教学工作计划还能帮助教师提前预知可能会遇到的问题,从而做好备课和教学准备工作。以下是教育专家为大家推荐的一些教学工作计划范文,供大家参考。
公倍数和最小公倍数教案(通用14篇)篇一
1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。
2.培养学生的观察能力、分析能力和归纳概括能力。
3.培养学生良好的学习习惯。
一、激情导课。
1、师:同学们,看今天我们要学习什么?(最小公倍数)。
看到这个题目,你会想到我们以前学过的什么知识?(倍数)。
2、师:(出示课件)谁会求这俩个数的倍数?有了这个知识做铺垫,相信我们这节课一定会学的很轻松。
3、(出示目标)理解最小公倍数的意义,初步学会求两个数的最小公倍数。请同学们默读一遍,并牢牢的记住它。
二、民主导学。
任务一。
要求:先独立思考,不会的小组商量。
提示:每4天休息一天就是工作3天休息一天,每6天休息一天就是工作5天休息一天。
教师巡视学习情况。
1、师:他们可选那几日外出?(12、24)。
你是怎样选出来的?根据回答板书;
妈妈的休息日:481216202428----4的倍数。
爸爸的休息日:612182430-----6的倍数。
共同的休息日:1224-----4和6的公倍数。
还可以用集合图来表示,
2、仔细观察两组数据有什么特征?
3、再次强调4的公倍数就是妈妈的`休息日。
6的公倍数就是爸爸的休息日。
4和6的公倍数就是爸爸和妈妈的共同休息日。
4、最近是哪一天?12。
12也是这公倍数中最小的一个,叫做最小公倍数。
5、集合图还可以这样表示出示课件。
问:和前面的图有什么不同?中间的部分表示什么?(重合的、公共的)。
你会填吗?把刚才的数据填在这个表里,中间填?两旁呢?
这样我们可以一眼看出4和6的公倍数是12、24.
6、谁能用一句话说说什么是公倍数?什么是最小公倍数?
7、89页做一做。
任务二。
一、任务呈现。
2、想一想。
1.你还能想出几种求法?
2.公倍数有多少个?你能找出最大的公倍数吗?
二、自主学习。
三、展示交流。
1、把不同求法板书。
2、交流以上三个问题。
(三)检测导结。
1、目标检测。
求下列每组数的最小公倍数(要求5分钟)。
2和74和8。
3和56和15。
2、结果反馈。
一次正确5分,自己改正4分,帮助改正3分,
3、反思总结谈谈收获和不足。
公倍数和最小公倍数教案(通用14篇)篇二
1、让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。
2、让学生经历探索和发现数学知识的过程,积累数学活动的经验,培养学生自主探索合作交流的能力。
3、渗透集合思想,培养学生的抽象概括能力。
公倍数和最小公倍数教案(通用14篇)篇三
使学生理解公倍数和最小公倍数的含义,学会求两个数的公倍数和最小公倍数的方法。
教学重点、难点
重点、难点:求两个数的公倍数和最小公倍数
备 注
一、问题情境引入
(问题情境的材料可视学生实际情况作调整)
二、新课展开
1、建立公倍数、最小公倍数的概念。
(1)师:你能解决这个问题吗?(学生独立思考可能有难度)四人小组可以讨论,合作完成。
学生试做,教师巡视指导,反馈。学生可能出现以下几种解法:
生甲:我们画了一条表示天数的数轴然后分别找出甲组、乙组第一次同时去后过几天再去,标上不同的记号,于是发现经过18天后,他们再次相遇。
可由学生边讲边画出示图,也可由教师根据学生回答板书。(图略)
教师在充分肯定和表扬后提出,18天后他们还会再次相遇吗?
生甲:还会相遇,不过画图找太麻烦了。
生乙:我们有更好的办法,只要分别算出第一次同时劳动后,甲组经过几天劳动,乙组经过几天劳动,就可以找出经过多少天他们再次相遇了。
教师板书学生思路:
甲组经过:6天、12天、18天、28天、30天、36天......
乙组经过:9天、18天、27天、36天、45天......
所以经过18天、36天......他们再次相遇。......
