倒数的认识教学设计与评析(优质17篇)

时间:2025-08-31 作者:碧墨

教学计划是教师按照教育要求和学生实际情况编制的一份指导教学的详细计划。紧接着是几份值得借鉴的教学计划范文,希望对大家有所帮助。

倒数的认识教学设计与评析(优质17篇)篇一

教学内容:六年级上册第二单元倒数的认识。

教学目标:

1、使学生理解倒数的意义,掌握求倒数的方法。

2、提高学生观察、比较、、概括的能力。

3、感悟“变通”的数学思想。

教学重点:倒数的意义与求法。

教学难点:理解“互为”的意义,明确倒数只是表示两个数间的关系。

教学程序:

一、激趣导入,揭示课题。

(生:上下两部分调换了位置,变成了另一个字)。

师:对了,上下两部分倒过来了,变成了另一个字,这个现象很有趣很奇妙吧!

再出示“吴”,让学生得出“吞”。

二、引导质疑,自主探究。

1、引导质疑。

生:什么是倒数?

生:倒数是指一个数吗?

生:倒数应该怎样表述?

生:怎样求倒数?

生:倒数是不是一定是分数?

生:倒数有什么用?

生:是不是每个数都有倒数?...........

2、游戏比赛,理解倒数的意义。

师:同学们想探究的知识还真不少,在研究这些问题之前,我们先来一项比赛,好不好?

好,请大家准备好课堂练习本,请你写出乘积是1的乘法算式,同样的算式不能重复,而且还要书写规范,写得字迹潦草的不算数。时间1分钟。

准备好了吗?开始……。

师:时间到,停!举手的方式比一比谁写得最多。让他把写的算式念出来,和大家共同分享。

(生读,师有选择的板书在黑板上。)。

师:这么短的时间内就能写出这么多乘积是1的两个数,不错。

师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?

生:无数个。

师:为什么能写这么多呢?你们有什么窍门吗?

生:因为我们所写的这两个数的乘积都是1。将其中一个分数的分子分母颠倒就能写出另一个数。

3、揭示倒数的意义。

师:请同学们观察这些算式,小组内互相说一说它们有什么共同的特点?

生可能回答:乘积都是1;两个因数的分子分母颠倒了位置。。。。。。

师归纳总结:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来竟有如此重大的发现,平凡之中见伟大,像符合这种规律的两个数叫做什么数呢?请同学们阅读课本第24页例1,并找出倒数的意义。

师板书:乘积是1的两个数互为倒数。

你认为哪个词非常重要?你是如何理解“互为”的?生回答。

(小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的`。)。

强调:(1)乘积必须是1。

(2)只能是两个数。

(3)倒数是表示两个数的关系,它不是一个数。

4、小组探究求一个倒数的方法。

师:同学们知道了什么是倒数,你能求出一个数的倒数?

请大家打开课本第24页,自学例题2。可以同桌之间相互交流一下自学的感想和遇到的困惑。

小结:如何求一个数(0除外)的倒数,把这个数的分子和分母调换位置。如果这个数是带分数或者是小数,先把这个数化成分数再求倒数。

三、巩固练习,内化提高。

1、判断题。

2、真分数的倒数、假分数的倒数、分数单位、整数的倒数的特殊现象。

师:出示一组真分数。请大家拿出练习纸,先找出下面每组数的倒数,再看看你能发现什么。

交流发现:

师:第一组数的倒数各是多少,你们有怎样的发现?谁愿意上来展示一下。

(的倒数是,的倒数是,的倒数是,这组分数都是真分数,它们的倒数都是假分数。)。

师:是不是所有真分数的倒数都是假分数?

(出示结论:所有真分数的倒数都是假分数)。

师:第二组(这组分数都是假分数,它们的倒数都是真分数。)。

师:是不是说所有假分数的倒数都是真分数?(不是所有的假分数的倒数都是真分数,如果假分数的分子和分母相同,它的倒数就仍然是假分数。)。

师:你说的就是等于1的假分数。而第二组中的分数都是什么样的假分数?

