教学工作计划的编写需要考虑学生的情况、教学资源的利用以及教学环境的需求,确保教学能够顺利进行。以下是小编为大家整理的教学工作计划实例,希望能给大家提供一些实践经验和方法论。
数学图形的运动一教案(实用22篇)篇一
1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。
2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3、长方体的棱长总和=(长+宽+高)4正方体的棱长总和=棱长12。
4、表面积:长方体或正方体6个面的总面积叫做它的表面积。
5、长方体的表面积=(长宽+长高+宽高)2s=(ab+ah+bh)2。
正方体的.表面积=棱长棱长6用字母表示:s=。
6、表面积单位:平方厘米、平方分米、平方米相邻单位的进率为100。
7、体积:物体所占空间的大小叫做物体的体积。
8、长方体的体积=长宽高用字母表示:v=abh长=体积(宽高)宽=体积(长高)。
高=体积(长宽)。
正方体的体积=棱长棱长棱长用字母表示:v=aaa。
9、体积单位:立方厘米、立方分米和立方米相邻单位的进率为1000。
10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积高v=sh。
9、体积单位:立方厘米、立方分米和立方米相邻单位的进率为1000。
10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积高v=sh。
11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;。
把低级单位聚成高级单位,用低级单位数除以进率。
12、容积:容器所能容纳物体的体积。
14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。
小学数学成绩差怎么补。
首先我们应该先分析孩子们数学学不好的原因,有很多的孩子们是因为原本数学基础就非常的薄弱,跟不上老师们复习的进度,所以越到后面越没有自信心。还有的孩子们是因为数学基础比较好,但是容易对知识点进行混淆,在做题的时候没有自己的思路,不会对知识点进行运用。最后一类孩子们是在考试时非常的紧张、怯场,平时会做的题在考试时也非常容易丢分大脑一片空白。
孩子们在学习数学的过程中,可以通过数学的定义对知识点进行记忆,如果对解题的步骤和方法掌握的不够扎实,可以在课下多进行练习。如果孩子们认为自己学习非常的慢,那就可以选择报名辅导班,来帮助孩子们学习。
数学除数是一位数的除法知识点。
1、除数是一位数的笔算除法,先用被除数的最高位除以除数,再依次类推,用每一位上的数分别和除数相除,除到哪一位就把商写在那一位的上面。
2、要将前一步计算后的余数写出来和下一步的数合起来再除。
3、每次计算后的余数都要同除数进行比较,不要忘了“余数要比除数小”.
4、如果被除数的最高位比除数小,则商的位数比被除数的位数少1位。
5、如果被除数的最高位大于或等于除数,则商的位数同被除数的位数相同。
6、学会用乘法验算除法:(a)没有余数的除法:商×除数=被除数。
(b)有余数的'除法:商×除数+余数=被除数。
数学图形的运动一教案(实用22篇)篇二
一、指导思想:
根据本学期工作计划结合班级学生及数学学习的具体情况,以素质教育为核心,以提高学生实际数学能力为重点,力求挖掘学生学习数学的积极性和学习潜在能力,提高学生的数学成绩。
二、学情分析:
我所任教的四年级两个班的学生思维都比较活跃,课堂氛围比较好,学习的积极性很高。但这个年龄段的学生比较粗心,计算比较容易出错。对应用题的理解能力不够,自己审题的难度较大。所以,在复习时应该重点放在计算能力的培养和对应用题的理解上,对于课本上的基础知识也需要进行复习巩固。而有少部分成绩优异的学生对知识的掌握程度姣好,这就需要在复习时对他们这部分学生加大难度,进行有难度的训练。
三、复习内容:
复习时按照整册教材的知识体系分——大数的认识、乘法和除法、角和四边形、统计和数学广角这四大块来进行知识的梳理。
四、复习目标:
3.通过整理和复习,使学生进一步掌握直线、射线和线段的特征,认识角、平形四边形和梯形。
5.通过整理和复习,使学生进一步掌握统计的基本知识和方法,会画两种不同的统计图。
7.通过整理和复习,使学生经历回顾本学期的学习情况,以及整理知识和学习方法的过程,激发学生主动学习的愿望,进一步培养反思的意识和能力。
数学图形的运动一教案(实用22篇)篇三
教学目标:
一、知识与技能。
1、初步认识轴对称图形,理解轴对称图形的含义。
2、能找出并画出轴对称图形的对称轴。
二、过程与方法。
通过观察、思考和动手操作,培养学生的探索与实践能力,发展学生的空间观念。
三、情感态度与价值观。
引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。
教学重点:认识轴对称图形的特点,建立轴对称图形的概念以及画对称轴。
教学难点:准确判断生活中哪些图形是轴对称图形。
教法与学法:
教法:直观教学。
学法:合作交流。
教学准备:多媒体课件、a4纸、直尺、正方形、长方形、圆形纸等。
教学过程:
一、动手操作导入。
师:同学们喜欢玩吗?
生:喜欢。
师:同学们平时都玩些什么呢?
生:玩.................
生:折飞机、折图形、折图案等。
师:同学们想象很丰富,也真会玩?想知道老师拿这张纸怎么玩吗?
(先把这张纸对折,然后在沿着对折的另一边任意的把它撕下来)。
师:看,同学们想像老师这样玩吗?
生:想。
师:每个同学都有机会,拿出桌面的这张纸,先折一折,在撕一撕,看谁做得又快又好!开始!。
师:同学们做好没有,谁愿意把自己的作品展示出来。
师:同学们在仔细观察一下,这些图形中有什么共同的特征?
预设生1:有一根线、有一条折线、有一条折痕、对称轴。
师:真是一个善于发现的好孩子!
师:除了这个发现外,还有没有其他的发现?
预设生1:???
预设生2:图形的两边一样。
师:多聪明的孩子,观察力和想象力多么丰富的孩子!此处应有掌声!
师:同学们看一下这个图形,沿着这条折痕对折,图形的两边.........。
生:一样。
师:像这样两边重叠在一起,就叫做完全重合。
师:同学们在来看这个图形,和刚才的图形是不是有相同的特征呢?
沿着这条折痕对折,图形的两边.........,就能够完全重合在一起。
板书:对折完全重合。
师:想这个对折后两边完全重合的图形,叫做轴对称图形。
二、探索新知。
1、引出轴对称图形的定义。
板书:对折后两边完全重合的图形,叫做轴对称图形。
板书:书写正题:轴对称图形。
(学生了解轴对称图形定义后,让学生去判断黑板展示的图形,加深对轴对称图形定义的认识。)。
师:同学们,用你们响亮的声音跟着老师一起来读一读。
(师领读一遍)。
师:请同学们用这样完整的数学语言来告诉你的同桌,你手中的图形,也是轴对称图形?
师:同学们都讨论好了没有?
生:讨论好了。
师:谁愿意用这样完整的数学语言来描述,你手中的图形,也是轴对称图形?
生1:
生2:
(师及时订正与表扬)。
2、寻找和画对称轴。
生:一根线或一条折痕或一条折线。
师:真了不起!
师小结:也就是说我们沿着这条折痕对折,图形的两边就能够完全重合在一起。所以这条折痕所在的直线,就是这个轴对称图形的对称轴,用画一条虚线来表示。请同学们举起你的手指,跟着老师一起来描画对称轴。(老师一边画,同学们跟着一起描)。
师:拿出你手中的轴对称图形,和你同桌说一说它的对称轴在哪儿?
(1)课件展示:巩固题习。
判断下列哪些图形是轴对称图形,如果是?画出它的对称轴。
师生互动:
第1个习题:三角形。
师:同学们仔细观察,这个图形是轴对称图形吗?
生:是。
师:你是怎样判断的?
预设生:因为三角形对折后两边完全重合,所以它是轴对称图形。
师:观察真仔细,都会用完整的数学语言进行描述和判断,我们大家都要向他学习哦!
师:它是轴对称图形,对称轴在什么位置呢?用手描画一下。
生:从中间竖直向下。
师:掌声在哪里?
第2个习题:小鱼简图。
师:同学们仔细观察,这个图形是轴对称图形吗?
预设生1:不是。
师:你是怎样判断的?
预设生1:因为小鱼简图中左边和右边对折后不一样,图形对折后两边不完全重合,所以它不是轴对称图形。
预设生2:是。
师:你是怎样判断的?
预设生2:因为小鱼简图中左边和右边对折后不一样,如果小鱼简图上下对折后,两边完全重合,所以它是轴对称图形。
师:这位同学太了不起!他判断一个图形是不是轴对称图形,不光只从左右对折,还可以上下对折,或者任意一个方向对折,只要能找出一种对折方法,使图形的两边完全重合在一起,我们就可以判断这个图形是轴对称图形。这个同学真了不起,掌声送给他!
(如果没有学生想到这样的方法,老师就进行提示)。
师小结:由此我们可以看出,轴对称图形不光可以这样对折,还能这样对折,也许还有其他的对折方式?只要对折后两边完全重合就是轴对称图形。
第3个习题:枫叶图。
师:同学们仔细观察,这个图形是轴对称图形吗?
生:是。
师:你是怎样判断的?
预设生:因为枫叶对折后两边完全重合,所以它是轴对称图形。
第4个习题:平行四边形图。
师生互动,学生畅所欲言,各抒己见!
师:同学们,有时不要过分地相信自己的眼睛,感官上的判断不如实践出真理,同学们动手折一折,验证一下。
师小结:通过折一折动手实践,同学们发现,不管从什么角度来对折,它都找不到一种对折的方法,使这个平行四边形的两边完全重合在一起,所以这个平行四边形不是轴对称图形。
师过度:刚才我们分析了许多,反驳了许多,动手验证了许多,同学们对轴对称图形有了更进一步的理解和认识。
师过度:同学们想不想挑战更难一点的问题?
生:想。
三、巩固提升。
(2)课件展示:小组合作。
师:请同学们打开号信封,拿出正方形、长方形、圆形。
要求:判断其是不是轴对称图形?找出它们的对称轴?并找出对称轴有几条?
同学们分组合作交流,回报结果:
正方形组:
师:同学们有怎样的发现?
预设生1:我们发现有两条对称轴。
师:你是怎样知道的?
