业知识与文学素养那是基础,所以为了自己这个目标必须从这方面着手,于是在实习之余,我利用__校区的图书馆与中文系的便利阅读文学经典,旁听中文系老师的课,我也非常享受在__校区那段“乘课听”与“泡图书馆”的日子,我希望这种日子能够继续,可惜最后我还是要和__图书馆说再见,但是我知道中文的学习才刚刚开始。我在第一篇课文结束后给学生留了一篇作文,而在批改作文的过程中我再次感受到中学语文作文教学存在的一系列问题,而与老师的交谈中他也会时时向我谈到学生作文问题,于是自己也在思考中学语文作文改革的出路在在哪里。因为自己喜欢写博客的缘故,所以就将博客与作文教学联系起来,在实习的后半期开始了“基于博客的中学语文作文教学研究”的调查,我从理论上分析了博客作文教学社区的重要性与一些理念,而用问卷与访谈实地考察了博客作文教学社区实施的可行性,最后还提出了博客作文教学社区可能会存在的问题,帮助自己在认知层面上理清了这个问题。
四、实习总结。
两个半月的实习起初感觉过得很慢,后来一旦真正开始讲课的时候,每天只有备课、讲课与评课,然后再备课、讲课与评课,这样周而复始,一个月的时间就很快过去了,接着为了自己的课题,再去那些曾经受过课的班级发放问卷时,发现我与那些学生之间的师生缘分可能就到这里了,想着不免有几分伤感与不舍。虽然我离开了,但是如果自己要是能在他们的精神世界里留下那么一点点东西也是我莫大的荣幸,希望自己这段宝贵的经历能够在自己的世界中留下点什么。
数学课程教师心得体会篇八
多媒体演示:商店里的食品和价钱。
师:现在如果你到了一家超市,要买你自己最喜欢吃的食品,要花多少钱?
生1:我想买3袋饼干,1袋3元,共花了9元。
生2:我想买1瓶饮料和1个汉堡包,共花8元。
生3:我想买4包花生和1袋糖果。
师:他买的东西挺多的,同学们先猜猜他用了多少钱?
生:我估计用了30元左右。
二、探讨算法
(一)师生共同探讨计算食品的总价
师:那他到底用了多少钱?你会解决这个问题吗?请同学们先自己做做,再在小组内说说你是怎样想的。
让学生在小组内说出想法后汇报计算过程和想法,其他同学进行补充。
生1:我觉得应该先算出4包花生用了多少钱,所以我要先列出算式7×4=28(元),再和1袋糖果的钱合起来,列出算式5+28=33(元)。
生2:我是这样想的:前面我学过有加有减的运算,它可以很方便地把两个算式合在一起,然后再一步一步计算。那现在也可以把刚刚那两个算式合在一起,变成5+7×4,这样计算起来会方便一些。
生1:我要先算乘法,因为我要先知道4包花生用了多少钱,才能求出最后的价钱。
生2:是呀!如果先算加法5+7,就不知道算出来的数是什么意思。
(二)探讨如何计算20-4×3
1、刚才你们学会了计算食品的`总价,那现在如果你有20元,买4包饼干应找回多少钱呢?你会解决这个问题吗?请同学们自己先想一想,再在小组内说说你的想法。
2、让学生在小组内说出想法后汇报计算过程和想法,其他同学进行补充。
3、汇报算式20-4×3的计算过程和想法。
(三)自学书本例3和例4
(四)质疑问难
(五)小结算法
三、巩固练习
课后反思:
在数学课程标准第一学段“数与代数”中,关于数的运算的具体目标明确提出:结合具体情境,体会四则运算的意义,经历与他人交流算法的过程,能灵活运用不同的方法解决生活中的实际问题,并能对结果进行合理的判断。正是在这种目标的指引下,现在的数学计算,不再是单纯的数与数之间的运算,而是变为了每一步计算都有其具体的生活情境,每一个数字,甚至每一个运算符号都有其独特的生命意义。如在学习计算应找回多少钱的过程中,学生意识到必须先算出食品的价钱,才能进一步算出找回的钱数。就在这种熟悉的生活情境下,学生慢慢地体会到“先乘除,后加减”运算顺序的合理性,这些算式也变得有了生命的价值;数学和自己的生活密切联系,体会到数学的价值,感觉到数学充满趣味。当问题自己提,规律自己发现,结论自己总结时,学生的思维就会得到充分的发展。
感 悟
波利亚说:“学习任何知识的最佳途径都是由自己去发现。因为这种发现,理解最深刻,也最容易掌握内在规律与联系。”在教学设计2中,正是有了自主探索的时空,学生才充分调动自己原有的认知结构和生活经验,发挥自己的聪明才智;正是有了交流的机会、展示的舞台,学生才敢于大胆表达不同的见解,提出个性化、创造性的问题解决办法;也正是经历了从混沌到清晰的过程、正确与错误的考验,学生才从中体会到了数学思考的乐趣、探索成功的喜悦。
我们的教学可谓是“天上的星星参北斗”,学生在这宽松和谐的课堂中,才敢“风风火火闯九州”,教师应该扮演好组织者、引导者、合作者的合理角色,做到“该出手时就出手”,在课堂的大舞台上教师和学生共同学习,各自有所成长,才会“你有我有全都有”,那么我们的教育事业的这艘大船才会顺着“大河向东流“。
数学课程教师心得体会篇九
在本次连片教研活动的数学新课标培训中,使我受益匪浅,我从王校长透彻的分析教材中更加了解到《数学20xx版课程标准》在课程目标和内容、教学观念和学习方式、评价目的和方法上的变革。使我对新课标的要求有了新的认识和体会,其中“让学生在学习活动中体验和理解数学”是《数学新课程标准》给我最深的感触。因此,本人通过对新课程标准的再学习,有以下的认识:
兴趣是学生学习中最活跃的因素,因此,在数学教学中创设生动有趣的情境,激发学生的学习兴趣,让学生在生动具体的情境中理解和学习数学知识。一个好的教学情境可以沟通教师与学生的心灵,充分调动学生的学习积极性,使之主动参与到学习活动中。使学生把学习作为一种乐趣、一种享受、一种渴望,积极参与数学活动。
在数学教学中要从学生熟悉的生活背景引入,让学生感受到数学无处不在,使学生对数学产生亲切感,激发他们到生活中寻找数学知识。《数学课程标准》还指出:“提倡让学生在做中学”。因此在平时的教学中,我力求领悟教材的编写意图,把握教材的知识要求,充分利用学具,让学生多动手操作,手脑并用,培养技能、技巧,发挥学生的创造性。数学源于生活。因此我教学时必须紧密联系实际,注重对数学事实的体验,让学生在生活中,实践中学习数学,从而体验学习数学的价值。
小组合作互动学习是一种有效的学习形式,通过合作学习不仅可以学到课本上的知识,更重要的是培养学生的合作意识和参与意识,使学生学会与他人合作的方法,进而认识自我、发展自我,充分体验合作探索成功的喜悦。学生在合作、交流、碰撞中掌握了探究的方法。不但确立了学生的主体地位,还培养了他们自主学习的能力,满足了他们的成功欲,从而让学生享受学习数学的快乐。
面对新课程改革的挑战,我们必须多动脑筋,多想办法,密切数学与实际生活的联系,使学生从生活经验和客观事实出发,在研究现实问题的过程中用数学、理解数学和发展数学,让学生享受“数学学科的快乐”且快乐地学数学。