(都是大于1的假分数。)。

所以——(卡片结论:大于1的假分数的倒数都是真分数。)。

师:第3组呢?(这组分数的倒数都是整数。)。

这组分数有什么特点?(分子都是1,即分数单位)而它们的倒数都是(整数)(出示结论:分数单位的倒数都是整数)。

师:第四组呢?(……这组都是整数,整数的倒数都是分子为1的真分数。)。

师:是不是所有整数的倒数都是分数单位?

(出示:非零整数的倒数都是分数单位)。

师:通过大家的研究,我们发现倒数有这样的规律——(齐读)。

四、总结反思,发展能力。

师:今天我们学习了倒数的有关知识,请同学回忆一下你们是怎样学习的?

师:你能用“我学会了--”来描述今天学到的知识吗?

生:.......

五、学科融合。

接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客”,这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。

后来民间有人对出了绝妙的下联:“僧游云隐寺,寺隐云游僧”。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。

倒数的认识教学设计与评析(优质17篇)篇二

教学目标:

(1)理解倒数的意义,掌握求倒数的方法。

(2)会求一个数的倒数,培养学生阅读理解的能力,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。

教学重点:理解倒数的意义和怎样求倒数。

教学难点:正确理解倒数的意义及0为何没有倒数。

知识点:倒数的意义、导数的求法。

教学过程:

一、导入。

1、出示汉字“吞”“杏”,问:这是什么结构的字?交换上下两部分,观察是什么字?

2、汉字真奇妙,把一个字的上下部分交换就可能会变成另外一个我们认识的字,其实,在数学里也有这种奇妙的现象!

二、新授。

1、出示分数,你能照刚才的操作方法,写出另外一个分数吗?你是怎么做的?

2、学生在本子上写出一组有这种特点的分数,请生说一说,多请几人说,老师板书。

3、迅速地算出这两个数的乘积,比比看谁算的快!

4、讨论:通过刚才的计算你发现了什么?

5、交流讨论结果,老师板书。(乘积是1两个数)。

6、师由此引出倒数的意义,并出示课题,生齐读倒数的意义。

追问:(1)怎样的两个数才能称互为倒数?你是怎么理解“互为”倒数的?举例说一说你是怎么理解的。

如果学生说不出来,可由老师先说,然后学生再说(利用刚才黑板上的例子多说几个)。

(2)说说看,刚才这几组数为什么互为倒数。

7、出示例题:写出和的倒数。

8、学生讨论倒数的写法,然后再写出这两个分数的倒数(两名学生板演)。

(1)说说你是怎样想的。

(2)注意倒数的写法,部分学生会用“等号”表示。

(3)小结出求一个倒数的方法。

有没有补充?你是怎么想的?

讨论并交流出0不能做倒数的两种原因并完善求倒数的方法。

(4)板书,生齐读。

9、口答出和6的倒数。

10、完成书上的练一练。

三、练习。

1、练习六第一题(口答并用今天所学的知识,用因为所以说几句话)。

第三题。

2、综合练习。

的倒数是()。和()互为倒数。

()的倒数是5。()和互为倒数。

1的倒数是()。()没有倒数。

3、那你能写出2、0.8的倒数吗?

学生思考,说一说,并说出自己是如何想的?

小结:求带分数的.倒数,先要把带分数化成假分数,再调换分数分子与分母的位置,求出倒数。求小数的倒数,一般先要把小数化成分数,再求出倒数。

4、练习六第4题。

先找出每组数的倒数,再看看你能发现什么?

(1)每个人在书上先写出各数的倒数;。

(2)同桌选一组数,观察原来的数有什么特点,再观察它们的倒数有什么特点?

全班交流,看看你们能发现什么?

5、练习六第5题。

6、判断。

1、乘积是1的两个数互为倒数。(如果改成得数是1,行不行?)。

2、5/2×2/5=1,所以5/2是倒数。(那你打算怎么改?)。

3、因为1的倒数是1,所以0的倒数是0。(你是怎么分析这句话的)。

4、0.25和4互为倒数。(说出你是怎么想的?你能再举一个这样的例子吗?)。

5、所有真分数的倒数都比1大。(由这句话你还想到了什么?)。

四、总结。

本节课你有什么收获?