生1:我是这样......,(教师根据学生的回答及时评价及订正)。
师:同学们还有什么补充的?(教师可以根据学生的回答及时评价和订正)。
预设生2:我们发现有三条对称轴。
师:你是怎样知道的?
生2:我是这样......,(教师根据学生的回答及时评价及订正)。
师:同学们还有什么补充的?(教师可以根据学生的回答及时评价和订正)。
预设生3:我们发现有四条对称轴。
师:你是怎样知道的?
生3:我是这样......,(教师根据学生的回答及时评价及订正)。
师:教师给出正确的答案(4条)。
长方形组:
师:同学们有怎样的发现?
预设生1:我们发现有一条对称轴。
师:你是怎样知道的?
生1:我是这样......,(教师根据学生的回答及时评价及订正)。
师:同学们还有什么补充的?(教师可以根据学生的回答及时评价和订正)。
预设生2:我们发现有两条对称轴。
师:你是怎样知道的?
生2:我是这样......,(教师根据学生的回答及时评价及订正)。
师:同学们还有什么补充的?(教师可以根据学生的回答及时评价和订正)。
师:教师给出正确的答案(2条)。
圆形组:
师:同学们有怎样的发现?
预设生1:我们发现有两条对称轴。
师:你是怎样知道的?
生1:我是这样......,(教师根据学生的回答及时评价及订正)。
师:同学们还有什么补充的?(教师可以根据学生的回答及时评价和订正)。
预设生2:我们发现有三条对称轴。
师:你是怎样知道的?
生2:我是这样......,(教师根据学生的回答及时评价及订正)。
师:同学们还有什么补充的?(教师可以根据学生的回答及时评价和订正)。
预设生3:我们发现有四条对称轴。
师:你是怎样知道的?
生3:我是这样......,(教师根据学生的回答及时评价及订正)。
(无数条)。
(老师也准备折无数次的圆形模板,以备用学生发现不了有无数条对称轴的)。
师:教师给出正确的答案(无数条)。
通过练习总结出:在一个轴对称图形中,有的只有一条对称轴、有的有多条对称轴。
四、渗透法制教育。
生:乱扔垃圾、乱扔生活废品、环境被污染了。
师:对,我们美丽的环境就这样被污染了,我们要养成保护环境和爱护环境的良好习惯。中华人民共和国环境保护法第三十八条规定:公民应当遵守环境保护法律法规,配合实施环境保护措施,按照规定对生活废弃物进行分类放置,减少日常生活对环境造成的损害。
因此,我们要做一个学法、懂法的好孩子。
做到渗透法制教育的效果。
五、图片欣赏。
数学源于生活,对称现象在我们生活中有很多很多,并且给我们带来丰富多彩的视觉享受!让我们一起来欣赏对称世界的神奇吧!(欣赏图片)。
六、课堂小结。
通过这节课学习,同学们学到了那些知识!
七、布置作业。
要求:通过这节课的学习,同学回去制造出1个你喜欢的轴对称图形,回来展示给全班同学看。
八、板书设计。
轴对称图形。
对折后两边完全重合的图形叫做轴对称图形。
学生作品图片展示区。
数学图形的运动一教案(实用22篇)篇四
教学目标:
1、了解鸡兔同笼问题,掌握用列表法、假设法的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
2、让学生在自主探索、尝试、合作学习的过程中,经历用不同方法解决鸡兔同笼问题的过程,使学生体会用方程解鸡兔同笼问题的一般性。
3、了解我国古人解鸡兔同笼问题的方法,感受其趣味性。
教学重点:
尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。
教学难点:
在解决问题的过程中,培养学生的逻辑思维能力。
教法:分析、引导。
学法:自主探究。
课前准备:多媒体。
教学过程:
一、定向导学:2分钟。
生:……(课件演示)。
师:这就是有趣的“鸡兔同笼”问题。(板书课题)今天我们就一起研究这一问题。
2、学习目标:
掌握用列表法、假设法或列方程的.方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
二、自主探究:8分钟。
内容:课本p104例1的(1)。
时间:5分钟。
方法:边看书边完成下面要求:
1、“鸡兔同笼”这四个字是什么意思?
2、书上用了种方法来解决这个问题。
3、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些信息?
生理解:
(1)鸡和兔共8只;。
(2)鸡和兔共有26只脚;。
(3)鸡有2只脚;。
(4)兔有4只脚;。
(5)兔比鸡多2只脚。(课件演示)。
师:那问题是什么?
生:鸡和兔各有多少只?
3、猜一猜:
师:请同学们猜一猜鸡和兔可能各有多少只?(学生猜测)还有其它的猜测吗?
4、介绍列表法:
师:你们猜出的结果鸡和兔的总只数都是8只,但是你们猜想的结果都正确吗?到底哪个是正确的呢?下面请同学们把你们的猜想整理到这张表格中,并进行调整,看看哪个结果才是共有26只脚。(学生活动)。
学生汇报整理后的表格,教师板书学生整理后的表格。(边板书,边理解填表过程)。
鸡
兔
脚
5、观察发现,列式计算。
三、合作交流:5分钟。
假设全是兔,怎样解决?试一试。
四、质疑探究:5分钟。
解决鸡兔同笼这类问题,有几种假设的方法?
五、小结检测:20分钟。
1、小结方法:
同学们真了不起,刚才我们在解决鸡兔同笼的问题时,用到了多种方法:列表法,假设法。
2、检测:
a、问答:
(1)如果老师让你们解决《孙子算经》中的原题,你会选哪种方法解决呢?
为什么不选择列表法?难?为什么难?(要列举的情况很多)有没有好的办法?(有没有不用列举那么多就能找到答案呢)。
(2)如果一定要你用列表法解答你有什么办法?学生讨论。(教师引导列表折半调整。)。
(注:如果前面出现了折半列表,就把这个环节提前讲。)。
b、解决问题。
(1)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?
作业:p106;1、2、3。
板书:
鸡兔同笼。
假设全是鸡,就有脚8×2=16(只)。
比实际少26—16=10(只)。
一只鸡比一只兔少4—2=2(只)。
兔子:10÷2=5(只)。
鸡:8—5=3(只)。
数学图形的运动一教案(实用22篇)篇五
教学内容:轴对称;平移。
1、进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。
2、会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
1、认识图形的对称轴,并能画出轴对称图形。
2、能画出平移后的图形。
1、注意让学生真正地、充分地进行活动和探究。
2、恰当把握教学目标。
3、注意知识的科学性。
教学目标1、进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。
2、会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
学生在二年级已经初步感知了生活中的对称、平移和旋转现象,初步认识了轴对称图形,能在方格纸上画简单的轴对称图形,在此基础上,本单元让学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,学习在方格纸上画出一个图形的轴对称图形,发展空间观念。
学情分析在二年级学生已经认识了日常生活中的对称现象,有了轴对称图形的概念,并能画出一个轴对称图形的对称轴和它的另一半,这里是进一步认识两个图形成轴对称的概念,探索图形成轴对称的特征和性质,并学习在方格纸上画出一个图形的轴对称图形。本单元教材先设计了画对称轴,观察轴对称图形的特征和画出一个轴对称图形的另一半的活动,加深对轴对称图形特征的认识,从而让学生在已有的知识基础上探索新知识。
教学重点1、认识图形的对称轴,并能画出轴对称图形。
2、能画出平移后的图形。
教学难点1、认识图形的对称轴,并能画出轴对称图形。
2、能画出平移后的图形。
学生课前需要做的准备工作。
轴对称。
教学目标:进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。
教学重难点:认识图形的对称轴,并能画出轴对称图形。
教学环节问题情境与。
教师活动学生活动媒体应用设计意图。
目标达成。
出示轴对称图片。
师:这些图片好看吗?为什么好看?在我们生活中有许多因为对称而让人觉得美的物体,今天我们就一起来研究这些美丽的对称图形。(板书:轴对称图形)。
1、你还见过哪些轴对称图形?
2、什么样的图形是轴对称图形?
3、看书中图片,画出对称轴。
1、出示例1。
(1)这幅图对称吗?
(2)中间这一条直线表示什么?
(3)点a和点a在这幅图中是两个对应点,它们到对称轴的距离都是()个小格。
(4)点b和点()是对应点,它们到对称轴的距离都是()个小格。
(5)点c和点()是对应点,它们到对称轴的距离都是()个小格。
(6)我发现:在轴对称图形中,对称轴两侧相对的点到对称轴的距离()。
2、小结:在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等。我们可以用这个性质来判断一个图形是否是对称图形。或者画对称图形。
2、出示例2。
(1)引导学生思考:
a、怎样画?先画什么?再画什么?
b、每条线段都应该画多长?