生:甲组、乙组经过的天数分别是6的倍数和9的`倍数。(教书调整板书)
6的倍数:6、12、18、24、30、36......
9的倍数:9、18、27、36、45......
教学过程
备 注
生讨论得出:18、36既是6的倍数,又是9的倍数,是6和9的公约数,即是6和9的公约数,18和9的公倍数中最小的,可以称为最小公倍数。
(3)师:今天这节课我们研究的就是公倍数、最小公倍数。(板书课题)
师:那么什么叫公倍数、最小公倍数?
学生讨论后得出;几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
师:有没有最大公约数,为什么?
生:没有最大公倍数。因为一个数的倍数是无限的,所以永远找不到最大公倍数,6和9的公约数还有54、72、90......无穷无尽。
2、用列举法求两个数的公约数、最小公约数。
做课本第57页练一练第1题,学生试算后,反馈。
生:先找出6的倍数,再找出4的倍数,然后再找出6和4的最小公倍数。
教师随学生记叙板书;
6的倍数有:6、12、18、24......
4的倍数有:4、8、12、16、20、24......
6和4的公约数有:12、24......
6和4的最小公约数是12。
(2)师生共同方法。
(3)练习:完成课本练一练第2、3、4、5题。
三、课堂
通过今天的学习,你有什么收获?(除什么是公倍数、最小公倍数,怎样求两个数的最小公倍数等关概念外,还应注意学习方法,情感等方面的。)
四、作业《作业本》
从倍数着手,层层深入,得出公倍数与最小公倍数的意义。教学过程中运用集合图,不但形象直观,而且渗透了集合。
课后反思:
激发学生的参与意识,让学习成为学生发自内心的需要,让课堂成为学生获取知识的乐园是我们每位教师应努力的方向。还有对学生的,包罗万象,既有对学习方法的,又有对学习情感的,也有对自己的鞭策鼓励。这样的,教师只需适当点拨、启发,便能让学生在被他人肯定的同时得到极大的满足感,增强学生主动参与探究的自信心,从而把主动探究学习作为自己学习生活中的第一乐趣。这节课我在设计上注重这两点,来设计和展开教学。
公倍数和最小公倍数教案(通用14篇)篇四
教学要求:
学会用短除法求两个数的最小公倍数。
掌握求最大公因数和求最小公倍数的区别。
教学重点:
学会用短除法求两个数的最小公倍数。
掌握求最大公因数和求最小公倍数的区别。
课前准备:
小黑板。
教学过程:
一、复习。
(1)写出3组互质数。
(2)找出每组数的最小公倍数。
6和925和10。
二、学习用短除法求最小公倍数。
36952510。
2352。
还能再除下去吗?
6和9的最小公倍数是:3×2×3=18。
25和10的最小公倍数是:5×5×2=50。
练习:求每组数的最小公倍数。
12和3036和547的.14。
24和3614和56。
三、比较用短除法求最大公因数与最小公倍的区别。
分别求30和45的最大公因数和最小公倍数。
比较:用短除法求两个数的最小公倍数和最大公因数的什么相同点?不同点?
小结:相同点:用短除法,除到互质数为止。
不同点:最大公因数是把所有的除数相乘;最小公倍数是把除数和商相乘。
四、教学求两个数的最小公倍数的两种特殊情况。
两个数成倍数关系。
15和3012和368和4。
求这两个数的最小公倍数?
说说你的发现?
五、观察。
两个数是什么关系?
最小公倍数与这两个数的什么关系?最大公因数与这两数有什么关系?
1.两个数互质。
拿出复习中同学们写出的互质数。
小组合作讨论研究。
如果两个数是互质数,它们的最小公倍数与最大公因数有什么特点呢?