倒数的认识教学设计与评析(优质17篇)篇三

倒数是北师大版五年级数学下册的内容,这部分内容实在分数乘法计算的基础上进行教学的,通过观察乘积是1的几组数的特点,引导学生认识到数,为后面学习分数除法做准备,它是分数计算的关键,他沟通了分数乘法和除法的计算,骑着承前启后的作用。

学情分析。

倒数这一节内容对学生来说非常陌生,以前从没有接触过,但是这节内容,对于五年级的学生来说非常简单,以为经过四年的学习,他们已经具备了分析问题和解决问题的能力,会很容易学会的。

教学目标:

1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

2、进一步培养学生的自主学习能力,提高学生观察、比较、概括以及合作学习的能力。

3、提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:概括倒数的意义与求法。

教学难点:理解“互为”、“倒数”的含义。

教学过程:

一、谈话引入。

师:同学们,当美国人碰到好朋友的时候,会热情拥抱,那我们中国人一般会怎样做呢?

生:握手。

师:现在谁愿意来前面和老师握握手?他就会成为老师最好的朋友。

(师生共同表演握手的动作)。

师:握手是几个人的事情呢?

生:两个人。

生:“互相成了朋友”就是说我们是老师的朋友,老师也是我们的朋友。

师:同学们,前面我们学习了分数的乘法,今天老师给出一些乘法算式,比一比谁能最先发现这组算式的秘密。(拿出作业本帮助你)。

二、引导探究,掌握方法。

1、举例观察,讨论。(2/5的倒数)。

师:怎样求一个数的倒数呢?

生:分子分母交换位置。

师生共同总结:一个分数的倒数就是把这个分数的分子分母交换位置。

2、小组讨论,探究求整数的倒数的方法。

师:2的倒数怎么求呢?

生:把2看成分母为1的分数,即2=2/1,所以2的倒数是1/2。

(师生共同总结:整数的倒数是用1做分子,用这个整数做分母。)。

三、巩固练习,拓展外延。

1、出示“1/5,3/4,5/9,1,3/7,9/5,4/3,7/3”八个数,请学生移动数的位置,找出几组互为倒数的数。

2、剩下“1/5和1”,分别求出1/5的倒数和1的倒数。

3、1的倒数是几?(1的倒数是1。)你是怎样计算的?

(1)整数的倒数是用1做分子,用这个整数做分母。所以1的倒数为1。

(2)因为1×1=1,所以1的倒数为1。

4、0也是整数,0的倒数是几呢?

(1)出示0×()=1。谁上来填一填?(没人举手)。

师:0乘任何数都不得1,这说明了什么?

生:0没有倒数。

(2)如果把0看成分母为1的分数,即为0/1,那么它的倒数应是1/0。

师:这样说可以吗?

生:不可以,因为0不以做分母。

5、真分数的倒数是假分数,假分数的倒数是真分数。那么带分数呢?

(先把带分数化成假分数,再求它的倒数。)。

6、小数有倒数吗?

(1)把小数化成分数,再求它的倒数。

(2)举例说明:因0.25×4=1,所以说0.25和4互为倒数。

四、深化练习,巩固提高。

1、填空。

(1)乘积是()的两个数互为倒数。

(2)()的倒数是它本身,()没有倒数。

(3)27/100的倒数是(),25/16的倒数是()。

(4)0.7的倒数是()。

六、全课小结。

同学们,今天这节课你有什么收获?

