教学计划要注重学生的主体地位,关注学生的学习兴趣和潜能的开发。以下是小编为大家整理的教学计划范文,希望可以为您提供一些参考和借鉴。
笔算两位数乘两位数教学设计大全(21篇)篇一
教学设想:创设情境,使学生产生学会计算方法的需要,并激发学生运用已有知识解决新问题的灵感。
教学目标:
1.经历探索两位数乘两位数计算方法的过程,会笔算两位数乘两位数,会用交换乘数位置的方法验算乘法。
2.在具体的情景中,应用有关运算解决实际问题,体会解决问题策略的多样性,进一步发展数学思考,提高解决问题的能力。
3.在探索算法和解决问题的过程中,感受数学与生活的联系,增强自主探索的意识,提高合作交流的能力,获得成功的'体验。
教学难点:理解乘的顺序以及第二部分积的书写方法。
教学准备:挂图。
教学过程:。
一、创设情境,发现问题。
1.谈话导人:在生活中有很多事情需要我们用数学方法去思考解决,例如这小小的“喝”问题也不例外。
2.估算。
(1)谁能估算一下订一份牛奶一年大约需要多少元钱?(300元)。
(2)你是怎样估算的?
二、合作探究,解决问题。
1、明确问题:有什么办法来说明白己估测的是否接近正确答案,或者与正确答案相差很远?(算一算)。
怎样算呢?你们能自己动动脑解决这个问题吗?
2.尝试解决:学生独立思考,教师适时指导有困难的学生。
3.小组交流:同学们所用的方法不完全一样,请大家在小组中互相交流自己的算法。交流之前可以先整理一下自己已有的研究成果,想一想你准备讲哪几点,说哪几句话。(4)用竖式计算。
请学生说说用前三种方法算的道理。
5.比较方法:这个竖式同方法(3)比较有无联系?(实际上都是分三步计算的,竖式是把三步计算写在一个式子里。)。
6.选择方法:这么多方法中,你最喜欢用哪种方法来计算呢?为什么?自己选择一种方法算一算。
7.研究笔算方法。
指名回答,教师随机板书:
(1)第一步算的是什么?
(2)第二步算的是什么。
(3)第三步算的是什么?怎样算的?
(4)这一结果和我们开始的估测差不多吗?
8.归纳提炼。
你能用自己的话再说说计算以上这题的方法吗?教师适时引导归纳笔算乘法的方法,并板书课题。
指出:做两位数乘两位数的笔算时,其实是把它分解为两位数乘一位数、整十数来分别计算,然后把两个得数加起来。
9.完成“试一试”。
三、尝试应用,拓展深化。
1.完成“想想做做”第1题。
学生先独立计算,然后交流汇报。教师展示一些典型的错例,组织讨论,纠正错误。
2.完成“想想做做”第2题。
学生独立做题。
3.完成“想想做做”第3题。
(1)各自观察题目,找到错误原因,在班内交流。
(2)各自算出正确答案。
4.做“想想做做”第4、5题。
(1)观察题目提供的场景。提问:你从中了解到哪些信息?你能提出什么问题?(小朋友应付多少元?)。
(2)学生独立计算解决问题。
四、回顾总结,汇报收获。
l提问:通过今天的学习,你又有什么收获?
五、课堂作业。
笔算两位数乘两位数教学设计大全(21篇)篇二
教学目标:
1、鼓励学生进行算法探索,经历算法形成的过程。理解并掌握两位数减两位数的不退位减法的笔算方法,能正确笔算。
2、学生经历丛生活中发现问题,解决问题的过程,逐步形成必要的数学素养。
教学重点:
进一步理解相同数位对齐的意义,掌握两位数减两位数的不退位减法的笔算方法,能正确笔算。
教学难点:
掌握不退位减法的'笔算方法,理解笔算中的对位问题。
教学准备:
图片、小黑板。
教学过程:
一、谈话引入,揭示课题。
星期天,老师去新华书店挑了三本书:《十万个为什么》每本48元、《安徒生童话》每本35元、《格林童话》每本23元。(黑板贴图片)。
1、仔细观察,这三道算式有什么相同的特点?(引导学生说出:都是两位数减两位数。)。
反馈时可能出现,
第二种情况:可以像加法一样笔算。
您现在正在阅读的《笔算两位数减两位数(不退位)》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!《笔算两位数减两位数(不退位)》教学设计3、好,今天我们就来研究两位数减两位数的笔算。(板书课题:两位数减两位数的笔算)。
二、自主探究,理清算理。
1、笔算时,我们应注意什么?(相同数位对齐)。
2、学生尝试笔算,并指名板演。
反馈。你们对上面的竖式有意见吗?与加法竖式有什么不同?怎样计算的?
要求学生会说算理。
3、除了笔算外,我们还可以用计数器来计算。师生共同演示。
(学生独立笔算后反馈,要求会说算理。)。
三、巩固练习。
1、书本第19面,做一做第1题。
学生直接做在书上,指名板演,反馈纠正。
2、书本第20面第1题。
学生直接做在书上,指名板演,反馈纠正。
3、书本第20面第2题。
学生直接做在书上,指名板演,反馈纠正。
同样是8,为什么写的位置不同?(强化对位)。
四、课堂总结。
这节课,我们学会了什么?笔算时要注意什么?
笔算两位数乘两位数教学设计大全(21篇)篇三
商是两位数的笔算除法是在商是一位数的基础上编排的,商是两位数的除法除的顺序、试商的方法与商一位数的完全相同,只是商的位数多了,计算复杂了些。本节课的重点是弄清每一位商的书写位置,掌握两位数除法的笔算方法。
1.将计算教学与解决实际问题相结合。把计算教学置于现实情境之中,把探讨计算方法的活动与解决实际问题融为一体,促使学生积极主动地参与学习活动,经历除法计算方法形成的过程。我结合海宁创卫实际,充分利用教材呈现的情境图设置教学情境,从中引出数学问题,把计算教学融入解决实际问题之中,并自然渗透保护环境的教育,增强学生的环保意识。
2.运用知识的迁移规律,让学生主动探索计算方法。商是两位数的除法是在学生学习了一位数除法及商是一位数的两位数除法基础上学习的,学生已经具备了笔算除法的直接经验。教学时,引导学生利用商是一位数及除数是一位数除法进行正迁移,沟通一位数除法与两位数除法笔算方法的联系,引导学生运用已有知识解决商是两位数除法中遇到的新问题。先让学生根据已有经验进行商是两位数除法的方法猜想,再放手让学生实际尝试、探讨笔算方法,提升学生对计算过程的认识,完善学生对算理的理解。最后组织学生进行小组合作学习,互相出题、做题、讨论,在观察与比较中归纳两位数除法与一位数除法的异同点,进一步明确两位数除法的计算方法。
1.让学生经历商是两位数的除法的笔算过程,引导学生主动探索计算方法,弄清每一位商的书写位置,掌握除数是两位数的除法的笔算方法。
2.引导学生比较除数是一位数的笔算除法和除数是两位数的笔算除法的异同,使学生从实质上把握两者的联系和区别,从中培养学生思维的灵活性及迁移类推概括的能力。
3.使学生能够运用所学的知识解决简单的实际问题,感受数学在生活中的作用,渗透环保教育。
难点:商的最高位的确定及商个位“0”的处理。
例(1):学校共有576名学生,每18人组成一个环保小组。可以组成多少组?
1.可以怎样列算式?
2.估计一下,大约等于多少?它的商是几位数的?
3.和我们前几节课学习的除数是两位数除法有什么不同吗?(揭题)。
(1).猜想方法。
(2)学生尝试笔算。
(3)针对学生出现的情况进行反馈讨论,明白商是两位数除法的计算方法。
重点引导:先算18除什么数?
商“3”为什么写在十位上?
例(2):十月是学校环保月,共收集了930节废电池,平均每天收集废电池多少节?
(1)可以怎样列算式?
(2)判断一下,它的商是几位数?(也是两位数)。
(3)列竖式算一算,边算边思考:计算时和刚才的一题有什么不同?
反馈交流。除到十位余下的数是0怎么办?