(2)在思考的基础上,用铅笔试画。
(3)小结:
1、找出所给图形的关键点。
2、数出或量出图形关键点到对称轴的距离。
3、在对称轴的另一侧找出关键点的对称点。
4、按照所给图形,顺次连结各点,就画出所给图形的轴对称图形。
数学图形的运动一教案(实用22篇)篇六
四年级学生基础较差,大部分学生虽然脑子非常好,但是他们的学习习惯较差并且有很多是单亲家庭,因此要想提高本班的整体数学成绩,还需要加强交流与个别辅导相结合。
二、教学目标。
1、学习目标。
(1)经历从现实生活中抽象出数和数量关系的过程,认识较大的数,在理解大数目的意义、利用大数目进行表达和交流、把大数目改写成以"万"或"亿"作单位的数,估算和估计实际问题的结果等活动中,发展初步的数感。
(2)经历在具体情境中抽象出数量关系、运算顺序、运算律,以及用图形、字母表示运算律的活动过程,发展初步的符号感,掌握必要的运算技能。
(3)在认识射线和直线,进行几何体与视图相互转换,研究锐角、直角、钝角、平角以及周角间的大小关系,体会直线间的位置关系等学习活动中,发展初步的空间观念。
(4)经历收集、整理、描述和分析数据的过程,掌握一些数据处理的技能。体会事件发生的等可能性,会根据游戏规则的公平性设计简单的游戏。
2、能力目标。
(1)能在教材提供的现实情境中看到数学内容,提出与数学有关的问题,并运用已经掌握的数学知识解决这些问题。
(2)能通过两步计算或综合算式解决一些实际问题,逐步养成计算后回答问题的习惯。
(3)能找到生活中应用两点一条直线的例子和应用两条直线互相平行、互相垂直的例子;能应用两点间线段最短,以及点到直线的距离等知识,解决有关的实际问题。
(4)知道可以从报刊杂志、广播电视等媒体中获得有用的数据信息,能读懂媒体呈现的简单的统计表和条形统计图。
(5)能通过修改和重新设计游戏规则,实现游戏的公平。
(6)能主动与同学合作开展学习活动,积极与同学交流学习的思考,增强与他人合作交流的体验。
(7)在教师的组织下反思自己的学习,逐步形成解决问题的基本策略,体会策略的多样性。
3、情感目标。
(1)在现实的情境中理解数学内容,在生活中应用数学知识,体验数学与日常生活的密切联系,对身边环境中与数学有关的想象和事物产生好奇心。
(2)在学习过程中能质疑问难,逐步形成积极参与对数学问题的讨论以及发现错误及时改正的态度,逐步学会客观地评价自己和评价他人。
(3)经过自己的努力,主动探索并获得数学知识,建立学好数学的自信心,锻炼克服困难的意志,不断获得成功的体验。
(4)从教科书中的"你知道吗"栏目和其他渠道了解更多的数学知识,受到数学文化的熏陶,感受数学对人类历史发展的促进作用,体会数学是人类文明的组成部分,从而进一步产生对数学学习的积极情感。
数学图形的运动一教案(实用22篇)篇七
重点分析。
知识点本身比较抽象:轴对称图形需要想象加实际操作相结合。
难点分析。
学生空间想象能力较弱,理解困难:二年级学生的思维主要以形象思维为主,抽象逻辑思维较弱,在图形比较复杂的情况下,很难进行轴对称图形的判断。
1、通过折一折,比一比,感受轴对称图形对折后完全重合的特点。
2、通过观察、操作、想象初步认识对称现象和轴对称图形,能判断一个图形是否是轴对称图形。
一、导入。
师:请看图,对,是剪刀,猜的真准,再来一个你猜出来了吗?到底是什么呢?我们一起来看,奥,是手套。
师:再来一幅,对,是螃蟹,那这个呢?你猜出来了吗?到底是什么呢?我们一起来看,奥,是飞机。
师:再来一幅,对,是灯笼,那这个呢?你猜出来了吗?到底是什么呢?我们一起来看,奥,是杯子。
师:对,因为左边物体两边都是一样的,看到一半很容易想到另一半,右边物体两边都不一样。
师:看来还真不能怪有的同学猜的不好。像左边这些物体,两边的大小和形状都是一样的',在数学上,我们称这些物体都是对称的。今天这节课我们就一起来学习对称。
二、知识讲解(难点突破)。
(一)认识对称现象。
师:对,电视是对称的、黑板是对称的、天安门城楼也是对称的。
(二)认识轴对称图形。
1、观察图形,初步认识。
师:老师还带来了一些图片,它们是不是对称的呢?请同学们做出判断。
师:小衣服是—对称的。梳子—不是对称的。蝴蝶是—对称的。
师:音符呢?我想有同学认为是,有同学认为不是,我们先把它放在最下面。
师:小船是不是对称的?我想有的同学们也有不同意见,我也把它放在下面。
师:对,可以折一折。怎样折?具体说一说。可以把这些图片从中间对折,看两边是不是一样。
2、动手对折,完善认知。
师:那咱们就一起来折一折、比一比,最后说一说我们的发现。
折一折:把图片从中间对折。
比一比:比较一下两边是否完全重合。
说一说:在小组内说说你们的发现。
我们先来看这三个。
师:我们通过对折和比较后不难发现,小衣服、蝴蝶和花朵的两边都能够完全重合,所以它们三个是对称的。
师:仔细观察花朵,你还发现什么?对,花朵既可以左右对折,也可以上下或斜着对折,对折后两边都能完全重合,相信你能很全面的观察。
师:再来说一说梳子,通过对折你有什么发现?
师:对,梳子无论怎样对折都不能完全重合,所以它肯定不是对称的。
最后我们来看这两图形,刚才同学们的意见不太统一,现在你们想说点什么?可以指着说一说。
师:对,音符对折后有一部分能重合,但是还有一部分没有重合,所以它不是对称的。看来对折后我们还需要认真观察,有一点不一样都不行。
师:那小船呢?对,小船对折后不能重合,所以它也不是对称的。
可是这两只小鸭子是一模一样的啊?说说你的想法。
师:对,虽然这两只小鸭子是一样的,但是对折后无法完全重合,所以它也不是对称的。
师:原来我们在判断一个图形是否对称时,除了要看两边是否一样,还要看对折后两边是否一样。
师:我把它也拿走。现在黑板上只剩下了这三个图形,它们在对折后都能够完全重合,在数学上,我们把这样的图形叫做“轴对称图形”。
3、实际操作,深化认知。
师:对,可以先对折。那,为什么要对折?对,对折后只需要剪出衣服的一半就可以了。
师:真是一个好方法,这样剪出来的图形两边一定可以完全重合。课下请同学们用这种方法剪一剪、试一试。除了小衣服,你还可以尝试着剪一剪其他的图形,比一比谁剪得最有创意,剪得时候要注意安全!
师:老师搜集了一些同学的作品,我们一起欣赏一下。
师:这个是,对了,这个呢?对,这个呢,对。同学们真善于思考,这些作品,虽然形状不同,大小不同,但都是通过对折之后再剪出来的,所以它们都是轴对称图形。
师:除了这些图形之外,在我们学过的平面图形中也有一些轴对称图形,你能利用今天学习的知识判断一下哪些是,哪些不是吗?一起看。
三、课堂练习(难点巩固)。
(一)平面几何图形辨析。
师:正方形是—轴对称图形。为什么?因为正方形对折后两边能够完全重合,所以正方形是轴对称图形。你还有什么发现?对,正方形既可以上下,也可以左右或斜着对折。
师:是的,只要找到一种折法使两边能够完全重合,这个图形就是轴对称图形。
长方形是—轴对称图形。说说你的理由。因为长方形上下或左右左右对折后两边都能完全重合。
师:梯形是—轴对称图形。如果左右两条边(腰)不一样长呢?那就不是轴对称图形了。我们看问题要全面。
师:这个三角形—不是,当其中两条边相等时就是了。
师:这个平行四边形是不是轴对称图形呢?
师:这个平行四边形的两边不能完全重合,所以这个平行四边形不是轴对称图形。如果平行四边形的四条边都相等时也是轴对称图形。我们思考问题要思维严谨。
(二)想一想,画一画。
师:下面我们一起做一个很有挑战性的游戏,敢接受挑战吗?
师:老师手里有一张正方形的纸,如果我将它对折再对折,然后从这里剪一刀,请你想一想,打开后会是什么图案呢?把你的想法画到练习本上。计时1分钟。
师:同学都已经画出了自己心目中的图案了吧!到底对不对呢?下面就是见证奇迹时刻,一起看!
画对的同学请把掌声送给自己吧!
师:课下同学们也可以用这种方法剪一剪、玩一玩,相信你会剪出更多、更漂亮的图案。
四、小结。
这节课我们一起学习了对称,你会辨认轴对称图形了吗?最后,让我们再一次走进生活,感受对称带给我们的美吧!好,这节课就到这里。
数学图形的运动一教案(实用22篇)篇八
一些简便运算。
2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3、感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教材简析。
1、有关运算定律的知识相对集中,有利于学生形成比较完整的认知结构。
2、从现实的问题情境中抽象概括出运算定律,便于学生理解和应用。
3、重视简便计算在现实生活中的灵活应用,有利于提高学生解决实际问题的能力。
教学难点:探索和理解加法的乘法的运算定律,会应用它们进行一些简便运算。
教学策略。
1、充分利用学生已有的感性认识,促进学习的迁移。
2、加强数学与现实世界的联系,促进知识的理解与应用。
3、注意体现算法多样化、个性化的数学课程改革精神,培养学生灵活、合理选择算法的能力。
数学图形的运动一教案(实用22篇)篇九
教学目标:
1、初步认识轴对称图形,理解轴对称图形的含义,能找出对称图形的对称轴,并能在方格纸上画出简单的轴对称图形。
2、通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。
3、引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。
教学重点:
认识轴对称图形的基本特征。
教学难点:
在方格纸上画出简单的轴轴对称图形。
教学过程:
一、创设情境,导入新课。
1、猜一猜。
出示笑脸和花瓶的一半,请同学们猜一猜(真聪明,你们为什么能这么快就猜出来了呢)。
2、师:老师还给你们带来了一些漂亮的图片,你们想看吗?
课件出示蜻蜓和蝴蝶图片。
师:小眼睛仔细观察,你发现了什么?它们有什么共同特点?
生说。
师:你们说的真好,它们左右都是一样的。生活中你还见过类似特征的东西吗?
生说。
师:你们知道的真不少,真是善于观察生活的好孩子,老师要给你们点个赞。老师还要告诉你们一个秘密,记住喽,像这样左右两边完全一样的现象在数学上我们给它起个名字叫对称。(板书:对称)。
课件出示图片,请学生判断。(有争议的图,有什么好办法--可以折一折)。
师:老师把它变出来,请大家折一折,说出自己的发现。
二、动手操作,探究对称。
1、折一折。
师:我们就用折一折的方法看看它们是不是对称的呢。
课件出示图片。
学生折一折,以小组为单位。
师巡视并引导学生用手摸一摸对折后的两边,说说有什么样的感觉。
得出结论:这些图形对折后两部分完全重合(板书:两边完全重合)。
2、剪一剪。
再出示花瓶。
师:你们想知道老师是怎样剪出这样的图形吗?想不想自己动手试一试?请大家先认真看老师是怎样做的。
师师范剪,介绍方法--(将长方形纸对折,画出你喜欢图形的一半,沿着虚线剪下来)。用老师的方法,还能剪出很多图案,比如刚刚我们见过的小衣服,试试看,相信你们一定会做的很棒!
生剪出不同的图案。
展示。
师小结:对折后再剪出的图形都是对称的,它们都是轴对称图形。(板书:轴对称图形)。
师:请大家仔细观察我们手中的图形,谁能说说轴对称图形有什么特点?引导说出:对折后,两边能够完全重合(板书)。
师:再次轻轻打开手中的图形,你看见了什么?