2.练习。
直接说出每组数的最小公倍数与最大公因数。
3和78和911和4。
4和284和2533和11。
7和6348和1242和56。
3.作业:求每组数的最小公倍数与最大。
公因数。
15和207和512和16。
5和3528和1434和51。
公倍数和最小公倍数教案(通用14篇)篇五
教学目标:
使学生学会求三个数的最小公倍数的方法,并能正确地,合理地求三个数的最小公倍数。
教学过程:
一、复习
什么是公倍数、最小公倍数
怎样求两个数的最小公倍数
求两个数的最小公倍数与最大公约数有什么联系
当两个数是倍数关系时,大数就是这两个数的最小公倍数,小数就是这两个数的最大公约数。
当两个数是互质数时,这两个数的最大公约数是1,这两个数的最小公倍数是这两个数的乘积。
二、揭示课题
这节课我们学习求三个数的最小公倍数。
三、教学新课
1、例3求12、16和18的最小公倍数。
2、学生自学完成。
3、对不懂的问题提出疑问。
4、注意:用短除法求三个数的最小公倍数时,先要用三个数的`公约数去除,然后再用任意两个数的公约数去除。最后的结果要两两互质。
5、试一试
求15、30和60,3.4和7的最小公倍数。
计算后,你发现了什么?
(1)其中一个数是其他两个数的倍数,那么最大的数就是这三个数的最小公倍数。
(2)当三个数是互质数时,三个数的乘积是这三个数的最小公倍数。
四、巩固练习
五、反馈
六、布置作业
反思:本节课的难点是让学生知道为什么在求出三个数的公约数后还要求出两个数的公约数。然后把所有的除数和商乘起来。
公倍数和最小公倍数教案(通用14篇)篇六
1、一个数最小的倍数是它的本身,没有最大的倍数。
2、一个数倍数的个数是无限的。
3、怎样找一个数的倍数?
其次,在引入的环节,我用学生喜欢的故事和动画来展示:在美丽的洪泽湖边上有一个小渔村,村里住着一老一少两个渔夫。今年,他们从4月1日一起开始打鱼,并且每个人都给自己定了一条规矩。老渔夫说:“我连续打3天鱼要休息一天。”年轻渔夫说:“我连续打5天鱼要休息一天。”有一位城里的朋友想趁他们一起休息的。日子去看望他们,那么在这个月里,他可以选哪些日子去呢?你会帮他把这些日子找出来吗?听了这个故事之后,学生积极性很高。
学生对公倍数的个数是有限的还是无限的,使用省略号方法学生没有掌握好。如:6和9的公倍数后面要用省略号,30以内6和9的公倍数后面要不用省略号。
公倍数和最小公倍数教案(通用14篇)篇七
回来一次,你知道它们最快什么时候相遇吗?(完成书上60页的试一试)。
师:50以内6的倍数有哪些?
生:6、12、18、24、30、36、42、48。
师:50以内9的倍数又有哪些?
生:9、18、27、36、45。
师:50以内6和9的公倍数有哪些?
生:18和36。
生:18。
师:我们的两组蜜蜂最快在18分钟的时候相遇了。
生:列举法。
师:那现在还有一种方法找最小公倍数,短除法。
21824。
912。
34。
3和610和89和4。
4.联系实际,解决问题。
师:看看,这是什么?
生:跑道。
师:同学们平时爱跑步吗?,在学校的跑道上跑一圈大概需要多长时间?现在看看他们三个人的。
(1)我跑一圈用6分钟。
(2)我跑一圈用4分钟。
(3)我跑一圈用8分钟。
师:你能提出问题吗?
生1:他们同时出发男孩和女孩最快什么时候相遇?
生2:他们同时出发男孩和老师最快什么时候相遇?
生3:他们同时出发老师和女孩最快什么时候相遇?
(独立完成)。
公倍数和最小公倍数教案(通用14篇)篇八
该内容是在学生已经学习了约数和倍数的意义、质数和合数、分解质因数、最大公约数等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习通分所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的学习方法学习后面的内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。
公倍数和最小公倍数教案(通用14篇)篇九
活动过程:
1.出示活动材料。
2.揭示活动要求:用长3厘米、宽2厘米的小长方形铺边长为6厘米、8厘米的正方形,能正好铺满吗?(议一议,明确什么叫正好)。
3.猜想,能不能正好铺满。
4.操作,在桌上很快地铺一铺,(提醒学生在操作中能发现一些问题思考一些问题)。
说说发现的问题(生:第二块不能正好铺满)。
5.演示,第一块能正好铺满,第二块不能正好铺满。
6.探究:为什么会这样?这可能与正方形的什么有关?(同桌交流后个别回答)。
生1:如果大正方形面积是小长方形的面积的倍数就行。
师:有道理吗?