(4)不列竖式,判断下面各题商是几位数。分小组算一算。
136÷8584÷26319÷53845÷21。
3.比较除数是一位数除法和除数是两位数除法的异同。
(1)小组活动:各写一道除数是一位数和两位数的除法算式,请同桌做一做。
边做边思考:除数是两位数的除法与除数是一位数的除法有什么相点和不同点。
:762÷63=234÷26=。
笔算两位数乘两位数教学设计大全(21篇)篇四
一、教材:
1、教学内容及简析:
本课的教学内容是两位数乘两位数的笔算,它是学生在已经掌握了两位数乘一位数和两位数乘整十数的口算的基础上进一步学习的,为后面学习乘数数位是更多位的笔算乘法垫定基础。这部分内容是学生计算方面学习的重要转折点。
2、教学目标:
知识目标:经历探索两位数乘两位数笔算方法的过程,会笔算两位数乘两位数,会用交换乘数位置的方法验算乘法。
能力目标:培养观察力、探究能力、抽象概括能力。
情感目标:获得成功的体验,树立学习的信心。
3、教学重点、难点:
难点:理解乘的顺序及第二部分积的书写方法。
二、教法、学法:
针对这样的教学目标、教学重难点,在教法上,我个人认为,在教学中应当突出学生的主体地位,通过启发、引导、设疑等教学手段及方法进行教学。
在学法指导上,让学生掌握观察、比较、发现、交流、合作等学习方法。
三、教学设想:
课本中以订牛奶为情境,我进行了改编,以学生献爱心活动为研究题材,贴合学生实际,通过四个环节进行教学:创设情境,激发兴趣;自主探索,研究算法;巩固强化,拓展延伸。
(一)创设情境,以旧引新。
在教学的导入环节,老师充分依据学生原有的知识和经验,从复习两位数乘一位数、两位数乘整十数,在此基础上,再引出两位数乘两位数。老师有意识提问:你想怎样学习新知识?让他们运用已有知识经验将难点转化,以旧知解决新问题,从而渗透数学学习的方法。
(二)自主探索,研究算法。
1、渗透估算意识。教学过程中先让学生估算,再尝试用笔算,这样使估算、笔算有机结合。
2、计算方法的多样化到优化。计算教学,内容比较枯燥乏味。为激发学生的求知欲望,老师通过充分创设问题情境,多种方式体会两位数乘两位数的计算方法。学生可能出现3种情况,情况一:28×6×2;情况二:28×4×3;情况三:28×10+28×2。让学生从不同的角度、运用不同的策略去思考、探索计算的方法,通过比较认识到笔算方法的重要性,从而一起探索竖式计算的方法。
3、注重沟通,理解算理。在师生共同交流中引导学生理解把两位数乘两位数的计算分成三个部分,前面两部分都可以看成是两位数乘一位数、整十数,但着重让学生明确第二次计算的书写,第三部分,将两次计算的结果相加。竖式计算的算理与学生前面的方法是一致的,教师要注重沟通,让学生更好地理解算理,掌握每一步计算的意义。
4、归纳总结。两位数乘两位数的计算方法的叙述对三年级学生来说,有点困难,要求学生根据对算理的理解用自己的话来讲就行了,教师简要的.板书为学生提供思考方向。
5、验证结果,提高效率。在笔算中,验算是最好的验证方法。因此,让学生交换48和12的位置再乘一遍,然后引导学生观察:你发现了什么?总结出乘法的验算方法。
(三)有效练习,巩固延伸。
第一组安排的4题不同的练习,主要是让学生在理解的基础上从而进行独立的计算过程,第1题明确得数数字相同意义却是不同的,3、4两题的计算都有向前一位进位的问题,拓展了例题的教学。
第2题纠错题,让学生进一步理解每一步计算的意义。
第3题解决问题部分的设计,是为了增加数学计算的趣味性,让学生觉得数学学习与生活的紧密联系。
第4题是开放性练习,也是提高了计算难度,有基础练习、有提高性的进位练习,自己出题时还有可能两次相乘都有进位。
练习中的习题从不进位到进位,主要是基于这样的考虑,因为对于学生来说,顺序方法都是一样的,进位的问题也是在多位数乘一位数中学过了,对于学生来说,不是新问题,但会感觉有点困难。当然,计算要达到一定的正确率和熟练程度,必须要相当的练习量。
笔算两位数乘两位数教学设计大全(21篇)篇五
教师质疑:你是怎么想到商“5”的?(我觉得把“26”看作“30”试商,30要比26大,因为我知道30×5=150,所以我想26×5一定小于150,所以我就商“5”试了一下,居然刚好)。
生:还有用到刚才估算的方法也能很快找到商“5”
教师点评:嗯,这三种都是不错的试商方法。
4、拓展问题。
文档为doc格式。
笔算两位数乘两位数教学设计大全(21篇)篇六
本节课的主要教学内容是两位数减两位数的退位减法的第一课时,其重点难点就是让学生理解,当个位不够减时,从十位退1当作十。为了突破这一重难点,我让学生通过摆小棒和小组内的合作交流来理解其意义。
《数学课程标准》指出,数学教学必须建立在学生的认知发展水平和已有的知识经验基础之上,有了一定的学习基础,此类题大多学生都会算。所以我们要把主动权交给学生,让他们借助已有的知识经验自己去探究,去发现解决问题的方法。作为教师不要去为学生设计“过渡题”“样板题”,这样容易把学生带入教师预设的方法中。应该放手让学生自己去比较,分析,选择适合自己的计算方法,或心服口服的认同书本上相对较好的方法。
此外,我们还需要为学生创设出一个宽松民主的学习气氛,留给学生主动提问、主动分析、畅所欲言的空间。鼓励学生多想、多说、多发言。
在这节课中,我也发现了许多自己在教学方面的不足之处。对于课堂生成资源运用的不灵活。当学生提出不一样的想法时,不能很好的顺着学生的问题引入到新课中。学生小组合作交流不熟练,动手能力还有待提高。在摆小棒过程中,有极个别小组出现了用小棒摆出数字造型的现象。这些都是我在日后的教学活动中需要改进之处。
笔算两位数乘两位数教学设计大全(21篇)篇七
“两位数减两位数退位减法”是二年级上册教学内容。这部分教学内容是在学生学习了“两位数减两位数不退位减“的基础上进行学习的,学生有了一定的计算基础,并且会用竖式计算,所以在教学中,我放手让学生自己通过数学例题中的数学信息提出了不同的问题,并列式计算。
《数学课程标准》指出,数学教学必须建立在学生的'认知发展水平和已有的知识经验基础之上,有了一定的学习基础,此类题大多学生都会算。所以我们要把主动权交给学生,让他们借助已有的知识经验自己去探究,去发现解决问题的方法。作为教师不要去为学生设计“过渡题”“样板题”,这样容易把学生带入教师预设的方法中。应该放手让学生自己去比较,分析,选择适合自己的计算方法,或心服口服的认同书本上相对较好的方法。
此节课,我也深深的感到,作为一名教师要有耐心,要把机会让给每一个学生,让每一个孩子在启发中互相创新,在启发中激起探究的热情。因为这种动态生成的效果正是我们所追求的。虽然对一时的“创造发明成果”还没有马上转化,但在这过程中学生思维的发展,共同促进学习氛围的形成。对学生今后的发展,都会有意想不到的收获吧。
本节课让学生了解每一种计算方法,目的是从小就培养学生“多种选优,择优而用”的科学研究态度。同时当学生自己创造的算法被肯定时,他们幼小的心灵所萌发出的自我价值、学习信心、主动挑战意识等不也是课堂教学的成功所在吗?我认为这些才是提倡算法多样化乃至教学改革的真谛。
笔算两位数乘两位数教学设计大全(21篇)篇八
1、出示一幅订牛奶的情景图。(一份牛奶每月28元,订5个月要花多少钱?)。
指导学生从图中获知数学信息及所求问题,提问:你打算怎样列式解答呢?解决这个问题需要用到以前学习的什么知识呢?(28×5;前面学过的两位数乘一位数笔算的知识)。
教师请一位同学在黑板上写出笔算过程,同时请其他同学口算:13×20;12×40;30×21;lo×l5;28×10。师:这些都是前面刚学过的乘法口算,说说你的口算过程。(两位数乘整十数的口算……)。
引导学生一起检查黑板上写出的28×5的笔算过程。提问:通过28×5的笔算,我们可以求得订5个月牛奶要花的钱。刚才口算"28×10"可以解决这里怎样的问题呢?(订10个月牛奶要花的钱)。
出示:订一年这样的牛奶要花多少钱?根据学生回答,教师板书:28×12。再提问:与前面学过的两位数乘一位数、两位数乘整十数相比,这是一道怎样的算式呢?(两位数乘两位数)。
教师板书课题,并明确今天的学习内容。
二、展开探索,算法多样。
1、估算28×12的积大约是多少呢?(把28看作30,12看作10,28×12的积大约是300)。
2、启发谈话:28x12的精确答案是多少呢?这是个新的问题,小朋友,开动脑筋能否用以前学过的知识得出28×12的结果呢?请试着在纸上算一算!如果独立计算有困难,可以先自学课本30页中的算法,再独立进行计算。
3、学生在小组内展开交流,说说各自的计算方法。
4、全班集体分享,教师将其写在黑板上,并让学生分别说出思路。
三、深化研究,优化算法。
1、回顾:我们还没有学习28×12的计算方法,同学们就能用这么丰富的计算方法得出结果,真了不起!老师想知道,你们是借助以前学过的哪些知识来解决的呢?(第1种方法借助两位数乘一位数、两位数乘整十数以及笔算加法的知识;第2、3两种方法借鉴了两位数乘一位数的竖式计算;4、5两种方法都是运用的两位数乘一位数的知识。)。
2、赏析:在这些算法中,你比较欣赏哪一种算法?(我喜欢第一种方法,因为它容易理解;我喜欢竖式计算,因为它比较清楚简捷;我认为四、五两种方法不仅容易理解,而且只用两步就可以算得最后的结果……)。