生答中间有折痕。
师:这条折痕就是轴对称图形的对称轴。(板书:对称轴)。
小结:画在中间、画直、画虚线。
三、巩固练习,能力提升。
师:同学们画的很用心,学的很认真。现在,老师要给你们一个任务,有信心完成吗?我们一起去轴对称图形博物馆看看吧。
1、判断是否是轴对称图形。
(1)简单的图形,生说说判断的理由。
(2)数字。
(3)小组合作说说字母和汉字。
(4)平面图形。
2、画出轴对称图形的另一半。
四、总结收获。
师:今天你学到了什么?我们的课即将要结束了,你想和老师说什么吗?
老师非常开心能和大家一起上课!
五、图片欣赏。
师:今天我们认识了轴对称图形,轴对称是一种美,是数学美在生活中的具体体现。最后,就让我们一起来欣赏生活中更多美丽的轴对称图形。
课件出示图片。
板书设计:
轴对称图形。
对折后两边完全重合。
对称轴。
数学图形的运动一教案(实用22篇)篇十
1.理解掌握并会运用列表法、假设法解决“鸡兔同笼”问题。
2.经历自主探究解决问题的过程,培养逻辑推理能力。
3.了解我国古代数学文化,增强民族自豪感。
【教学重点】渗透化繁为简思想,体会用假设法的逻辑性和一般性。
【教学难点】理解用假设法解决“鸡兔同笼”问题的算理。
【教学具准备】课件。
【教学过程】。
一、课前活动。
学生猜测老师的年龄。
学生根据老师的提示,调整自己的猜测,直到猜到正确的答案。
师:刚才大家在猜测老师年龄的过程中,经历了猜测、验证、调整的过程,不知不觉掌握了一种数学策略。
【设计意图】通过课前的游戏活动,激发学生的参与热情,并且渗透数学解题策略,为本节课的学习做好铺设。
二、课中活动:
(一)创设情境,导入新课。
生齐读课题:鸡兔同笼。
出示表格。
头
3
5
鸡
2
兔
1
2
脚
12。
8
第一栏、第二栏都能够解决。
师:如果告诉头的数量和脚的数量,能确定鸡兔各几只吗?这就是我们今天要研究的数学问题。
【设计意图】经过前期学情了解,不少孩子对于鸡和兔不清楚有几只脚,所以在这个环节先了解学生基本常识。通过填写表格,从易到难,引起学生对问题的深刻思考。
(二)猜测验证,化繁为简。
1.出示《孙子算经》中的鸡兔同笼问题。
师:能读懂是什么意思吗?
生:就是鸡兔同笼,从上面数有35个头,从下面数,有94只脚。鸡、兔各几只?
师:能猜猜鸡兔各几只吗?
师:如何验证自己猜的对不对?(既要考虑头,也要考虑脚)。
师:怎么办呢?有没有办法解决这个问题?
师:为什么要改小?
生:改小一点好猜些。
【设计意图】引导学生理解题意,帮学生初步理解“鸡兔同笼”问题的结构特点,渗透化繁为简的数学思想。
(三)尝试猜想,发现规律。
出示“鸡兔同笼,从上面数有8个头,从下面数有26只脚。鸡兔各几只?”
师:请再猜一猜。
学生自主填写表格,教师巡视。
师:请你把你尝试的过程与大家分享。
师:后面还要不要再尝试下去?
师:脚少了,说明什么?增加谁的数量?
师:你为什么跳着猜测呢?
生:一个一个地试比较慢,就我隔一个试一次了。
生:脚少了,就增加兔子,增加一只兔就增加2只脚!增加2只兔就增加4只脚!
师:我没明白,为什么增加1只兔不是增加4只脚呢?
学生陷入思考。
师:我们再来研究一下这个表格,把空格填完整,再看看数量间有没有什么数学规律。
学生观察、讨论、分享。
师:为什么是2只2只地变化呢?而不是4只4只地变化?
师:为了让大家看得更加清楚,想得更加明白,我们借图形朋友帮忙吧。
送教下乡教学设计送教下乡教学设计送教下乡教学设计出示。
理解:1只鸡换成1只兔,脚就减少2只。
师:反过来呢?
引导发现:1只兔换成1只鸡,脚减少2只。
【设计意图】列表法虽然烦琐,但这是一种重要的解决问题的策略和方法,是学习假设法的基础,因此也是本课的重要教学内容之一。让学生以填表的方式初步体验鸡兔同笼情况下随着鸡或兔只数的调整,脚的总数量的变化规律,为下面的学习做好铺垫。
(四)数形结合理解假设法。
1.假设全是鸡。
出示表格:
鸡
8
兔
8
脚
16。
26。
32。
师:请再看表格左边第一栏,8和0表示什么意思?
师:假设什么?这样假设的结果会是什么呢?
师:脚实际是26只,为什么少了10只?少了谁的脚?
出示:换什么?换几只?
学生独立思考。
师:你们说得真好!你们能用算式表达出你们的想法吗?
学生独立写算式,汇报。
师:10÷2=5,这里的“2”表示什么?是鸡的脚吗?
师:怎样更清楚地表示2是相差的脚呢?
假设全部是兔子。
学生独立解决。
3.比较两种方法。
师:你觉得列表法与假设法怎么样?
【设计意图】此环节是本课的重点,也是本课的难点,假设法的算理对于大部分学生来说,都是比较难以理解和掌握的。采用画图法,数形结合地引导学生根据图较为完整、准确地说明算理,学会思考,学会解释,可以让学生更加直观地感受假设法的优越性。
(五)建立模型,拓展应用。
1.应用新知,解决问题。
2.鸡兔同笼问题的发展。
出示龟鹤问题。
师:与鸡兔同笼问题有什么相似的地方?谁可以看成鸡,谁看成兔?
3.出示歌谣“一队猎人一队狗,两队并成一队走。数头一共是十二,数脚一共四十二。”
师:谁看成鸡,谁看成兔?
师:研究鸡兔同笼问题并不在于问题本身,而是用解决鸡兔同笼问题的方法去解决生活中类似的问题。
【设计意图】独立解决《孙子算经》中原题,阅读古人解决“鸡兔同笼”问题的方法,了解中国古代人民的智慧,增强民族自豪感。列举生活中的“鸡兔同笼”问题模型,帮助学生建立模型思想,举一反三,触类旁通、提高解决问题能力。
数学图形的运动一教案(实用22篇)篇十一
课件出示:一架飞机的一半。
生:一架飞机。
课件出示:
师:恭喜你们答对了,继续。
课件出示:奔驰汽车标志的一半。
生:奔驰汽车的标志。
课件出示:
师:同学们的想象能力太丰富了!谁来说一说你是怎么猜的呢?
生1:因为轴对称图形的两边是一模一样的,所以看到一半就能想到一半。
师:也就是说:轴对称图形沿着对称轴对折会怎么样?
生:完全重合。
师:那条折痕我们把它称为对称轴。
师:那你们能画出它们的对称轴吗?用手比划比划。
生:用手比划,课件同步出示对称轴。
师:看来,有的轴对称图形不止一条对称轴。
二、新授。
例1教学:
师:继续,课件出示:松树的一半。
生:一棵松树。
师:要是你能够看到一半就能在方格纸上画出它的一半,那你就厉害啦!
生:在1号方格纸上画,教师巡视指导。
师:画好了吗?谁来代表你小组说一说你是怎么画的?
生1:看着左边的样子一段一段画的……。
贴学生作品:
师:你是一段接着一段画的!咦,老师有点不明白,谁来说一说他这一段是怎么画的呢?(指着第一段)。
生:看斜的2格画的。
师:这也是斜的2格,你怎么就不画这呢?(指另一个斜的2格)。
生:那样的话就不会完全重合。
师:那这个点对折后会与那个点重合?
生:指这个点的对称点。
师:是这样的吗?咱们借助课件看看。
生:重合了。
1.发现对称点到对称轴的距离相等。
生:指。
生:指对称点。(b、b')。
师:仔细观察这两组对称点,你们找到它们之间的关系吗?
生:对称点到对称轴的距离相等。(板书)。
师:你真善于观察,下面我们一起来数一数a点、a'点以及b点、b'点到对称轴的距离。
师总结:通过数一数,我们发现对称点到对称轴的距离相等,这是轴对称图形的一个特点(板书课题)。
2.发现对称点的连线与对称轴互相垂直。
生1:它们不在一条线上。
生2:对称点要在一条水平线上。
生3:对称点的连线一定要与对称轴互相垂直。
师:我们把一组对称点连起来,这条线与对称轴是什么关系?(课件将对称点进行连线,学生进行观察)。
生:互相垂直。
师:其他的对称点的连线,也会和对称轴互相垂直吗?咱们再来看看。(课件将其它对称点进行连线,学生进行观察)。
生:也是互相垂直。(板书:对称点的连线和对称轴互相垂直。)。
师:通过连一连,我们发现对称点的连线和对称轴互相垂直,这是轴对称图形的另一个特点。
3.发现对称点有无数组。
师:再来看看我们刚刚找出的对称点,它们都是什么样的点?(教师用手指线的端点)。
生:线段的端点。
师:除了这几组点,图中还有其他的对称点吗?你能找到它们吗?
(点一个k点,请一个同学来找一找,再点一个g点,以及端点上的点的对称点……)。
师:可以找到多少组对称点?
生:无数组。
师:那为什么你们一开始只找这几组呢?