板书设计。

倒数。

乘积是1的两个数互为倒数。

求一个数(0除外)的倒数,就是将分子、分母交换位置。

1的倒数是1;0没有倒数。

倒数的认识教学设计与评析(优质17篇)篇四

教学内容:

教科书第50页例7及相应的练习。

教学目标:。

1、使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。

2、培养学生举例、观察、比较、抽象概括能力。

3、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。

一、口算导入。

师:今天,我们就一起来研究乘积是1的这一类算式。同学们,你能自己写一些乘积是1的算式吗?老师给你30秒时间,看看哪位同学写得既对又多。

展示个别学生作品,大家写的算式都有一个共同点:(乘积是1)。(板书)。

师:乘积是1的两个数到底存在什么样的关系呢?请大家把书翻到第50页,自学。

指名回答,(乘积是1的两个数互为倒数。)(板书)相机揭示课题(认识倒数)(板书)。

二、教学新课。

师:你认为在这一句话中有哪些词比较关键?师划出,逐一解读。先强调乘积及1.

(1)问:“互为”是什么意思?(互相)。

一个人能说互相吗?互相肯定是发生在(两个人之间)。所以,“互为”二字充分说明了倒数应该是(两个数)之间的关系。

(2)(结合学生的算式:)比如乘()等于1,所以()和()互为倒数,也可以说(a)是(b)的倒数或者(b)是(a)的倒数。

(3)观察互为倒数的两个数,看看它们的分子、分母有什么特点?指名回答。

(4)指名学生结合另外的算式说说谁是谁的倒数。问:我们能单独说()是倒数吗?对啊,倒数相互依存的,这种存在相互依存关系的数,我们在五年级时就学习过,大家还记得吗?(倍数、因数)。

(5)选择一个算式,跟你的同桌说说谁是谁的倒数。

三、求一个数的倒数。

1、刚才,你们在短时间内写出了很多乘积是1的算式,在设计这些乘法算式时有什么窍门吗?指名回答(先写一个分数,再把这个分数的分子和分母倒一下,就是另一个因数了。)。

为什么要把分子分母倒一下呢?(倒了之后,分子和分母就可以互相约分,使得数是1)。

讨论到这里,你知道怎样求一个数的倒数了吗?指名回答。大家同意吗?

2、师:同学们已经学会了求真分数、假分数的倒数,想一想,我们还学过哪些数?(整数、小数、带分数)那么,怎样求整数、小数、带分数的倒数呢?列出几个数:

自主探究。

a四人为一小组,选择一种情况研究。

b生交流汇报,师板书例子。

c引导概括求倒数的方法。

3、同学们真棒,通过自己的探索,学会了求一个数的倒数。那么有没有同学知道1的倒数呢?为什么?(1可以看成1/1,所以倒数仍是1,或者1×1=1)(板书)。

那0的倒数呢?为什么?指名回答(0乘任何数都得0,即0乘任何数都不可能等于1.)(板书)。

4、归纳如何求一个数的倒数。

求一个数的倒数(0除外),只要把它的分子、分母交换位置。

5、师:学了那么多,下面就让我们一起来练一练吧(书本50页,练一练)。

展示,核对,强调互为倒数的两个数之间不能用“=”连接。

倒数的认识教学设计与评析(优质17篇)篇五

学情分析:

本班级学生在学习本课时内容时,已经学会了分数乘法的计算,在具备分数乘法计算能力的基础上进行学习《倒数的认识》,我相信本班级学生能顺利地完成这一课时内容的学习,且学会这一课时也将为以后学习分数除法打下坚实的基础。

教学目标:

1、理解倒数的意义,掌握求倒数的方法,并能正确、熟练地求出一个数的倒数。

2、在充分的观察、思考、分析、讨论活动中,培养学生的思维能力和灵活解决问题的能力。

3、通过本节课的学习,激发学生学习数学的兴趣,让学生体验成功的快乐。

教学重难点:

重点:倒数的意义与求法。

难点:1、0的倒数,整数、小数、带分数的倒数的求法。

教具准备:课件(或练习张贴纸)。

教学过程:

一、揭示倒数的意义。

同学们,我们已经学会了分数乘法的计算。这节课我们将运用分数乘法的知识去解决新的问题,大家有信心学好吗?请看大屏幕。课件依次展示(一).(二):

(一)同学们认识以下各组汉字吗?请仔细观察每组汉字,你有何发现?