3、讨论:如果要计算29×13你会选择怎样的计算方法呢?(同桌讨论,全班交流)提问:为什么没有同学选择像黑板上(4)、(5)两种方法来计算呢?(4)、(5)两种方法有局限性,乘数13不能像1那样拆。
4、比较:方法(2)、(3)都是用的竖式计算,你发现它们有什么异同呢?(这两个竖式只是十位上的“1”去乘28,所得的积写法不同,其它都一样)提问:你是怎样理解这两种不同写法的呢?(方法(2)与以前学习的笔算一样,用乘法口诀”一八得八”、“一二得二”记录每步乘得的积;方法(3)乘数12十位上的“1”表示10,28×10口算得280)思考:在方法(2)中,乘数十位上的“1”乘得的积“28”与第一次乘得的积“56”相比,写的位置靠前一位了,你是怎样理解的呢?(这里的“28”表示28个十)试想:如果乘数十位不是“1”,而是数字较大的“9”时,你觉得运用哪种写法比较好呢?(口算的方法有些困难,运用乘法口诀记录每步乘积比较容易)观察方法(1)、(2)之间的联系,教师根据学生的口答进行连线。
5、小结:方法(2)是将方法(1)分步计算的过程用竖式的形式表示出来,当我们理解之后,采用方法(2)的写法不仅使计算过程清晰,而且还便于检查。所以小学阶段我们进行笔算的基本算法是竖式计算,随着学习的不断深入,它的优势将会更明显。(完善课题,添上“笔算”)同桌小朋友相互说一说怎样用竖式计算"28×12”,在计算过程中要注意些什么?(用乘数十位上的数去乘,乘得的积的末尾要和十位对齐)。
6、练习:出示课本第31页“想想做做”第一题,学生独立练习后,全班进行交流。
四、发现规律,学会检验。
1、教师在黑板上出示12×28的竖式,与刚才28×12的竖式比较异同。(都是两位数乘两位数,只是乘数的位置交换了)提问:它们的计算结果会怎样呢?学生带着猜想补充完整课本31页“试一试”的计算并观察验证。启发:运用这一规律可以对两位数乘两位数进行验算。
2、课本“想想做做”第二题。
五、熟练运用,拓展提高。
1、完成课本“想想做做”第三题,学生纠错后在全班集体交流。
2、学生独立完成课本“想想做做”第四题,教师巡视指导。
3、完成课本“想想做做”第五题。启发谈话:学以致用不仅能巩固我们学习的知识,还能提高我们运用知识解决问题的能力。看到了这样的生活情景你能提出什么问题?学生利用今天学习的知识进行解答。
4、提问:你能利用今天学习的知识,计算语文课本上你喜欢的一篇课文大概的字数吗?(数一数课文每行有多少字,大约有多少行,利用今天学习的两位数乘两位数的知识算一算就可以知道了)学生试着练习。
六、交流体会,分享收获。
启发谈话:通过这节课的学习,相信你有很多学习的体会和收获,与同学们一起分享吧!
笔算两位数乘两位数教学设计大全(21篇)篇九
教学目标:。
1.学生经历发现两位数乘两位数的计算方法的过程,体验计算方法的多样化,会进行两位数乘两位数的`笔算。
2.通过小组合作交流,比较各种方法的优点和不足,帮助学生体会优化的策略和思想。
教学过程:。
一、创设情境,提出问题。
1.出示例1图。(图中增加1盒水彩笔)提问:你能猜测一下大约有多少枝水彩笔吗?
2.学生进行猜测后要求说说怎样猜测的。
3.提问:怎样才能证明你猜测的答案是正确的?(要计算出24×12=?)。
4.追问:怎么算呢?我们没有现成的办法,你能自己想办法计算24×12得多少吗?
二、探索尝试,比较并优选算法。
1.独立思考,尝试解决问题。(学生用自己的方法去解决24×12=?注意帮助有困难的学生。)。
2.小组交流、整理。
3.以小组为单位,全班汇报,再汇总不同算法。学生的算法可能有:。
(1)12+12+“……”+12=288(24个12相加)。
(2)12×4×6=288。
(3)12×3×8=288。
(4)12×20+12×4=288也有学生用竖式计算。
4.方法归类。(共分三类,第一类是连加;第二类是连乘;第三类是把其申一个乘数拆成两数的和或差)。
5.发现最佳方法。
(1)出示:23×13二请你用自己喜欢的方法计算这道题目。
(2)小组交流,然后选出最简单的方法向全班同学汇报。
(3)提问:为什么不用连加?为什么不用连乘?
(4)引导:在计算两位数乘两位数时,你认为哪一种方法适用的范围比较广?为什么?
6.研究笔算方法。
(1)提问:我们再来看看24×12这个乘法的竖式。你能说说每一步的意思吗?(学生进行讨论,然后全班交流。)。
(2)根据学生回答,出示每一步竖式表示的意义。
(3)设问:是不是每一道两位数乘两位数都可以用竖式计算呢?计算时你认为应该注意些什么?(体会竖式计算的优点:简便,正确;注意数位对齐。)。
三、巩固法则,推广应用。
1.完成“练一练”的3道题目。(学生独立完,再指名板演)。
2.练习二第3题。(先填在书上,然后交流)。
四、全课总结,交流收获。
1.小结:通过本节课的学习,你有什么收获?
笔算两位数乘两位数教学设计大全(21篇)篇十
《两位数减两位数(退位)的笔算》这节课是在学生已经掌握了两位数减一位数退位减法的口算,以及两位数减两位数不退位减法和两位数加两位数加法笔算(包括不进位和进位)的基础上进行教学的。学生对于方法、过程已经有了一定的经验。
为了突破难点,我在讲授新知识前充分复习了旧知识,出示了一些十几减几的口算,学生直接抢答,从而从认知上、思维上让学生做好准备。在新知识的传授中,当学生自主得出算式“72-56=”后,继续向学生提出质疑“我们上节课学习的不退位减法个位上6减2是够减的,可今天这道题个位上2减6不够减,怎么办?”在教学时我主要采用让学生合作探究的形式学习新知,并且通过学具的操作与演示,对重点和难点进行层层突破。整节课课堂气氛活跃。我认为我们教师要把学习的主动权交给学生,让他们借助已有的知识经验自己去探索,去发现解决问题的方法。教学中我重视了学生参与学习的过程,“学生是数学学习的主人”,我相信学生,承认学生在教学活动中的主体地位。“72-56”该怎样计算,让学生通过独立思考、实践操作去发现方法。在合作、交流、汇报自己的方法中让学生的思维发生碰撞,达到互相启发、共同进步的目的.。列竖式计算学生也出现了不同的思路,我再次放手让学生独立计算、比较、发现,整个教学过程都突出了学生经历、参与、探讨的过程。
出现的问题:
(1)个别学生相同数位对不齐。这几个学生要进行单独辅导,让他们认清数位,知道数位上的数表示的意义。
果多了十。在教学中还要多做强调与规范。
笔算两位数乘两位数教学设计大全(21篇)篇十一
两位数乘两位数的笔算乘法,学生通过前面学习不进位的笔算乘法,初步了解了乘的顺序及部分积的书写位置,理解笔算的算理。本课教学进位的,是为了进一步让学生经历两位数乘两位数需要进位的笔算过程,从而帮助学生掌握笔算乘法的方法。
两位数乘两位数的笔算是本单元的教学重点。掌握其计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。
“数的运算”在小学数学课程中占有重要的地位。计算教学直接关系着学生对数学基础知识与基本技能的掌握,关系着学生观察、记忆、意志、思维等能力的发展,关系着学生学习习惯、情感、意志等非智力因素的培养。计算能力是每个公民具备的基本素养之一。
学情分析。
“数的运算”在小学数学课程中占有重要的地位。计算教学直接关系着学生对数学基础知识与基本技能的掌握,关系着学生观察、记忆、意志、思维等能力的发展,关系着学生学习习惯、情感、意志等非智力因素的培养。计算能力是每个公民具备的基本素养之一。
教学目标。
1.结合彩笔问题,经历用已有知识解决问题,在口算乘法的基础上,掌握两位数乘两位数(不进位的)笔算乘法计算方法的过程。
2.培养学生的迁移推理能力,掌握其数学学习方法。
3.在与他人交流各自算法的过程中,体验算法多样化,提高学习数学的兴趣。
教学重点和难点。
重点:理解算理的基础上掌握两位数乘两位数(不进位)乘法的计算方法。
难点:理解用一个因数十位上的数去乘另一个因数,得数的末位要与十位对齐的道理。
教学过程:
一、创设情景,导入课题:
1.教师利用多媒体出示画面:学校买了一些彩色笔要奖给数学竞赛获奖的同学,每盒彩色笔24枝。
2.让学生观察情景图,了解图中的数学信息,并根据画面情景提出问题,自己尝试解答。
3.全班交流,进行互评。
学生可能提出两位数乘两位数的乘法,这时就可以沿着这个问题导入新课的学习。如果没有,教师也参加活动,提出问题。
比如:10盒一共多少枝?20盒呢?学生口答,说说你是怎么想的。
4.导入例题,猜测得数。
再问:如果买了12盒呢?学生独立猜测,并记录结果。
二、主动探索,验证结果。
怎么验证你猜测的结果是否正确?(教师引导学生明确应该计算出结果)。
1.教学24×12的算法。
(1)学生利用已有的知识,独立思考解法,并用算式表示出来。(教师巡视,了解学生的解答情况,对有困难的学生进行帮助。)。
(2)明晰计算思路,汇报交流,体验算法多样化。(在电脑上展示学生的算法)以小组为单位汇报,其它小组要认真听,及时补充。(学生的方法里可能有用竖式的方法,如果没有,还需要老师继续引导。)。
(3)讨论哪种方法最简便?