生:因为它们容易数,很特殊,很关键。
师:是的,一个轴对称图形上有无数组对称点,但是有些对称点比较特殊,在轴对称图形中发挥着关键的作用。
4.发现又好又快的画法。
生:找端点的对称点,描点,最后依次连线。
例2的教学:
师:行,下面就用你们总结的方法再来画一个。
课件出示:例2主题图:
生:在书本上画,师巡视指导。
师:谁来说一说,怎样画又好又快。
生:根据对称点到对称轴的距离相等,我先找到线段的端点,然后再来找对称点,最后依次连线。(课件同步出示)。
师:你真是一个充满智慧的孩子!下面我们借助课件再来回顾一下这个同学的画法。
生:学生看课件。
师:我们先怎么?然后?最后?引导学生得出:板书。
(1)找(端点)的对称点;。
(2)描点;。
(3)用(直尺)依次连接。
三、练习。
生:学生在合作画。
师:画好了吗?下面我们来欣赏下面几个同学的作品。(从对与错和艺术性两个角度来欣赏)。
四、谈收获。
师:不知不觉一节课马上就要结束了,谁来说一说你有什么收获。
数学图形的运动一教案(实用22篇)篇十二
1、为学生提供丰富而典型的学习资源。
小学低年级学生在学习抽象的几何概念时,需要借助直观形象的支持。因此本教学设计注重从学生熟悉的生活情境入手,通过观察与操作、生生交流和师生交流的方式进行教学,极大地丰富了学生学习的资源,同时又使学生感受到数学来源于生活,又服务于生活。
2、注重操作活动与数学思考相结合。
鉴于学生思维发展的规律和《数学课程标准》的要求,要使学生认识、理解图形的运动这样抽象的概念,必须结合现实生活的实例帮助学生认识、理解轴对称图形以及图形的平移和旋转,同时要注重操作与思考相结合。为了使学生获得充分的感性经验,本设计让学生在玩一玩、折一折、画一画、剪一剪的活动中理解轴对称图形,认识图形的平移及旋转现象;在学一学中感受其特征;在说一说中列举生活中的轴对称、平移和旋转现象;在做一做中不断深化体验。同时通过有效地提问做引导,便于在操作活动中落实教学目标。
ppt课件。
长方形的纸剪刀。
创设情境,引入新知。
1、引入:同学们,生活中有很多有趣的现象,只要你们有一双善于发现的眼睛,就能从中发现许多的知识。(课件出示教材28页主题图)请同学们仔细观察,你们能从图中发现哪些有趣的现象?(学生观察,自由回答)。
2、过渡:是啊,在游乐场里,空中飞舞着的蜻蜓风筝和蝴蝶风筝多漂亮呀!仔细观察可以发现,它们的左右两边是完全相同的,这里面就蕴涵着这节课我们要学习的内容。下面就让我们一起走进数学王国,去探索有趣的数学知识吧!
设计意图:以学生熟悉的游乐场情境引入本节课的学习内容,使学生感受到数学与生活的密切联系。通过观察并说一说有效地打开了学生的知识储备,使学生尽快地进入到学习状态。
探索交流,解决问题。
(一)认真观察,体验对称。
1、观察图形,发现特点,认识对称现象。
(2)组织学生交流汇报自己的发现。
预设。
生1:树叶以中间叶脉的直线为界,左右两边的.形状和大小都是相同的。
生2:蝴蝶以中间的直线为界,左右两边的形状和大小都是相同的。
生3:城门图片以中间的直线为界,左右两边的形状和大小都是相同的。
(3)根据同学们的汇报,组织学生讨论:这些图形的共同特点是什么?
这些图形左右两边的形状和大小完全相同,也就是说如果沿图形中间所在的直线对折,折痕左右两边能够完全重合。
(4)理解“对称”的含义。
像图中的树叶、蝴蝶、城门这样,沿某一条直线对折后,左右两边能够完全重合,具有这种特征的物体或图形,就是对称的。
2、列举生活中的对称现象。
(1)生活中的对称现象还有很多,谁能举例说说?
(2)欣赏对称图形。(课件出示:五角星、京剧脸谱、蜻蜓、雪花、剪纸等等)。
(二)动手操作,认识轴对称图形。
1、课件出示教材29页例1,请同学们拿出课前准备的长方形纸,运用对称的知识,跟老师一起剪一件衣服。(同步完成课堂活动卡)。
(1)折一折:把这张长方形纸对折。
(2)画一画:在对折后的纸上画线。
(3)剪一剪:沿着刚才画的线剪一剪,剪后展开,会得到一件上衣的图形。
2、剪其他图形。
(1)选择松树、桃心、葫芦三种图形中的一种,自己动手剪一剪。
(2)学生操作,集体评价。
数学图形的运动一教案(实用22篇)篇十三
1、通过观察、操作、想象,初步体会生活中的对称现象;知道对称轴;认识轴对称图形的一些基本特征,并能判断一个图形是否是轴对称图形。
2、经历剪一剪、移一移、看一看等过程,增强观察力、想象力,发展空间观念。
3、感知现实世界中普遍存在的对称现象,体验到生活中处处有数学,感受物体或图形的对称美,激发对数学学习的积极情感。
认识轴对称图形的基本特征,准确判断生活中哪些物体是轴对称图形。
能够找出轴对称图形的对称轴。
一、新课导入。
问题:同学们,你们去过游乐场吗?这些玩具大家都玩过吗?那你对这个场景肯定不陌生了,你能给大家介绍这个游乐场里有哪些好玩的项目吗?(请认识的学生介绍项目。)。
课件播放动画,由此引出对图形的运动的学习。
请同学们仔细观察,你能从图中发现哪些有趣现象?
师:在游乐场里,空中飞舞着的蜻蜓风筝、蝴蝶风筝多漂亮呀,仔细观察可以发现,它们的左右两边也是完全相同的,这就是我们今天要学习的`知识:对称。
设计意图:通过图形的运动动画作为课堂导入,引起学生学习的兴趣,为接下来的学习做准备。
二、探究新知。
1、初步认识轴对称图形。
同学们,这些剪纸漂亮吗?你们知道它们是怎样来的吗?
课件出示图片:
小组内互相交流,教师小结并过渡:像这些剪纸,它们的左右两边是完全一样的,我们把这种现象称为“对称”,在我们的生活中还有着许多这样的物体,让我们一起去欣赏下吧。
教师出示图片:
师生谈话:从这些物体中,你发现它们都有什么特征呢?把你的发现在小组内说一说。
学生自主交流。
生:蝴蝶、脸谱这两张图片都是对称的。
师:大家都认为是对称的图片,有什么方法来验证吗?
师:同学们可以拿出手中的这些图片折一折,看看有什么现象发生呢?(小组内交流)。
师:大家有什么发现吗?谁能说说?
生:这些图片从中间对折后,两边是完全重合的。
师:同学们刚才观察得非常仔细,发现了这些各式各样的图形都有一个共同的特征,就是它们的左右两边都是完全一样的。这种现象在数学上称为——对称,这就是对称现象。
2、在实际操作中认识轴对称图形。
在剪之前先想一想怎样剪才能剪出对称的图形,然后动手试一试。
学生小组合作,完成剪一剪。
组织学生将自己小组剪出的对称图形进行展示并汇报各自的剪法。
(2)引导学生明确剪对称图形的方法。
要剪出一个对称图形,可以先把纸张进行对折再剪,最后沿对折的地方打开,这就形成了一个对称图形。
教师小结:像这样剪出来的图形都是对称的,它们都是轴对称图形。
教师引导:我们剪轴对称图形时,先要对折,那就是说,把你手上的图形对折,如果能完全重合,就是轴对称图形。
讨论:在我们的生活中,有哪些图形是轴对称图形?
小组内讨论,教师巡视指导。
谈话:将对折的图形打开,你有什么发现?(中间有一条折痕。)。
师:这条折痕就是这个轴对称图形的对称轴。
同学们,用铅笔画出你们所剪图形的对称轴。
学生认识对称轴,画出对称轴。
设计意图:通过动手折一折、画一画,找出对称轴。
出示微课,对本节课所学知识进行整体分析和梳理。
设计意图:通过图片的展示、观察,培养学生的观察能力,同时对生活中对称现象的交流和展示,让学生感受到生活处处都有对称。
三、巩固练习。
1、下面这些图形中,哪些是轴对称图形?
答案:第一、三个。
设计意图:通过练习,找出轴对称图形,初步认识轴对称图形的基本特征。
2、下面的哪些图形是轴对称图形?
答案:第一个、第三个、第四个。
设计意图:通过练习,能判断出轴对称图形,巩固轴对称图形的知识点。
3、下面的数字图案,哪些是轴对称的?
答案:0,3,8。
设计意图:通过练习,认识轴对称图形的基本特征,加深对知识点的理解。
4、动脑筋想一想这三个图形的对称轴有几种画法。
答案:略。
设计意图:让学生自己动手折一折,找一找。通过亲自的动手操作,参与知识的形成过程,把抽象的知识转化为直观,加深学生的理解。
四、课堂小结。
通过观察,发现物体左右或上下两部分形状和大小完全相同,通过折痕认识对称轴,用对折的方法可以判断一个图形是否是轴对称图形。
设计意图:通过小结,帮助学生构建本节课知识体系。
数学图形的运动一教案(实用22篇)篇十四
教学目标:
知识与技能:联系生活中的具体物体,通过观察和动手操作,初步体会生活中的对称现象,认识轴对称图形的一些基本特征,并初步知道对称轴。
过程与方法:
能根据轴对称图形的特征,在一组图形中,识别出轴对称图形。情感态度与价值观:在认识、制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,体会学习数学的乐趣。
教学重点:
认识轴对称图形的基本特征,准确判断生活中哪些物体是轴对称图形。教学难点:能够找出轴对称图形的对称轴。
教学方法:
观察、讨论法。教学准备:多媒体课件、白纸、剪刀等。
教学过程:
2、(学生自由回答)。
3、(出示第28页的主题图)是啊,在游乐场里,空中飞舞着的蜻蜓风筝、蝴蝶风筝多漂亮呀,仔细观察可以发现,它们的左右两边是完全相同的,这里面就蕴含着这节课我们要学习的知识——对称。
(一)认真观察,体验对称。
1、观察图形,发现特点。
(2)、引导学生从形状、花纹、大小、图案上观察。
(3)学生汇报交流自己的发现。树叶图:以树叶中间叶脉所在的直线为界,左右两边的形状和大小都是相同的。蝴蝶图:以蝴蝶中间所在的直线为界,左右两边的形状和大小都是相同的。
天安门城楼图:以天安门城楼中间所在的直线为界,左右两边的形状和大小都是相同的。
(4)教师小结。
这些图形的左右两边的形状和大小完全相同,也就是说如果沿图形中间的一条直线对折后,这些图形的左右两边能够完全重合。
2、认识对称现象,理解“对称”的含义。
像图中的树叶、蝴蝶、天安门城楼这样,沿某一条直线对折后,左右两边能够完全重合,具有这种特征的物体或图形,就是对称的。
3、列举生活中的对称现象。
(1)、生活中的对称现象还有很多,你能举例说说。
(2)、学生自己说一说生活中的对称现象。
(3)、欣赏对称的图形。五角星、京剧脸谱、蜻蜓、亭子、雪花、苹果、民间剪纸??