吴——吞杏——呆干——士。

(二)仔细观察下列各组算式,再进行计算。

(三)计算过后,你们发现了什么?

(四)指出今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?

答后组织学生进行一场写乘积是1的任意两个数的算式的比赛。(限时1分钟)。

(五)学生汇报,教师有选择地进行板书。

对学生的学习成果加以肯定表扬。进而追问:

1,如果给你们充足的时间,你们还能写出多少个这样的乘法算式?(指名让学生回答)。

2,那么你们是根据什么条件写出这么多的算式呢?(思考后指名让学生回答并集体交流订正。)。

(六)揭示倒数的意义:刚才同学们所写的两个数的乘积都是1。像这样乘积是1的两个数,我们把它们称之为互为倒数。

板书:乘积是1的两个数叫做互为倒数。(生齐读,师让生划出关键词进行交流熟记。)。

(七)举例说明倒数的意义。

1,黑板上所写的两个数的乘积都是1,所以它们互为倒数。比如和乘积是1,我们就说和互为倒数,或的倒数是、是的倒数。

板出:和互为倒数的倒数是是的倒数。

2,为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?(思考后指名学生回答)。

3,指出倒数是表示两个数之间的关系,它们是相互依存的,所以必须说一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?(预设:约数和倍数。)。

4,举例引导学生认识今天学习的倒数与约数、倍数一样都是表示两个数之间的关系,必须是相互依存,而不能独立地存在。5和的积是1,我们就说……(生说)×=1,这两个数的关系可以怎么说?(生说)。

5,同学们都学得不错,现在老师要考考大家是不是真正理解了倒数的意义。

(八)课件出示测试题。

1、判断。

1.得数是1的两个数叫做互为倒数。()。

2.因为10×=1,所以10是倒数,是倒数。()。

3.因为+=1,所以是的倒数。()。

2、口答练习。

1×=1×()=1×()=1×()=1。

下面哪两个数互为倒数。(连线)注:以下为例7学习内容。

二、探索求一个数的倒数的方法。

(一)引导观察,发现特征:

1,我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起观察一下刚才的这些例子,看有何发现?(观察后指名学生回答)。

2、指出分子和分母调换了位置,相乘时分子和分母就可以完全约分,得到乘积是1。

3、根据这一特点你能写出一个数的倒数吗?

4、试一试:写出、的倒数。(完后指名板演,集体交流订正)。

5、引导小结:求一个数的倒数的方法,只要把分数分子分母调换位置。

(二)思考讨论,延伸运用:1,除了真假分数外,其它数的倒数你们能写出来吗?

2,课件出示讨论题:

(1)18的倒数是什么?1的倒数是什么?0的倒数呢?

(2)的倒数是什么?

(3)0.2的倒数是什么?

3,练习:写出下列各数的倒数:

8370.31.2。

4,我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。(生思后指名说)。

5,引导总结:求一个分数的倒数,只要把分子分母调换位置。如果是求一个带分数的倒数时要先化成假分数;求一个小数的倒数时要先化成分数(最简分数);求一个整数(0除外)的倒数时,可以把这个整数看成分母是1的分数;然后再调换分子分母的位置。(让生齐读)。

三、练习巩固,加深认识。

1、请打开课本p50阅看,把你认为重要的划起来读一读。

2、完成“练一练”。

写出下面各数的倒数。

8

(1)完后问学生的倒数可以这样写吗?=。(预设:1除外互为倒数的两个数是不会相等的。)。

(2)师:我们在书写时要写清谁是谁的倒数,或谁的倒数是谁。

3、先说说下面每组数的倒数,再看看你能发现什么?

(1)的倒数是();的倒数是();的倒数是();

(2)的倒数是();的倒数是();的倒数是();

(3)的倒数是();的倒数是();的倒数是();

(4)3的倒数是();9的倒数是();14的倒数是();

4、填空。

7×()=×()=()×=0.17×()=1。

5、独立完成课本p51练习十第1-6题,师巡视。完后师问生答进行对照,共同订正。

四、课堂总结:今天我们学会了什么知识?还有不理解的地方吗?