(4)统一认识,确定最简便的方法,引导学生试写成竖式。
(5)针对出现的情况讨论,关键处教师点拨,让学生领悟计算方法。
比如,讨论大头蛙提出的问题:这个“4”为什么写在十位上呢?(看竖式)。
明确:因数12十位上的“1”乘24个位上的“4”得4个十,所以4要写在积的十位上。
(6)练习:如果买了23盒呢?请一名学生板演,其它在本上做。
三、识应用,扩展思维。
1.第39页练一练的第1、3小题。
2.趣味练习。11x1112x1213x13你能发现什么规律嘛?和同学说说吧!
笔算两位数乘两位数教学设计大全(21篇)篇十二
1、理解和掌握两位数与两位数相乘的计算方法,并能正确地进行计算。
3、根据具体题目情景,合理选择解题策略。
经历自主探索、合作交流两位数与两位数相乘的计算过程,体验算法多样化,培养学生的算法思维,提高数学交流能力,逐步养成自觉选择合理算法,发展计算的灵活性。
情感态度与价值观:
调动学生学习的积极性,激发学生学习兴趣,养成自主探索的学习习惯;通过估算,培养学生良好的计算习惯。
自主探究出多种两位数乘两位数的计算方法,并能正确地进行计算。
通过让学生亲身经历两位数乘两位数的计算过程,培养他们的算法思维。
一、情景导入,激发学生学习兴趣。
师:小朋友还记得小动物们在谁跑得快比赛中,谁获得了冠军?今天小牛要主持一场动物团体操比赛。
瞧!小刺猬上场了!每行12只,排了14行,共有多少只小刺猬参加团体操比赛?
二、自主探究。
(一)、探究算法。
1、列式:14×12=。
2、14×12等于多少呢?
(1)学生独立尝试,教师巡视,及时捕捉学生生成性资源,对有困难学生进行指导。
(3)对有意见或有疑惑的算法展开讨论与质疑,在讨论与质疑中引出课题,引出估算,引出范围。
(4)将上述方法进行整理归类(小组讨论)。
(5)同桌说说自己认为那种方法比较方便,最喜欢哪种方法?为什么?
(二)、体会算法;体验不同的题,最优的方法也不同。
交流:你的同桌是怎么算的?(指他的同桌)他又是怎么算的?
师:看来小朋友不但会用自己喜欢的方法来算,而且还能从别人那里学到不一样的方法,很会学习。
2、制造矛盾冲突,引发思考:是不是对每题都能用你觉得喜欢的方法来计算呢?
3、学生自己例举判断(如不行,教师出题:17×29)。
(1)、学生独立计算17×29。
(2)、不同的题,有不同的好方法。
(3)、小结:先要观察题目数字的特点,根据题目数字的特点选择计算起来比较快的好方法。
4、出示25×24。
(1)思考:观察题目数字的特点,对这题你会选择那种方法呢?
(2)计时赛一赛,选前10名,统计不同算法名次。
(3)思考:这是巧合么?是这些同学写字速度快,还是……?
(三)、练习47×7325×3285×16。
三、整理归纳,探究规律。
2、制造矛盾冲突,引发理性思考。
师:两位数与两位数相乘的积一定是三位数或四位数吗?肯定吗?
3、学生展开争论。
4、获得结论。
5、99×99怎样计算会更方便?
四、课堂总结。
笔算两位数乘两位数教学设计大全(21篇)篇十三
一、教材:
1、教学内容及简析:
本课的教学内容是两位数乘两位数的笔算,它是学生在已经掌握了两位数乘一位数和两位数乘整十数的口算的基础上进一步学习的,为后面学习乘数数位是更多位的笔算乘法垫定基础。这部分内容是学生计算方面学习的重要转折点。
2、教学目标:
知识目标:经历探索两位数乘两位数笔算方法的过程,会笔算两位数乘两位数,会用交换乘数位置的方法验算乘法。
能力目标:培养观察力、探究能力、抽象概括能力。
情感目标:获得成功的体验,树立学习的信心。
3、教学重点、难点:
难点:理解乘的顺序及第二部分积的书写方法。
二、教法、学法:
针对这样的教学目标、教学重难点,在教法上,我个人认为,在教学中应当突出学生的主体地位,通过启发、引导、设疑等教学手段及方法进行教学。
在学法指导上,让学生掌握观察、比较、发现、交流、合作等学习方法。
课本中以订牛奶为情境,我进行了改编,以学生献爱心活动为研究题材,贴合学生实际,通过四个环节进行教学:创设情境,激发兴趣;自主探索,研究算法;巩固强化,拓展延伸。
(一)创设情境,以旧引新。
在教学的导入环节,老师充分依据学生原有的知识和经验,从复习两位数乘一位数、两位数乘整十数,在此基础上,再引出两位数乘两位数。老师有意识提问:你想怎样学习新知识?让他们运用已有知识经验将难点转化,以旧知解决新问题,从而渗透数学学习的方法。
(二)自主探索,研究算法。
1、渗透估算意识。教学过程中先让学生估算,再尝试用笔算,这样使估算、笔算有机结合。
2、计算方法的多样化到优化。计算教学,内容比较枯燥乏味。为激发学生的求知欲望,老师通过充分创设问题情境,多种方式体会两位数乘两位数的计算方法。学生可能出现3种情况,情况一:28×6×2;情况二:28×4×3;情况三:28×10+28×2。让学生从不同的角度、运用不同的策略去思考、探索计算的方法,通过比较认识到笔算方法的重要性,从而一起探索竖式计算的方法。
3、注重沟通,理解算理。在师生共同交流中引导学生理解把两位数乘两位数的计算分成三个部分,前面两部分都可以看成是两位数乘一位数、整十数,但着重让学生明确第二次计算的书写,第三部分,将两次计算的结果相加。竖式计算的算理与学生前面的方法是一致的,教师要注重沟通,让学生更好地理解算理,掌握每一步计算的意义。
4、归纳总结。两位数乘两位数的计算方法的叙述对三年级学生来说,有点困难,要求学生根据对算理的理解用自己的话来讲就行了,教师简要的板书为学生提供思考方向。
5、验证结果,提高效率。在笔算中,验算是最好的验证方法。因此,让学生交换48和12的位置再乘一遍,然后引导学生观察:你发现了什么?总结出乘法的验算方法。
(三)有效练习,巩固延伸。
第一组安排的4题不同的练习,主要是让学生在理解的基础上从而进行独立的计算过程,第1题明确得数数字相同意义却是不同的,3、4两题的计算都有向前一位进位的问题,拓展了例题的教学。
第2题纠错题,让学生进一步理解每一步计算的意义。
第3题解决问题部分的设计,是为了增加数学计算的趣味性,让学生觉得数学学习与生活的紧密联系。
第4题是开放性练习,也是提高了计算难度,有基础练习、有提高性的进位练习,自己出题时还有可能两次相乘都有进位。
练习中的习题从不进位到进位,主要是基于这样的考虑,因为对于学生来说,顺序方法都是一样的,进位的问题也是在多位数乘一位数中学过了,对于学生来说,不是新问题,但会感觉有点困难。当然,计算要达到一定的正确率和熟练程度,必须要相当的练习量。
将本文的word文档下载到电脑,方便收藏和打印。
笔算两位数乘两位数教学设计大全(21篇)篇十四
课前构思:
这部分内容是在万以内数的认识以及100以内的加减法的基础上教学的,起着承上启下的作用。口算两位数加减两位数是100以内口算的延续,是在100以内口算和笔算的基础上教学的。这部分内容不仅在实际中应用广泛,而且是以后学习笔算的基础,必须切实学好。教材以“二年级四个班的同学准备去鸟岛乘船”为素材引导学生在现实在情境中提出问题、探究算法,在多种口算方法中选择适合自己的方法正确地进行口算。我班学生对“整十数加减整十数”、“两位数加一位数和整十数”、“两位数减一位数和整十数”的口算掌握得较好,90%的学生能正确、快速地口算,所以我认为这部分知识的学习对他们来说不是一个难题,能通过自已的努力自主探究口算的方法,即使最差的学生也会用想竖式的方法来进行口算。为此我设想采用“创设情境,提出问题——自主探究交流完善——多项训练巩固提高”的程序开展教学。通过教学不仅使学生掌握两位数加两位的口算方法,能正确地口算,培养学生在具体的情境中提出问题的能力、在交流中培养学生的表达能力,并且使学生体验运用“迁移、转化”的方法来解决新问题的数学学习方法。教学目标:
1、知识与能力:使学生在经历两位数加两位数口算方法的探索和交流过程中,掌握其口算方法,并在解决问题过程中,体验数学与生活实际的密切联系,进一步发展解决问题的策略。
2、过程与方法:在复习两位数加一位数,整十数加整十数口算的基础上,经历探索,交流两位数加两位数的口算方法过程。教学方法:合作式学习、探索式学习、小组活动式学习。
2、难点:理解两位数加两位数的算理,进一步强化计算方法,逐步提高计算能力。
一、游戏导入。
(一)猜歌名。
大屏幕上有4组题目,每组有2个算式,只要你回答对了,后面就会有一段音乐,这4组算式都回答出来,并且猜出是什么歌曲,闯关就成功了!成功了会有惊喜哦!