4、教师小结。
对称是一种最基本的图形变换,包括轴对称、中心对称、平移对称、旋转对称和镜面对称等多种形式。对称的物体给人一种匀称、均衡的美感。
教师利用学生熟悉的树叶、蝴蝶、天安门城楼,创设故事情境。在引出“对称”的概念后,呈现给学生一些对称的实物画面,并动态显示这些东西都是对称的,丰富了学生对对称图形的感性认识。
(二)动手操作,认识轴对称图形。
(1)、折一折:把一张长方形的纸对折。
(2)、画一画:在对折的纸上画线。
(3)、剪一剪:沿着刚才画的线剪一剪,会剪出一件上衣的图案。
2、剪其他图形。松树、桃心、葫芦。
(1)、现在请同学们自己动手剪一剪,选择松树、桃心、葫芦三种图形中的一种,看谁既会动脑又会动手。
(2)、学生操作,集体评价。
3、认识轴对称图形和对称轴。
(1)、像上面这样剪出来的图形都是对称的,它们都是轴对称图形。图形中间的那条折痕所在的直线就是图形的对称轴。请看屏幕。我们在画对称轴时要画成一条虚线。请看课件演示画对称轴的方法。
(2)、学生在自己刚才剪出的图形中画出对称轴。
(3)、交流评价。
为了让学生进一步理解“将一个图形对折以后,左右两边的图形是一样的”这一本质特征,教师给学生提供了自主探索、合作交流的时间和空间,设计了让学生动手剪对称图形的.活动学生在剪对称图形的过程中,经历了折、画、剪这样的过程,帮助学生准确地认识“左右两边是一样的”含义,使学生对轴对称图形的认识,由粗略感知上升到精细化。
(三)小结知识。
同学们,今天我们认识了对称现象和轴对称图形。对称是一种最基本的图形变换,包括轴对称、中心对称、平移对称、旋转对称和镜面对称等多种形式。对称的物体给人一种匀称、均衡的美感。知道了生活中有很多的对称现象。像上衣、松树、桃心、葫芦这样的图形都是对称的,它们都是轴对称图形。这些图形中间的那条折痕所在的直线就是图形的对称轴。我们在画对称轴时要画成一条虚线。
1、学生独立完成教材p29页例1下面的“做一做”。
(1)、学生观察、自己判断。
(2)、全班交流,说明判断的理由。
2、学生独立完成教材p33页练习七的第1、2小题。
(1)、学生观察、自己判断。
(2)、全班交流,说明判断的理由。
3、学生独立完成教材p33页练习七的第3小题。
(1)、学生观察、自己连一连。
(2)、全班交流,说明判断的理由。
4、补充练习。
长方形、正方形、圆、平行四边形、三角形的对称轴在哪儿,分别有几条?
(1)、请你折一折、画一画。
(2)、小组讨论,全班交流。
(3)、教师小结。不同的轴对称图形,对称轴的条数也不同。有的只有一条,有的有两条,有的有无数条。
5、通过动手操作,使学生认识几何图形的对称现象,并能找出它们的多条对称轴。
1、这节课我们认识了什么?你有哪些收获?
2、教师小结:同学们都说,对称图形很美,是啊!只要我们用眼睛仔细去观察,用双手去创造,就能用对称图形把生活装扮得更加美好!
像树叶、蝴蝶、天安门城楼这样,沿某一条直线对折后,左右两边能够完全重合,具有这种特征的物体或图形,就是对称的。
数学图形的运动一教案(实用22篇)篇十五
1.通过复习使学生深刻认识图形运动的原理。
2.在复习中让学生进一步掌握图形运动的基础知识和基本技能,并能解决简单的问题。
3.在丰富的现实情境中,经历观察、操作、欣赏、分析、想象、创作等数学活动过程,进一步发展学生的空间观念。
运用知识解决实际问题。
综合运用对称、平移、旋转、放大与缩小的特征进行图形的的运动,进一步发展学生空间观念。
小黑板、课件。
一、回顾整理,建构网络。
师:小学阶段我们学过哪些关于图形的运动的知识?
生:轴对称图形、图形的`平移、图形的旋转、
师:什么是平移、什么是旋转、作轴对称图形、图形的放大和缩小要注意什么?
生:把一个图形整体沿某条直线方向平行移动一定的距离的过程,称作平移。
生:把一个图形围绕某一固定点按顺时针或逆时针方向转动一定的角度的过程,称作旋转。
生:一个图形沿着一条直线对折(即图形翻折),对折后如果折痕两边的部分完全重合(即图形沿一条直线180度前后位置所成的图形),这个图形就称作轴对称图形,折痕所在的直线叫做对称轴。
生:把图形按比例放大或缩小时,要注意各部分均要用相同的比放大或缩小。
师:哪些运动不改变图形的形状和大小?
生:平移、旋转和轴对称图形。
数学图形的运动一教案(实用22篇)篇十六
1、联系生活中的具体物体,通过观察和动手操作,初步体会生活中的对称现象,认识轴对称图形的一些基本特征,认识对称轴。
2、能根据轴对称图形的特征,在一组图形中,辨认出轴对称图形。
3、在认识、制作和欣赏轴对称图形的过程中,感受物体或图形的对称美,体会学习数学的乐趣。
教学重点:认识轴对称图形的基本特征,会辨认轴对称图形。
教学难点:能找出轴对称图形的对称轴。
学情分析:轴对称是学生在日常生活中经常看到的现象。二年级学生的能力差别比较大,学习态度、学习兴趣和学习习惯也有不同的层次,对空间图形的理解水平参差不齐,针对这一实际情况,对不同的学生课时目标也应有不同的要求。本单元轴对称知识的综合运用,有利于学生进一步发展他们的空间观念。教学时,采用小组合作学习的形式,让学生观察日常生活中所熟悉的物体,注重实践活动的丰富多样性,帮助学生发展空间观念,使学生能在不同的'数学活动的过程中真正理解和掌握基本的数学知识与技能、数学思想好方法,同时可以获得广泛的活动经验。
电脑课件、剪刀、彩纸。
一、激法兴趣,导入新课。
同学们,今天老师为每位同学准备了一份神秘的礼物,现在它们就在你们小组的桌子上,想知道是什么礼物吗?那就快点儿拿出来看看吧。(学生分别拿出图片)。
谁能说一说你拿的是什么图片?(学生汇报)。
二、讲授新课。
1、初步感知对称现象。
现在请同学们带着这样的问题来观察图片?(电脑课件,大屏幕出示)。
找生读问题:思一思,想一想:
1、你手中的图片有什么特征?
2、你用什么方法验证?
3、验证后你发现了什么?
温馨提示:先独立完成,然后在小组内交流,看看其他同学是怎样做的。
学生活动,师巡视。
师:哪个小组愿意根据问题来说一说?(听汇报,同时板书:特征、两边形状完全相同、方法、对折、两边完全重合)。
师:像你手中的这些图片那样,沿图片中间对折后,两边完全重合,具有这种特征的物体或图形就是对称的。(黑板上贴“对称”)今天我们一起来研究对称现象。
2、欣赏剪纸,体会对称图形的美。
师:同学们都知道数学来源于生活,现在想一想在你的日常生活中见过这样的对称现象吗?谁来说一说。
师:的确,生活中具有这种特征的物体有很多,我国的剪纸艺术中有很多作品就是对称的,下面我们就来欣赏一下。(大屏幕出示课件)。
3、动手操作,感受轴对称图形。
师:老师也制作了一个剪纸作品(展示小衣服)大家看这是什么?它是对称的吗?你能把它剪出来吗?现在我们以小组为单位来比赛,只有全组的同学都剪完,才能获胜,组内的同学可以互相帮助。
学生剪,教师巡视。
师:请获胜组的学生说一说剪衣服的方法及应该注意些什么?(学生演示的同时教师板书:剪、纸对折、画一半图形、不能剪断。)。
用这样的方法,你还能剪出其它图案吗?同学们试试吧。
教师边巡视边收集学生的作品,贴在黑板上。
师:像上面这样剪出来的图形都是对称的,它们都是轴对称图形(教师在黑板上出示“轴”、“图形”。
(大屏幕出示课件)小组讨论:谁来说说轴对称图形有什么特点?
学生汇报:图形中间有一条折痕,折痕两边形状完全相同。(大屏幕同时出示课件)。
4、认识对称轴。
图形中间的那条折痕所在的直线就是轴对称图形的对称轴。
师:请同学们认真看老师是怎样画对称轴的。
谁能说一说老师是怎么画的?
(学生回答同时板书:画对称轴、中间、穿过、虚线。)。
现在请剪纸作品在黑板上的同学来画对称轴。
三、巩固练习。
1、同学们已经知道了什么样的图形是轴对称图形了,现在就用你的火眼金睛来判断一下,下面图形中哪些是轴对称图形吧。(大屏幕出示课件)请同学们完成随堂练习卡中的第1题。让学生说一说是怎样判断的。
2、我们知道数学离不开数字,大家一起来看看哪些数字是轴对称的?(大屏幕出示课件)完成随堂练习卡中的第2题。让学生说说判断的方法。
3、(大屏幕出示课件)刚才同学们做了剪纸,老师这也有一些作品,这些作品都出自于同学们灵巧的双手。但剪下来的图案和剪下来的纸边并不对应,你能猜出下面的图案分别是从哪张对折的纸上剪下来的吗?完成随堂练习卡中的第3题。看大屏幕集体订正。
用你手中的纸来折一折、画一画吧。教师巡视。
学生汇报。
四、课堂小结。
今天我们学习了轴对称图形,发现将图形对折后,两边完全重合,折痕所在的这条直线就是这个图形的对称轴。其实生活中有很多的对称现象,下面就让我们欣赏一些美丽的图片吧。(大屏幕出示课件)。
最后老师送给同学们一句话:只要你有一双发现的眼睛,生活中处处有数学。
数学图形的运动一教案(实用22篇)篇十七
认识轴对称图形。
理解“完全重合”,能判断出轴对称图形。
重点分析。
知识点本身内容逻辑性较强,“对折”和“完全重合”这两个概念较难理解,对感悟力和想象力要求较高。
难点分析。
学生抽象逻辑思维较弱,认知理解困难:二年级学生的思维主要以形象思维为主,抽象逻辑思维较弱,对于“完全重合”不易理解,想象思维缺乏。
1、演示法:借助动态图片进行直观演示能有效地增强学生的感性认识;演示剪轴对称图形的步骤与方法,加深对知识的理解;用视频来播放生活中的对称图形,了解到数学与生活的紧密联系;用自己的身体来摆轴对称图形的姿势。
2、练习法:通过练习掌握知识。
一、导入。
师:同学们,你们猜谜语吗吗?我们先来玩玩“猜谜语”的游戏吧?