生:有。
师:有没有反例,思考一下。
师:提供反例,长4厘米,宽3厘米的长方形。电脑演示铺有一铺,不能正好铺满。
师:再思考,可能与正方形的什么有关?
生:6能正好除以2和3,8不能正好除以3。
师:那正好铺满要满足几个条件。
生:两个。
师:板书:6是3的倍数,6是2的倍数。
规范表达:6既是3的倍数,也是2的倍数。
7.运用:独立思考边长是几的正方形能正好铺满?交流(边长12厘米、18厘米、30厘米……)。
师:这样的例子举得完吗?为什么?
8.揭示概念:
2.交流方法:
生2:先找9的倍数,再用9的倍数分别除以6。
3.比较方法:
师:三种方法有什么共同的地方?
生1:都要一一列举。
生2:答案都一样。
师:2、3两种方法有什么区别?
生3:第2种方法更简洁。
6、12……9、18……。
18。
活动(四):画画涂涂——体会收获。
1谈收获。
2.练习。
(1)画一画:在2的倍数上画圈,在5的倍数上画三角。
(2)玩一玩,涂一涂:红棋每次走3格,黄棋每次走4格,在两种棋都走到的方格上涂色。
公倍数和最小公倍数教案(通用14篇)篇十
学生操作活动。
生:6÷2=36÷3=2。
师:铺边长8里面的正方形呢?每条边都能正好铺完吗?
生:8÷3=2……2,8÷2=4。
师:这样的正方形还能铺满边长是多少厘米的正方形?(板书:12厘米、18厘米、24厘米……)说说你的理由。明确:12、18、24……除以2和3都没有余数。
师:6、12、18、24……这些数与2有什么关系?与3呢?
生1:(6、12、24……既是2的倍数,又是3的倍数。)。
生2:只要正方形的边长既是2的倍数,又是3的倍数,这样的长方形纸片就能正好把它铺满。师:6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数。(板书课题:公倍数)。
师:5、2和3的公倍有多少个呢?为什么?
师:6、8是2和3公倍数吗?为什么?
生:8是2的倍数,但8不是3的倍数,所以8不是2和3的公倍数.
……。
教学公倍数和最小公倍数,用一些小长方形铺一铺,学生操作时错误比较多,特别是铺长8厘米,宽6厘米的长方形的时候,学生把小长方形横、竖排起来铺,最后竟然得出能铺满的结论,仔细一看,原来把小长方形多余的折起来了,不知是学生对要求不清楚,还是例题的意思不清晰。经过示范一次后,学生再次铺一铺,就好多了。找公倍数的时候,学生都是采用的第1种简捷的方法,只是,找倍数还是四年级时所学,时间比较久了,学生有相当不部分已经遗忘了,所以课前还是进行相关的一些复习为好,不然学生在找某个数的倍数时就会有不少问题,常常把这个数的本身也是自己的倍数给忘了。
公倍数和最小公倍数教案(通用14篇)篇十一
教学目标:
2、通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的某些应用,体验解决问题策略的多样化。
3、渗透集合思想,培养学生的抽象概括能力。
课前谈话:做游戏,猜年龄,生日,暑假活动情况等。
教学过程:
一、情境引入。
师:要找出两人正好一起休息的日子,你有什么好办法吗?
生:在月历本上找。
师:请同学们在月历卡上找出小强休息的日子,画上圆圈,找出小红休息的日子,画上三角形。
教师板书:小强小红。
请学生汇报。教师板书写上日期数。
师:(观察)从小强的休息日和小红的休息日中,你发现了什么?
生:他们共同的休息日是12,24,(学生回答后,教师圈出来,然后板书:共同的休息日是12,24,)。
师:其中最早的共同休息日是什么时候?12。
教师板书:最早的共同休息日:12。
师:从数学的角度看,4的倍数还有吗?写得完吗?添上省略号。
师:找他们共同的休息日就是找什么?板书:4和6的公倍数。
师:找他们最早的共同休息日就是找什么?板书:4和6的最小公倍数。
师:4和6的公倍数还有吗?
生:36,48……。
师:你是怎么知道的?