这是什么歌?(郊游)。
(二)说数的组成1.()个十和()个一组成45.2.31由()个十和()个一组成。
二、探索新知。
(一)创设情境,揭示课题。
同学们成功闯关,那这节课老师就要带同学们去郊游了,在郊游之前,我们要来说一说,出去郊游的时候要注意些什么呢?(生自由发言)。
我们要去什么地方郊游啊?二年级这么多人怎么去呢?
嗯,鸟岛在湖中央,所以我们要坐船去,而且老师已经把船都租来了。每条船限乘68人,我租来两条船,怎样乘船比较合理呢?(两个班级合乘一条船)你想让哪两个班合乘一条船?(讨论后设计以下三种方案)。
(1)23+31。
(2)23+32。
(3)23+39。
32+39。
31+39。
要想知道哪种方案最合理,就必须算出每种情况下的乘船总人数,如果总人数接近或等于68人,才能既舒服又省钱得到达目的地。
(二)教学不进位加现在让我妈一起来验证吧!
我们先来看第一种方案:23+31怎样计算?自己先想一想,然后和你的同桌讨论一下,说一说你是怎么算的。(1、相同数位相加的方法。
2、先加整十数,再加一位数的方法。(既把一个数拆为整十数和一位数,再和另一个数分别相加。由于计算顺序不同,所以有以下4种算法。))。
23+31=54,二(1)班和二(2)班可以合乘一条船。
(三)教学进位加。
那我们再来看看二(3)班和二(4)班可不可以合乘一条船呢?
32+39怎么计算?((1、相同数位相加的方法。
2、先加整十数,再加一位数的方法。
3、凑整十数的方法。)。
(四)小结计算方法。
(五)分组验证。
下面请同学们用你们学到的方法计算方案二和方案三的算式。请第一组验证方案二,第二组验证方案三。
指名学生汇报:哪两个班可以合乘一条船。
1、23+31红灯。
2、23+32。
红灯。
3、23+39绿灯。
32+39。
31+39。
31+32。
三、应用与拓展。
(一)乘船问题解决了,快让我们排队上船。船开起来了!
我们一路欢歌笑语,很快来到闻名中外的鸟岛。鸟儿们正列队欢迎我们呢!
快向他们问好吧!
导游告诉我们,在湖中有28种鸟,在湖面的岛上有65种鸟,我想知道一共有多少种鸟呢?(用前面学过的口算方法试一试)。
(二)在我们前面飞来了6只小鸟,它们说:“亲爱的小朋友们,我们迷路了,你们能送我们回家吗?”
17+5836+3227+5451+2439+2933+42。
(三)把小鸟们送回了家,一转眼,我们回家的时间到了。今天你们玩得开心吗?
(四)通过今天的学习,你学会了什么?
学生在已有一位数加一位数、整十数加整十数、两位数加一位数的口算基础,口算两位数加两位数口算对学生而言并不难,本节课的重点就是意在创设情境在激发学生兴趣的基础上,让学生通过自主探究、合作学习,明确算法的多样性,并能通过比较得出最佳的方法,在多种形式的练习中进行巩固,达到能够准确而熟练地进行计算。
在情境创设方面,我始终以学生最感兴趣的旅游为切入点,从出发到结束把数学知识始终贯穿于始终。而数学最注重的说算理,所以在教学中我始终把说理放在首位,让学生既知其然,更要知其所以然。同时我也极力做到把学习的主动权交给学生,让学生在自主探究、合作学习中学到新知。
不足之处,练习题设计还缺少点梯度,这是我今后对应注意改进的地方。
笔算两位数乘两位数教学设计大全(21篇)篇十五
教学内容:人教版三年级下册。
教学目标:1.掌握两位数乘以两位数的不进位乘法的笔算方法(列竖式计算)。
2.理解用第二个因数的十位上的数乘第一个因数得多少个十,乘得的数的末位要和因数的十位对齐。
3.培养学生良好的书写习惯,树立细节决定成败的思想。教学重点1.掌握两位数乘以两位数(不进位)的笔算方法,并会正确计算。2.解决乘的顺序和第二部分积的书写位置问题。
教学过程:
一.创设情境,复习旧知。
师:昨天去书店买书,每套书有14本,那么买3套有多少本?生:14×3=42(本)。
师:那老师如果买10套书,又有多少本?生:14×10=140(本)。
二、探索新知,明确算理:
师:你为什么要这么列?
生:要求有多少本书,也就是要求12个14是多少。
师:说的真不错,请同学们估算一下,14×12大约得多少?
生1:我把12估成10,大约是140本。生2:我把14估成10.大约是120本。生3:我把14和12都估成10,大约有100本。
生:我们都是估小的。
2、师:14×12到底得多少,你能算出准确的答案吗?下面拿出老师给你们准备好的点子图,用黑笔试着在纸上用我们学过的方法来,分一分,圈一圈,算一算。把14×12的结果写出来。
生:独立思考后在纸上写出得数。
4、师巡视,拿出几个同学的做法并投影。
生1:14×4=56(本)56×3=168(本)。
师:先把12分成3个4,再算12乘4,最后算56乘3,这是一个好方法。
生2:14×6=84(本)84×2=168(本)师:这也是一个好方法。
生3:14×10=140(本)14×2=28(本)140+28=168(本)师刚才这几位同学都是通过先分后和的方法,把未知的知识转化成已学的知识来解决新的问题。说明同学们都积极动脑思考了,真棒。
生:用列竖式的方法计算。师:这就是我们今天要学习的内容两位数乘两位数的笔算乘法。现在你们在自己的草稿纸上试着列一列。
师:巡视,请几位同学上台板书。
5、师:请你讲讲你是怎么做的?(生讲计算的过程)。
师:谁跟他的方法相同?你能再讲一遍吗?
师:我把刚才同学们计算的过程整理出来了,想给同学们演示一遍,让我们一起再回顾一次。
师:同学们真了不起,自己通过计算掌握了两位数乘两位数的计算方法。
三、巩固练习,拓展应用:
1.老师来考察一下你们的掌握情况,让我们看看第一关:巧填数字。
2、第一关我们已经顺利的过关了,现在来考察你的眼力,看看第二关:火眼金睛。
3、师:请看第三关:智力冲浪。你们有信心吗?
一本书有300页,如果每天读22页,2周能读完吗?
如果每天读40页,7天能读完吗?