课件出示谜语:头上两根须,身穿彩花袍。飞舞花丛中,快乐又逍遥。(打一动物)。
并问学生看谁猜的'最快最准?
生:蝴蝶。
师:你们真聪明!
课件出示谜底:蝴蝶。
课件出示图片,请同学们认真观察,这三只蝴蝶有什么共同特点?
猜测生会说:图形两边一样。
师:你们知道这种现象在数学中叫什么吗?(对称现象)。
师:出示一些实例,你还见过哪些对称现象?(生举例说明)。
二、知识讲解(难点突破)。
1、师:对称的物体还真多,(课件出示)比如:五角星、京剧脸谱和青蛙,这些东西也是对称的。生活中的这些对称现象,把它的形状以图片的形式出现,就是对称图形。
师:通过刚才的小游戏,谁知道什么样的图形是对称图形,他们有哪些特点呢?(猜测学生会说:两边完全一样的图形是对称图形)。
师:那我们怎么验证两边是不是完全一样呢?(猜测学生会说:对折)。
师:接下来出示蜻蜓的动态图片,要仔细观察你发现了什么?
(猜测学生会说:对折后,两边完全重合)。
师:像这样,把一个图形沿着直线对折后两边能够完全重合的图形就是轴对称图形。折痕所在的直线叫对称轴。
(板书:轴对称图形、对称轴)请同学们动手指一指这些对称图形的对称轴在哪儿?师示范画对称轴。(强调画对称轴用虚线。)。
2、创造“轴对称图形”。
师:今天老师还给给大家带来了一个对称图形,谁能说说老师是怎样剪出这些图形的?(生:先对折,再画一画,最后剪一剪。)。
师引导学生共同剪一件衣服。(重点演示是从折痕的地方画图,再剪)。
师:以小组为单位剪一个轴对称图形。剪完的同学仔细观察你剪的图形有什么特点?
教师强调剪纸要注意安全。
然后让学生将自己小组剪出的轴对称图形进行展示。(贴在黑板上)。
三、课堂练习(难点巩固)。
师:同学们我们不仅认识了轴对称图形,还创造了这么多美丽的轴对称图形,下面就让我们大显身手,去用对称知识解决问题吧!
1、课本29页做一做。
2、课本33页第2题。
3、课本33页第3题。
下面的图案分别是从哪张对折后的纸上剪下来的?连一连,并画出它们的对称轴。
强调还可以横着画或者斜着画。
师:同学们判断的太好了,看来大家都很喜欢“轴对称图形”这个好朋友。
4、我爱做游戏:让同学们摆一个从正面看身体的左右两边是轴对称图形的姿势。也可以和同伴一起合作完成。
四、小结。
今天这节课你有什么收获呢?
1、把一个图形沿着直线对折后,两边能够完全重合,我们就把这样的图形叫做“轴对称图形”,那条折痕就叫做对称轴。
2、判断一个图形是对称的,关键能否找到一条直线,沿这条直线对折,直线两旁是否能完全重合。
3、剪纸通过纸张的对折,剪出后展开的图形是对称的。
师:同学们,对称不仅是生活中的常见现象,也是艺术创作的重要方法,只要你用心观察,到处都能找到对称的足迹,到处都是数学的足迹。
数学图形的运动一教案(实用22篇)篇十八
活动目标:
1、尝试对正方形、长方形等几何图形进行分割。
2、探索图形分割的不同形式,能用语言表达和交流探索的过程和结果。
3、发展目测力、判断力。
4、有兴趣参加数学活动。
活动准备:
知识经验准备:幼儿已经认识各种简单的几何图形,如:正方形、长方形、三角形、圆形等,了解图形拼合的方法。
物质准备:房子图、正方形、长方形、三角形、半圆形的图形、剪刀、固体胶。
活动过程:
一、以“老师的新家安装玻璃”引入活动,引发幼儿参与活动的兴趣。
二、幼儿操作,尝试分割几何图形。
(一)第一次操作。
1、引导幼儿根据观察窗户的不同形状,尝试用自己的方法安装玻璃。
师:我们一起来看看这些窗户都是什么形状的?找一找有没有合适的玻璃?这该怎么办?怎样才能剪得刚刚好又不浪费材料?你们都说很多的方法,我们一起来试一试吧!
(1)观察比较窗户与玻璃的不同。
(2)发现问题:想想怎样才能让每块窗户都安上合适的玻璃。
2、幼儿操作,师观察指导。
3、交流分享。
(1)师:是怎么安装玻璃的?这个图形是怎么来的?你来试试,先折一下然后比一下,合不合适,好的合适了,我们就剪下来。
(2)你把什么图形分割成什么图形?分割成几块?
(5)原来我们要对角或者对边折一折、压一压、然后打开沿着直线剪下来。
小朋友真能干,原来正方形能分割成两个长方形也能分割成两个三角形,圆形能分割成两个半圆形,无论这些形状怎样分割,合起来都能变回原来的大图形,这回帮老师解决了大难题。
活动延伸:
区域活动中鼓励幼儿用图形分割或者拼合的方式制作自己喜欢的玻璃安装窗户。
活动反思:
中班幼儿对单个的图形已有了一定的认识,但对图之间的相互关系认识还不够。然而,帮助幼儿理清这些关系是至关重要的,因为要对事物有一个完整、全面的认识,就必须把它与相关事物进行比较,这也是我设计此活动的初衷。我根据中班幼儿的年龄和思维特征,以生活情景给窗户安装玻璃为背景,使枯燥的数学活动生活化、情趣化,让幼儿更易接受。活动以幼儿分组操作为主,为幼儿创设丰富的物质环境,给他们充裕的时间、空间,让他们积累一定的感性知识。然后组织幼儿讨论讲述,帮助幼儿把获得的感性知识进行整理升华这节活动让孩子在一个自由和宽松的氛围中学习。活动打破以往的老师先教孩子再操作的模式,而是根据《指南》中提到幼儿的'科学学习的核心是探究,所以给孩子更多的时间和空间去探索问题、发现问题、解决问题。这节活动的内容选择很符合中班孩子的年龄特点和兴趣点,在操作过程中每个孩子都很投入。但给孩子观察的机会太少了,从而导致在第一次操作后的概念梳理不够清晰,应该引导孩子观察、对比为什么不合适,找出原因然后再出示操作步骤图给孩子一点提示。第一次的小结起个承上启下的作用,帮孩子总结经验的同时也要为第二次的操作难点做个小小的提示,这样孩子在操作时目的更明确。在活动中应该多观察孩子的表现,在分享交流时抓住孩子出现的问题,帮助孩子经验梳理会更有效。
数学图形的运动一教案(实用22篇)篇十九
1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
成轴对称图形的汉字:
一,二,三,四,六,八,十,大,干,丰,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,画,伞,王,人,非,菲,天,典,奠,旱,春,亩,目,山,单,杀,美,春,品,工,天,网,回,喜,莫,罪,夫,黑,里,亚。
2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。
3、旋转:物体绕着某一点或轴进行圆周运动的现象就是旋转。
家长怎么辅导小学数学。
注意锻炼孩子的数学思维。
家长辅导孩子数学,首先要训练孩子的数学思维,其次才是讲数学的实用性。
很多家长认为提高孩子数学成绩的最好途径就是让他们多做题,其实这是一个错误的想法。
做题是为了训练思维,要掌握适当的量。凡事需要追根溯源,从探寻数学的源头开始,就会让孩子觉得数学其实是一门十分有趣的学科。
家长要注意培养孩子的“数感”
有的孩子在上到小学一年级后,还会把加法运算当做减法来做,多数有两种可能:一是孩子比较粗心大意,还有可能是孩子尚未理解加、减的意义,混淆概念造成失误。家长不要因此过多责骂孩子,最好借助身边的实物给孩子讲解加、减各代表什么。
遇到这种情况,家长不能失去信心,首先要跟孩子的数学老师沟通,希望老师在校期间能给予适当训练,并及时鼓励。同时,家长要有意识地培养孩子的数感。比如:带孩子买东西,让孩子帮忙算算该付多少钱,该找多少钱,让其感受数在生活中无处不在以及对生活的影响。
单位换算公式大全。
重量单位换算:
1吨=1000千克。
1千克=1000克。
1千克=1公斤。
人民币单位换算:
1元=10角。
1角=10分。
1元=100分。
数学图形的运动一教案(实用22篇)篇二十
进一步认识图形的旋转,探索图形旋转的特征和性质。
2、过程与方法。
通过观察、想象、分析和推理等过程,独立探究、增强空间观念。
3、情感态度与价值观。
让学生体会图形变换在生活中的应用,利用图形变换进行图案设计,感受图案带来的美感和数学的应用价值。
:通过多种学习活动沟通联系,理解旋转含义,感悟特征及性质。
:用数学语言描述物体的旋转过程及会在方格纸上画出线段旋转90°后的图形。
1、教师用课件演示:
(1)钟表;
(2)风车。
提问:观察课件的演示,想到了什么?