生:用最小公倍数12乘以3,乘以4就可以知道了。
师:真是好办法!看来通过最小公倍数12乘以1,2,3,4就可以知道4和6的公倍数。
师:我们还可以这样来表示4的倍数、6的倍数。
师:从这里你能找出哪几个数既是4的倍数,又是6的倍数吗?
生:12、24、36……。
师:那你觉得怎样表示更好呢?
生:移过来,中间写12、24、36……。
师:好的,那我们就把它们移一移。(教师课件演示)。
师:现在你能说说你对这个集合图的理解吗?
师:观察板书:你还能说说倍数、公倍数、最小公倍数之间的关系吗?
三、尝试应用,方法提炼。
有一些同学做早操,排6人一排、9人一排,都没有剩余。
如果学生的人数在40人以内,可能是多少人?
反馈,你是怎么想的?
师:想想看,还有没有更简单的方法呢?
师:可以通过给大数翻倍的方法。
这些方法实际都是属于列举法,在解决问题时你可以选择自己喜欢的方法。
四、巩固练习、总结提升。
6和89和12。
2、猜生日。
师:顾老师生日的月份数是2的倍数,又是5的倍数,你认为顾老师出生在几月份?
师:为什么不是20呢?
生:一年不可能有20个月。
师:看来在解决实际问题时,还要联系实际。
师:你是怎么想的?
3、铺墙砖。
生1:我认为边长可能是6分米,因为6是长3的倍数,也是宽2的倍数。
生2:我认为边长可能是12分米,因为12是长3的倍数,也是宽2的倍数。
生3:我认为边长可能是18分米,因为18是长3的倍数,也是宽2的倍数。
师:哦,6,12,18,看来你们铺成正方形的边长既是的长的倍数,又是宽的倍数。
师:那么,铺成边长是8分米正方形行吗?为什么?
生:不行,8是宽的倍数,但不是长的倍数。8÷3=2……2。
师:哦,那么边长是9分米的正方形一定行的了,9÷3=3。
生:不行,9是长的倍数,但不是宽的倍数。9÷4=2……1。
师:那么,正方形的边长还有可能是几?你是怎么知道的?
师:口说无凭,你能拿出更有力的手段来说服大家吗?
学生图示。
师:哦,画图也是个好办法!
师:边长是6、12、18分米……的正方形正好是3和2的倍数,而6是这两个数的最小公倍数。
(6、12、18不仅是3的倍数又是2的倍数。6、12、18是3和2的公倍数)。
师:哇!原来墙上也隐藏着丰富的数学知识,希望同学们能做个有心人,发现更多的数学问题。
五、全课小结。
说说你的收获?对自己的评价,对老师的评价。
六、机动。
公倍数和最小公倍数教案(通用14篇)篇十二
生:蜜蜂。
师:蜜蜂在干嘛呀?
生:在采蜜。
(生自由发表意见,各抒己见)。
2.师:现在呢,有只小蜜蜂呢提出了这么一计策,把这些蜜蜂分成两个组,一组四分钟回来一次,一组六分钟回来一次,你们觉得这个问题完全解决了吗?同学们想一想。
(片刻之后)师:同学们把书翻到第六十页,在这个表中把4的倍数用标出来,用把6的倍数标出来。
两分钟之后展示一位同学所标出来的。
3.师:那4的倍数有哪些?
生:4、8、12、16、20、24、28、32、36、40、44、48。
师:那6的倍数又有哪些呢?
生:6、12、18、24、30、36、42、48。
又标了的有哪些?
生:12、24、36、48。
师:12、24、36、48既是4的倍数又是6的倍数,它们就叫做4和6的公倍数。
师:那么我们的两组蜜蜂在这些时候又会碰上一起回家。那它们最快是在什么时候相遇呢?
生:12分钟。
生:有,有无数个。
师:你能找出最大的一个吗?
生:不能。
师:4和6没有最大的公倍数,但有最小的公倍数,它就是我们这节课要学习的内容——最小公倍数。
公倍数和最小公倍数教案(通用14篇)篇十三
1、使学生在具体的操作活动中,认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。
2、使学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。
3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
公倍数和最小公倍数教案(通用14篇)篇十四
师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。
师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。(师板书:12、24)。
师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。