4、师:同学们在这么短的时间里帮村长想出了这么多种方法,真是太感谢了。同时也恭喜同学们顺利过关。
恭喜做对的同学,你们和喜羊羊一起获得了这场智力大比拼的胜利。
四、总结:
师:短暂而愉快的四十分钟转眼就过去了,谁能说说通过本节课的学习你都有哪些收获?
生1:我学会了用竖式进行笔算乘法。
生2:(答略)。
师:其实这节课上同学们表现出了求知的欲望和探索的精神,对你们的表现老师非常满意,希望同学们能在生活中做一个有心人。
笔算两位数乘两位数教学设计大全(21篇)篇十六
两位数乘两位数的笔算乘法,学生通过前面学习不进位的笔算乘法,初步了解了乘的顺序及部分积的书写位置,理解笔算的算理。本课教学进位的,是为了进一步让学生经历两位数乘两位数需要进位的笔算过程,从而帮助学生掌握笔算乘法的方法。
两位数乘两位数的笔算是本单元的教学重点。掌握其计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。
“数的运算”在小学数学课程中占有重要的地位。计算教学直接关系着学生对数学基础知识与基本技能的掌握,关系着学生观察、记忆、意志、思维等能力的发展,关系着学生学习习惯、情感、意志等非智力因素的培养。计算能力是每个公民具备的基本素养之一。
学情分析。
“数的运算”在小学数学课程中占有重要的地位。计算教学直接关系着学生对数学基础知识与基本技能的掌握,关系着学生观察、记忆、意志、思维等能力的发展,关系着学生学习习惯、情感、意志等非智力因素的培养。计算能力是每个公民具备的基本素养之一。
教学目标。
1.结合彩笔问题,经历用已有知识解决问题,在口算乘法的基础上,掌握两位数乘两位数(不进位的)笔算乘法计算方法的过程。
2.培养学生的迁移推理能力,掌握其数学学习方法。
3.在与他人交流各自算法的过程中,体验算法多样化,提高学习数学的兴趣。
教学重点和难点。
重点:理解算理的基础上掌握两位数乘两位数(不进位)乘法的计算方法。
难点:理解用一个因数十位上的数去乘另一个因数,得数的末位要与十位对齐的道理。
教学过程:
一、创设情景,导入课题:
1.教师利用多媒体出示画面:学校买了一些彩色笔要奖给数学竞赛获奖的同学,每盒彩色笔24枝。
2.让学生观察情景图,了解图中的数学信息,并根据画面情景提出问题,自己尝试解答。
3.全班交流,进行互评。
学生可能提出两位数乘两位数的乘法,这时就可以沿着这个问题导入新课的学习。如果没有,教师也参加活动,提出问题。
比如:10盒一共多少枝?20盒呢?学生口答,说说你是怎么想的。
4.导入例题,猜测得数。
再问:如果买了12盒呢?学生独立猜测,并记录结果。
二、主动探索,验证结果。
怎么验证你猜测的结果是否正确?(教师引导学生明确应该计算出结果)。
1.教学24×12的算法。
(1)学生利用已有的知识,独立思考解法,并用算式表示出来。(教师巡视,了解学生的解答情况,对有困难的学生进行帮助。)。
(2)明晰计算思路,汇报交流,体验算法多样化。(在电脑上展示学生的算法)以小组为单位汇报,其它小组要认真听,及时补充。(学生的方法里可能有用竖式的方法,如果没有,还需要老师继续引导。)。
(3)讨论哪种方法最简便?
(4)统一认识,确定最简便的方法,引导学生试写成竖式。
(5)针对出现的情况讨论,关键处教师点拨,让学生领悟计算方法。
比如,讨论大头蛙提出的问题:这个“4”为什么写在十位上呢?(看竖式)。
明确:因数12十位上的“1”乘24个位上的“4”得4个十,所以4要写在积的十位上。
(6)练习:如果买了23盒呢?请一名学生板演,其它在本上做。
(7)师生共同归纳两位数乘两位数(不进位的)笔算方法。
三、识应用,扩展思维。
1.第39页练一练的第1、3小题。
2.趣味练习。11x1112x1213x13你能发现什么规律嘛?和同学说说吧!
笔算两位数乘两位数教学设计大全(21篇)篇十七
本课内容是在学生已经掌握了100以内的口算和笔算的基础上进行教学,学生在知识的掌握上已经不存在困难。而口算速度的快慢,则直接影响着后面笔算知识的掌握程度,甚至会影响后续数学知识的学习。因此,寻找一种简便的口算方式提高口算能力是这节课的重点。同时,我们知道要提高“两位数加两位数”的口算速度,通常要“直接从高位算”起,这样比较符合算式的观察和数的书写顺序。而学生却因为长期受笔算的影响,“直接从个位加起”的算法已经根深蒂固。为了解决这两者之间的矛盾,特意采用了“听算”这样一种口算形式进行教学,让学生在听算的过程中,感悟“直接从高位算起”算法的优越性。
设计理念。
1、联系学生的生活实际,为新知识的学习提供丰富的现实背景。数学与生活有密切的联系,学习内容的呈现应该贴近学生生活,让学生在生动、丰富的背景中学习数学,感受数学与现实的联系,体会数学的价值。因此,本课为计算教学设计了学生跳绳的现实情境,使学生充分感受到计算与生活的联系,同时提高解决实际问题的能力。
2、重视学生已有的知识和经验,注意体现算法多样化。
《数学课程标准》提倡算法多样化,目的是提倡学生个性化的学习,变“学方法”为主动地构建方法。在本课的设计中,让学生在“比一比谁的方法最多”中自主探究,体验算法多样化,在交流、比较的基础上不断地完善自己的想法,1并在练习中感悟最佳的方法,实现方法优化。
3、在开放中合作,在交流中收获。
知识与能力:经历探究两位数加两位数口算方法的过程,能熟练地进行口算;过程与方法:经历算法的多样化和解决问题策略的多样化的探究过程,培养学生根据具体情况选择适当方法解决问题的意识。
教学难点。
课件、教学过程。
一、以旧引新,揭示课题。
1、口算下列各题。课件出示。
指名学生说说结果。
2、说出下列各数的组成。课件出示。
把复习旧知的过程隐含与揭题的过程中,既让学生自然感觉到新旧知识的紧密联系,又让。
2学生初步感知“拆数”的计算方法,为探索新知识作好知识和心理上的准备。
二、创设情景,导入新课。
1、师:课间活动时同学们是不是喜欢跳绳呢?小华、小红和小军他们也喜欢跳绳,我们一起来看看吧。
2、出示主题图。
数学来源于生活,也应用于生活。用贴近儿童实际的“跳绳”的情境导入,容易激发学生的求知欲,激活学生的已有知识和生活经验,使学生能够自主地探究新知,解决问题。
三、收集信息,提出问题。
1、观察主题图,收集信息。
师:从这幅图上你得到了哪些信息?学生观察主题图并收集信息:
生1:小华跳了45下,小红比小华多跳28下。生2:小军比小华多跳23下。
2、提出数学问题并列式。
四、探究算法,学习新知。
(一)计算45+23你是怎么算的?
生:40+20=60,5+3=8,60+8=68。
师:很好!同学们,你看懂了吗?(个位数加个位数,十位数加十位数)还有别的算法吗?生:45+20=65,65+3=68。
师:和他相同的请举手,你是怎么想的呢?说给同桌听一听。再想想,还能怎么算?
3生:23+40=63,63+5=68。„„。
(二)计算45+28师:请你挑选一种你喜欢的方法来算一算,并把想的过程写下来。指名三人上前板演。其他同学反馈:
1、40+20=60,5+8=13,60+13=73。
2、45+20=65,65+8=73。
3、28+40=68,68+5=73。
师:在这么多的算法中,你最喜欢哪一种呢?说说你的理由?学生自由发言。
(小结:这种把数拆开的方法叫拆数法。用拆数法时要选择使计算简便的拆法,并且拆开后从高位开始加起。)。
(三)观察、比较,寻找异同点。师:这两道算式有什么相同的地方呢?生:都是加法。生:这些数都是两位数。
师:那这两道算式有什么不同的地方呢?生:一道是进位的,一道是不进位的。师:同学们很聪明,在口算是要特别注意区别!