学生在交流汇报时可能会说出:
(1)钟表上的指针和风车都在转动;
(2)钟表上的指针和风车都是绕着一点转动;
(3)钟表上的.指针沿着顺时针方向转动,风车沿着逆时针方向转动。
像钟表上指针和风车都绕着一个点或一个轴转动的这种现象就是旋转。(板书课题:图形的旋转变换)。
2、提问:旋转现象有几种情况?
3、在日常生活中你在哪些地方见到过旋转现象?学生自己举例说一说。
1、认识旋转的含义。
观察:出示动画(指针从12指向1),请同学们仔细观察指针的旋转过程。
提问:谁能用一句话完整地描述一下刚才的这个旋转过程?
(教师引导学生叙述完整)。
观察:出示动画(指针从1指向3)。
提问:这次指针又是如何旋转的?
观察:出示动画(指针从3指向6)。同桌互相说一说指针又是如何旋转的?
提问:如果指针从“6”继续绕点o顺时针旋转180°会指向几呢?
小结:要把一个旋转现象描述清楚,不仅要说清楚是什么在旋转,运动起止位置,更重要的是要说清楚旋转围绕的点,方向以及角度。
(3)完成做一做。
2、认识旋转的特征。
(1)教师用课件出示教材第84页例2三角形绕点o顺时针旋转90°的图形。
(2)三角形旋转后,三角形有什么变化?
小结:通过观察,我们发现风车旋转后,不仅是每个三角形都绕点o顺时针旋转了90°,而且,每条线段,每个顶点,都绕点o顺时针旋转了90°。
(3)揭示旋转的特征和性质。
教师:从画面中,我们能清楚地看到三角形旋转后,位置都发生了变化,那什么是没有变化的呢?(三角形的形状没有变;点o的位置没有变;对应线段的长度没有变;对应线段的夹角没有变。)。
(1)相对应的点到o点的距离都相等。
(2)变换旋转90°时,中心点的位置不变,其他部分都以相同的方向旋转90°旋转后的图形与旋转前的图形只是位置发生了变化,大小不变,对应线段长度不变。
数学图形的运动一教案(实用22篇)篇二十一
利用轴对称知识剪小人,体会对折次数与得到小人的个数间的关系,解决手拉手的问题不仅要求会动手,而且要通过观察和思考发现关键点。思维过程从形象到抽象,学生容易出错。
二年级学生的动手能力有限,剪的过程会出现各种各样的问题;学生抽象思维较弱,理解困难。
1、通过辨析错例,理解剪失败的原因。
2、直观演示对折和画的过程。
3、通过讨论、探究得出对折次数和得到小人个数间的关系。
导入。
一、谈话交流,创设情境。
同学们,我们前几节课学过哪些知识?(轴对称,平移,旋转)。
这节课我们就利用轴对称的知识来解决新的问题。让我们动手来剪一剪。
知识讲解(难点突破)。
二、探索交流,解决问题?
出示例4:你能剪出像这样手拉手的四个小人吗?
先剪两个手拉手的小人试试(出示两个手拉手的小人)?
(一)、剪2个手拉手的小人。
1、独立操作:?你知道一个小人怎样剪吗?(课前布置过剪一个小人的`实践活动,课件展示操作方法)。
请同学们试试剪2个手拉手的小人怎么做。
2、交流正例?(成功的作品)。
说一说你的方法。一张纸对折一次可以剪出一个小人,对折两次后再剪就能得出两个手拉手的小人。
3、交流错例1(两个分开的小人)?你找到自己失败的原因了吗?
要保证小人是手拉手的必须要把手画到边(师用笔画),剪的时候也要一直剪到边。
4、交流错例2(有两个半个小人)。
(展示两个半个人小人)同学们知道这是怎么回事吗?引导学生总结:小人的身体必须画在纸的连接处,也就是靠近折痕的一侧。
讨论、探究:
首先需要对折几次?(师生对话交流:对折1次,纸就变成了几层,打开就是2份,每份有半个小人,就得到1个小人;对折2次,2层纸就变成了几层,打开就是几份,就得到几个小人;对折3次,纸就变成几层?想不出来,那就拿出一张纸对折3次,再打开看看,纸被分成了几份?)。
看来,要得到4个小人,对折3次就可以了;至于对折4次能得到几个小人,有兴趣的同学可以课下折折看。对折完了,接下来的步骤老师不再说了,大家有信心剪出4个手拉手的小人吗?那就按照步骤开始吧!看谁剪得又快又好。(生操作,师巡视指导)。
其实,折纸的方法可不止连续对折这一种哦,大家请看(课件播放折纸方法的视频),有兴趣的同学课下可以折折看。
小组交流汇报,课件展示结论。
课堂练习(难点巩固)。
三、巩固应用,内化提高?
1.能剪四个这样的小人了,大胆地说说你还能剪什么?
2.出示教材36页练习七第12题,观察思考:怎样折、画、剪?
教师提示:剪这样的图形需要的是什么样的纸张?(正方形)怎样折、怎样画才能剪出来??(学生说一说,再课件出示提示)。
动手剪一剪,播放视频参照。(也可课后完成)。
回顾我们剪小人的过程,它用到了这一单元的哪些知识?(轴对称)。
一个小人是轴对称图形,两个小人是轴对称图形,三个小人也是轴对称图形,四个小人还是轴对称图形),正是这一次次的对称我们才得到了四一样的小人。既然这四个小人都是一样的,我就可以由一个小人得到第二个,第三个,第四个,大家看这是我们学过的哪种现象?(平移)。
生活中处处都有数学,只要做个有心人,你一定可以用学到的数学知识解决很多问题呢!
数学图形的运动一教案(实用22篇)篇二十二
人教版小学数学二年级下册第29页例1及相关内容。
1、通过观察、操作活动,让学生初步了解轴对称图形的基本特征,认识对称轴。
2、能根据轴对称图形的特征,在一组图形中辨认出轴对称图形。
3、使学生感受到图形的运动在生活中的应用,体会数学与生活的密切联系,感受数学美。
重点:认识轴对称图形的基本特征,会辨认轴对称图形。
难点:能找出轴对称图形的对称轴。
教师:多媒体课件、实物图片。
学生:剪刀、彩纸、尺子、记号笔。
一、猜谜游戏,引入新课。
师:同学们,请你们猜一猜这是什么字?你是怎么猜到这个字的呢?
生:对称的。
师:对称图形在日常生活中随处可见,它与我们的生活息息相关,今天我们就走进对称的世界,和大家一起认识美丽的轴对称图形。(板书题目,课件出示)。
(设计意图:猜字游戏可以活跃课堂气氛,激发学生的学习兴趣,还能让学生感到数学就在自己的身边。这样,在教学平移、旋转课程时,学生就可以自然地联系到生活中的这些现象,在一个轻松、熟悉的氛围中学习。)。
二、合作探究学习新知。
(一)动手操作,认识轴对称图形。
1、认识对称现象。
谈话:我们先欣赏几张图片,并且请你将这些图片分成两类,该怎么分呢?
预设:按照是否对称进行分类。
师:这些物体,它们都是轴对称图形。老师想现场给大家剪一个轴对称图形,好吗?
请你仔细观察老师是怎么剪的,它有什么特征?
生:(折叠后)两边能够完全重合。
师:我们把这样的图形叫做轴对称图形。(板书)。
生:对折。
4、即时练习。
(1)在我们的生活中还有许多这样的物体,你能说一说吗?
(2)课件出示练习题。
(设计意图:先出示一些图片,让学生在脑海中初步形成轴对称图形的印象,然后通过老师剪图形的过程明确轴对称图形的准确概念,最后通过学生亲自对折课堂开始欣赏的图片,验证自己的判断,加深对轴对称图形概念的理解与记忆。)。
(二)动手操作,认识轴对称图形的对称轴。
师:你想不想自己剪出一些轴对称图形呢?开始吧。
1、生动手剪出自己喜欢的轴对称图形。
2、学生展示自己小组的作品,并在全班说一说自己的制作过程。
3、观察自己的作品,你有什么发现?
观察:把这些图形放在一起打开观察,有什么相同的地方?
预设:都是对称的,中间有一条折痕。
4、明确对称轴的概念。(板书)。
我们把中间的这条折痕所在的直线叫做轴对称图形的对称轴。一般用虚线画对称轴。
5、学生在自己的图形上画出该图形的对称轴。
师:我们把对折后两边能完全重合的图形叫做轴对称图形。这条折痕所在的直线就是轴对称图形的对称轴,一般用虚线表示。
(设计意图:这一环节我先让学生自己剪出轴对称图形,目的是巩固前面所学的轴对称图形的概念,为本环节对称轴的认识做好铺垫。因为在剪图形的过程中,学生首先要经历对折的过程,其实这就是与对称轴的初步接触,等到学生自己观察得出这条折痕所在的直线其实就是对称轴这一结论时,就可以很好地理解对称轴的概念了。最后经历亲自画一画的过程,不仅可以提升动手操作能力,也是对对称轴又一层次的理解。另外,这一环节在本单元的作用也至关重要,如折一折、画一画、剪一剪都为第三课时的实践活动打下了基础。)。
三、巩固练习,拓展延伸。
1、判一判:哪些是轴对称图形。
2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。
3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。
通过这节课的学习,你有什么收获?
轴对称图形。
轴对称图形:对折后两边能够完全重合的.图形叫做轴对称图形。
对称轴:这条折痕所在的直线叫做轴对称图形的对称轴。一般用虚线画对称轴。
思考:长方形、正方形、圆各有多少条对称轴?
欣赏轴对称图形的美丽。
本节课是学生初步认识轴对称图形,我用猜字游戏导入,激发了学生的学习兴趣,活跃了课堂氛围。教学过程中,让学生经历观察图片,了解对称图形;折一折,验证自己对轴对称图形判断的正确与否,加深理解;合作学习,剪出轴对称图形;探究发现,找出轴对称图形的对称轴这四个环节,逐步引导学生由浅入深的完成本节课的学习。通过这样的教学,取得了较好的效果,但也存在一定的不足。如,学生虽然能快速的判断出轴对称图形,但不能准确地找出对称轴,证明对对称轴的理解只是表象。
再次设计本课时,我会在教学“对称轴”的环节,加入一个反向练习。如找一个不是轴对称的图形,沿各个方向对折都不能重合,经过这样的比较,学生对对称轴就会有更清晰的认识了。