提倡算法多样化,实质是尊重学生个性发展,提倡个性化的学习,支持并鼓励学生用自己喜欢的、熟悉的方法去解决问题,让学生在数学学习中张扬个性。但是在张扬个性的同时更应让学生通过对各种方法进行分析、讨论、比较,吸取各种方法的精华,悟出最佳方法。
五、巩固练习,拓展延伸。
1、口算练习。课件出示:
并要求学生尝试从直接从十位算起。
2、判断题。
4课件出示。
要求学生说出错在哪里,正确的结果是什么。
3、其他练习。课件出示购物问题。
让学生根据信息提出问题并解决问题。生自由发言。
师:请用算式表示出来。怎么计算呢?指名说一说。„„。
练习的设计紧紧围绕着教学的目标,针对教学的重难点展开:口算的练习是为了让学生通过计算引发对“直接从十位算起”算法的优势的感悟;解决问题的设计不仅仅是为了让学生体验解决问题策略的多样化,并及时进行优化,还有是为了对“直接从十位算起”算法进行拓展。
六、全课小结。
1、由老师引领学生回顾本节课学了什么?
口算方法。
跳绳问题。
解决方法。
最好方法。
2、让学生畅所欲言,谈谈这节课的收获体会这节课你有什么收获?(想好几句话,说一说。)。
通过回顾和总结对教学内容进行简单的梳理,向学生渗透一种解决问题的策略和数学学习思想,而让学生畅所欲言,说收获谈体会,更能让学生获得成功的体验,增强学好数学的自信。
笔算两位数乘两位数教学设计大全(21篇)篇十八
一、教学目标:
1.知识与技能目标:
(2)、通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
2.过程与方法目标:学生通过观察、猜想、验证、得出结论、提出质疑、完善结论,上孩子们经历一个完整的过程,体验到探究的乐趣,感受数学的魅力。
3.情感态度和价值观目标:学生在自主探究解决问题的过程中,体验成功的喜悦或失败的教训,体会数学在日常生活中的应用价值。
二、教学重难点。
教学重点:让孩子们学会观察、学会思考、敢于质疑,培养探究意识。
教学难点:通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
三、教学方法。
启发诱导法、讲授法、探究法。
四、学习方法。
练习法、探究法、小组交流法、观察法。
五、教学过程:
(一)引入新课。
师:同学们,今天的数学课,我们先从画画开始!
(老师在黑板上画出对称图形的一半)。
师:如果老师画的是整个图形的一半,谁愿意帮老师画出图形的另一半?
(让学生补充完整)。
师:同学们,这位同学画的对吗?是的,图形当中有这样的对称现象!其实,在我们的语言当中也有这样的对称现象。
(老师点击屏幕,出现——好人)。
师:大家想象着:如果在好人的后面也存在着那么一条对称轴的话,根据读音对称应该是:(大家一块说)人好。(点击第二个)我爱你——你爱我蓝天——天蓝,喜欢我——我欢喜,老师希望我们整节课都欢欢喜喜!好,上课!
(二)新课教学。
学生猜想:每组两对称算式的乘积是否相等?(老师复述)如果让你去研究,你就会研究它们的积是不是一样的,对不对?哦,我觉得这是个有价值的问题,我们可以去研究!
哎,我想问一问同学们,你们学过估算吗?对于这位同学提出的问题,我们可以先用估算来试试看!
生1:第一组算式,可以把21看作20,36×20=720;把63看作60,12×60=720,两道算式的得数相等。
生2:如果把21看作20、36看作40,20×40=800;把63看作60、12看作10,60×10=600,两道算式的得数不相等。
生3:我想把每个数都往小了估:如果把21看作20、36看作30,20×30=600;把63看作60、12看作10,60×10=600,两道算式的得数相等。
生:笔算。
那同学们还等什么,拿出你手中的笔和纸,选择其中的一组,算一算,好吗?(学生练习)算好的。可以坐直,心里已经有结论的,我们先把笑藏在心里。
看到同学们都算的这样认真,我心里非常感动,同学们,我们只有准确的计算,才能得到正确的结论。
(学生交流计算结果)那通过我们的计算,你们能得出什么结论?
(如果孩子们得不出结论,让提出猜想的孩子复述他的猜想)。
(学生得出结论)对称算式的乘积是相等的!(电脑呈现结论):
(老师反问)同学们现在都相信这个结论吗?相信吗?我再问一问,有没有人怀疑这个结论的?要不,老师再写一个试一试,好不好?(老师又写了一个算式62×39),孩子们写出了对称算式,并通过计算,得出结论依然正确。
老师:现在还有没有怀疑的?看来同学们对这个结论已经深信不疑了。像刚才那样通过几个例子得出结论的方法叫做“不完全归纳法。”
故事是这样的:有一个主人买回了一只公鸡,第一天,主人给公鸡为了一把大米,第二天,主人仍然给公鸡为了一把大米,到了第三天,主人依旧给公鸡为一把大米,主人每天都给公鸡一把大米,连续给了九十九天,公鸡每天都会从主人那儿得到一把大米,此时,公鸡想:我每天都会从主人那儿得到一把大米,可是结果却不在美丽,到了第一百天,家里来了客人,公鸡没有再得到那把大米,而是被主人杀了。
好了,同学们,公鸡通过九十九天的得到的结论居然是错误的,是的,不完全归纳法,有时能得到正确的结论,而有时得到的结论却是错误的,后来人们把不完全归纳法得到错误结论的那一种情况戏称为“公鸡归纳法”。
师:好了,现在我想问一问大家:你们对这个结论还深信不疑的请坐直,有怀疑的请举手?
(大部分孩子都举手)怎么现在个个都怀疑了?为什么都怀疑了?如果你怀疑了,请说出你的理由!
(一个孩子举例说明14×16不等于61×41)。
师:同学们,某某某不仅提出了质疑,而且他还在举例子,如果他举得例子是特殊的。你们试一试,看能不能找到一个反例!(同学们拿出笔试着举例)同学们,你们找到反例了吗?其实。我们只要找到一个反例,是不是就可以推翻刚才的结论,哎呀,我看到同学们兴奋地眼神了,如果你真找到反例了,你可以先和你的同桌交流交流了!我看到每个人都在交流,我让几个同学来和大家分享一下!
提问:(一个孩子举例)46×61不等于16×64。
我看到已经有同学举起了智慧的手!
(小组之间进行讨论)我发现一些同学已经有想法了,难道老师写的算式里真有一些秘密呀?(学生交流发现的秘密)这位同学说:老师写的算式都符合十位上的数乘十位上的数等于个位上的数乘个位上的数,真的是这样吗?(老师同学一块验证)。
师:那大家既然已经发现了这个秘密,那你们觉得我们这个结论该怎么改才能完善?(学生补充,老师总结)。
得出结论:十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等。
师:现在大家对于这个结论,你们怀疑吗?如果还有怀疑,怎么办?大家商量商量,再举例验证。
……。
好了,同学们,思考是美丽的,看到同学们都能认真的思考。我很欣慰!我想,同学们心里可能都在想:这个结论到底正确与否?为什么会是这样?在乘法中怎么会有这么有趣的现象?在除法中、加法中、减法中是不是也有一些有趣的现象等待我们去发现?还有多少问题等待我们去探索、去研究,希望同学们在以后的数学学习中,都能带着这种精神,真正走进我们的数学世界!
笔算两位数乘两位数教学设计大全(21篇)篇十九
1、掌握进位的两位数乘以两位数的'计算方法,并能正确的进行计算。
2、在交流中,培养同学的合作意识,并能有条理的表达自己的想法。
3、主动参与新知识的学习与活动,增强对数学学习的成功与体验。
:小黑板。
一、复习铺垫。
笔算。
133945。
×12×6×5。
指名学生上讲台进行板演,找同学进行检验。
二、自学尝试小组交流。
1、学生观察信息窗2情景图。
师:节日期间,街心花坛装扮的异常美丽,请仔细观察画面,你知道了什么:
1.“保护环境”花坛每排27盆花,共23排。
2.“美化家园”花坛每排22盆花,。共28排。
3.街心喷泉每排有43个喷头,共32行。…………。
师:同学们观察的真仔细,发现了这么多的数学信息,真了不起!根据这些信息,你能发现哪些数学问题?和你组里的小伙伴交流一下。
学生根据信息,可能会提出以下问题:
“保护环境”花坛一共用了多少盆花?
“美化环境”花坛一共用了多少盆花?
喷泉里一共装了多少个喷头?…………么?
我们先来解决第一个问题。保护环境花坛一共用多少盆花?你想怎样做呢?学生自己尝试列出竖式进行解决,解决好以后,在小组内进行交流自己做题的步骤,同学之间互相进行说一说,找同学到黑板上进行板演并进行讲解,下面同学有什么疑问,进行提问,学生进行质疑,同学进行解答。有的同学用了估算的方法。
三、点拨升华。
教师再进一步指着竖式对学生提出问题,让学生进一步明确,两位数乘两位数的笔算方法:
1、先用第二个因数的个位去乘第一个因数,得数末尾与第一个因数的个位对齐。
四、巩固练习。
1、出示小黑板让学生分组进行练习,每组中的2号同学到小黑板上进行计算,各组的组长进行判断。统计做对题的人数。
2、做书上的练习题,自主练习的第3、4、5、题。
让每组中的3号同学到黑板上进行展示。集体进行纠正。
五、课堂小结。
这节课学习了什么?在计算过程中要怎样做?
笔算两位数乘两位数教学设计大全(21篇)篇二十
教学目标:
知识与技能:
1、理解和掌握两位数与两位数相乘的计算方法,并能正确地进行计算。
3、根据具体题目情景,合理选择解题策略。
过程与方法:
经历自主探索、合作交流两位数与两位数相乘的计算过程,体验算法多样化,培养学生的算法思维,提高数学交流能力,逐步养成自觉选择合理算法,发展计算的灵活性。
情感态度与价值观:
调动学生学习的积极性,激发学生学习兴趣,养成自主探索的学习习惯;通过估算,培养学生良好的计算习惯。
教学重点:
自主探究出多种两位数乘两位数的计算方法,并能正确地进行计算。
教学难点:
通过让学生亲身经历两位数乘两位数的计算过程,培养他们的算法思维。
教学过程:
一、情景导入,激发学生学习兴趣。
师:小朋友还记得小动物们在谁跑得快比赛中,谁获得了冠军?今天小牛要主持一场动物团体操比赛。
瞧!小刺猬上场了!每行12只,排了14行,共有多少只小刺猬参加团体操比赛?
二、自主探究。
(一)、探究算法。
1、列式:14×12=。
2、14×12等于多少呢?
(1)学生独立尝试,教师巡视,及时捕捉学生生成性资源,对有困难学生进行指导。
(3)对有意见或有疑惑的算法展开讨论与质疑,在讨论与质疑中引出课题,引出估算,引出范围。
(4)将上述方法进行整理归类(小组讨论)。
(5)同桌说说自己认为那种方法比较方便,最喜欢哪种方法?为什么?
(二)、体会算法;体验不同的题,最优的方法也不同。
交流:你的同桌是怎么算的?(指他的同桌)他又是怎么算的?
师:看来小朋友不但会用自己喜欢的方法来算,而且还能从别人那里学到不一样的方法,很会学习。
2、制造矛盾冲突,引发思考:是不是对每题都能用你觉得喜欢的方法来计算呢?
3、学生自己例举判断(如不行,教师出题:17×29)。
(1)、学生独立计算17×29。
(2)、不同的题,有不同的好方法。
(3)、小结:先要观察题目数字的特点,根据题目数字的特点选择计算起来比较快的好方法。
4、出示25×24。
(1)思考:观察题目数字的特点,对这题你会选择那种方法呢?
(2)计时赛一赛,选前10名,统计不同算法名次。
(3)思考:这是巧合么?是这些同学写字速度快,还是……?
(三)、练习47×7325×3285×16。
三、整理归纳,探究规律。
2、制造矛盾冲突,引发理性思考。
师:两位数与两位数相乘的积一定是三位数或四位数吗?肯定吗?
3、学生展开争论。
4、获得结论。
5、99×99怎样计算会更方便?
四、课堂总结。
笔算两位数乘两位数教学设计大全(21篇)篇二十一
一、教学目标:
1.知识与技能目标:
(2)、通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
2.过程与方法目标:学生通过观察、猜想、验证、得出结论、提出质疑、完善结论,上孩子们经历一个完整的过程,体验到探究的乐趣,感受数学的魅力。
3.情感态度和价值观目标:学生在自主探究解决问题的过程中,体验成功的喜悦或失败的教训,体会数学在日常生活中的应用价值。
二、教学重难点。
教学重点:让孩子们学会观察、学会思考、敢于质疑,培养探究意识。
教学难点:通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。
三、教学方法。
启发诱导法、讲授法、探究法。
四、学习方法。
练习法、探究法、小组交流法、观察法。
五、教学过程:
(一)引入新课。
师:同学们,今天的数学课,我们先从画画开始!
(老师在黑板上画出对称图形的一半)。
师:如果老师画的是整个图形的一半,谁愿意帮老师画出图形的另一半?
(让学生补充完整)。
师:同学们,这位同学画的对吗?是的,图形当中有这样的对称现象!其实,在我们的语言当中也有这样的对称现象。
(老师点击屏幕,出现——好人)。
蓝天——天蓝,喜欢我——我欢喜,老师希望我们整节课都欢欢喜喜!好,上课!
(二)新课教学。
学生猜想:每组两对称算式的乘积是否相等?(老师复述)如果让你去研究,你就会研究它们的积是不是一样的,对不对?哦,我觉得这是个有价值的问题,我们可以去研究!
哎,我想问一问同学们,你们学过估算吗?对于这位同学提出的问题,我们可以先用估算来试试看!
生1:第一组算式,可以把21看作20,36×20=720;把63看作60,12×60=720,两道算式的得数相等。
生2:如果把21看作20、36看作40,20×40=800;把63看作60、12看作10,60×10=600,两道算式的得数不相等。
生3:我想把每个数都往小了估:如果把21看作20、36看作30,20×30=600;把63看作60、12看作10,60×10=600,两道算式的得数相等。
生:笔算。
那同学们还等什么,拿出你手中的笔和纸,选择其中的一组,算一算,好吗?(学生练习)算好的。可以坐直,心里已经有结论的,我们先把笑藏在心里。
看到同学们都算的这样认真,我心里非常感动,同学们,我们只有准确的计算,才能得到正确的结论。
(学生交流计算结果)那通过我们的计算,你们能得出什么结论?
(如果孩子们得不出结论,让提出猜想的孩子复述他的猜想)。
(学生得出结论)对称算式的乘积是相等的!(电脑呈现结论):
(老师反问)同学们现在都相信这个结论吗?相信吗?我再问一问,有没有人怀疑这个结论的?要不,老师再写一个试一试,好不好?(老师又写了一个算式62×39),孩子们写出了对称算式,并通过计算,得出结论依然正确。
老师:现在还有没有怀疑的?看来同学们对这个结论已经深信不疑了。像刚才那样通过几个例子得出结论的方法叫做“不完全归纳法。”
故事是这样的:有一个主人买回了一只公鸡,第一天,主人给公鸡为了一把大米,第二天,主人仍然给公鸡为了一把大米,到了第三天,主人依旧给公鸡为一把大米,主人每天都给公鸡一把大米,连续给了九十九天,公鸡每天都会从主人那儿得到一把大米,此时,公鸡想:我每天都会从主人那儿得到一把大米,可是结果却不在美丽,到了第一百天,家里来了客人,公鸡没有再得到那把大米,而是被主人杀了。
好了,同学们,公鸡通过九十九天的得到的结论居然是错误的,是的,不完全归纳法,有时能得到正确的结论,而有时得到的结论却是错误的,后来人们把不完全归纳法得到错误结论的那一种情况戏称为“公鸡归纳法”。
师:好了,现在我想问一问大家:你们对这个结论还深信不疑的请坐直,有怀疑的请举手?
(大部分孩子都举手)怎么现在个个都怀疑了?为什么都怀疑了?如果你怀疑了,请说出你的理由!
(一个孩子举例说明14×16不等于61×41)。
师:同学们,某某某不仅提出了质疑,而且他还在举例子,如果他举得例子是特殊的。你们试一试,看能不能找到一个反例!(同学们拿出笔试着举例)同学们,你们找到反例了吗?其实。我们只要找到一个反例,是不是就可以推翻刚才的结论,哎呀,我看到同学们兴奋地眼神了,如果你真找到反例了,你可以先和你的同桌交流交流了!我看到每个人都在交流,我让几个同学来和大家分享一下!
提问:(一个孩子举例)46×61不等于16×64。
我看到已经有同学举起了智慧的手!
(小组之间进行讨论)我发现一些同学已经有想法了,难道老师写的算式里真有一些秘密呀?(学生交流发现的秘密)这位同学说:老师写的算式都符合十位上的数乘十位上的数等于个位上的数乘个位上的数,真的是这样吗?(老师同学一块验证)。
师:那大家既然已经发现了这个秘密,那你们觉得我们这个结论该怎么改才能完善?(学生补充,老师总结)。
得出结论:十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等。
师:现在大家对于这个结论,你们怀疑吗?如果还有怀疑,怎么办?大家商量商量,再举例验证。
……。
好了,同学们,思考是美丽的,看到同学们都能认真的思考。我很欣慰!我想,同学们心里可能都在想:这个结论到底正确与否?为什么会是这样?在乘法中怎么会有这么有趣的现象?在除法中、加法中、减法中是不是也有一些有趣的现象等待我们去发现?还有多少问题等待我们去探索、去研究,希望同学们在以后的数学学习中,都能带着这种精神,真正走进我们的数学世界!
文档为doc格式。