五、布置作业:练习十第2、3题。

倒数的认识教学设计与评析(优质17篇)篇六

教学内容:教科书第24页例1、例2及做一做。

教学目标:

1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。

2、培养学生观察、归纳、推理和概括的能力。

教学过程。

一、创设活动情景,引入概念。

出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。(通过计算,发现每组算式的乘积都是1.通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)。

师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。

让学生读一读:倒数。

出示倒数的意义:乘积是1的两个数互为倒数。

二、探究讨论,深入理解。

让学生说说对到数意义的理解。

提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)。

判断下面的句子错在哪里?应该怎样叙述?

因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。

三、运用概念,探讨方法。

出示例2,找一找那两个数互为倒数?

汇报找的结果,并说一说怎样找到的?

1,看两个分数的乘积是不是1;

2,看两个分数的分子与分母是否分别颠倒了位置。

讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)。

通过具体实例总结归纳找倒数的方法。

找分数的倒数;交换分子与分母的位置。

分子、分母交换位置。

例:3/55∕33∕5的倒数是5∕3。

(2)找倒数的.倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。

分子、分母交换位置。

例:6=1∕66的倒数是1∕6.

四、出示特例,深入理解。

看一看。例2中的那些数据没有找到倒数?(1,0)。

提问:1和0有没有倒数?如果有,是多少?

小组讨论、汇报。

1、关于1的倒数。

也可以这样推导:1=1∕1=1,1的倒数是1.

2、关于0的倒数。

因为0与任何数相乘都不等于1,所以0没有倒数。

交换分子、分母的位置。

也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。

五、巩固练习。

1、完成做一做,先独立做,再全班交流。

2、练习六第3题。

用多媒体或投影逐题出示,学生判断,并说明理由。

3、同桌进行互说倒数活动(练习六第2题)。

六、总结。

今天学习了什么?

什么叫倒数?怎样找到一个数的倒数?

倒数的认识教学设计与评析(优质17篇)篇七

1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。

2、通过互助活动,培养学生与人合作、与人交流的习惯。

3、通过自行设计方案,培养学生自主探索和创新的意识。

理解倒数的含义,掌握求倒数的方法。

掌握求倒数的方法。

1、找一找下面文字的构成规律。学生分组交流,找出文字的构成规律。

2、按照上面的规律填数。

3、揭示课题。今天,我们就来研究这样的数——倒数。

1、师:关于倒数,你想知道什么?

2、学习倒数的含义。

(1)学生观察教材第28页主题图。

(2)学生根据所举的例子进行思考,还可以与老师共同探讨。

(3)学生反馈,老师板书。

学生可能发现:

每组中的两个数相乘的'积是1。

每组中两个数的分子和分母的位置互相颠倒。

每组中两个数有相互依存的关系。

(4)举例验证。

(5)学生辩论:看谁说得对。

(6)归纳:乘积是1的两个数会为倒数。

3、特殊数:0和1。板书:0没有倒数,1的倒数是它本身。

4、求倒数的方法。

(1)出示例1、

(2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。

5、反馈练习。

(1)完成教材第28页的“做一做”。学生独立解答,老师巡视。

(2)完成教材第29页练习六的第1—5题。

1、找一找下列各数中哪两个数互为倒数。

2、填空。

(1)三分之四的倒数是,的倒数是六分之七。

(2)10的倒数是,的倒数是1。

(3)二分之一的倒数是,没有倒数。

倒数的认识教学设计与评析(优质17篇)篇八

《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。

1、知道倒数的意义,会求一个数的倒数。

2、经历倒数的意义这一概念的形式过程。

3、培养学生观察、归纳、推理和概括的能力。

4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。

理解倒数的意义,会求一个数的倒数。

“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。这节课上,我采用了探究式的教学方法,正确处理了“教教材”和“用教材”的关系。1.在本课的引入中,我没有采用多种铺垫,而是直接通过让学生计算教材中的四个乘法算式,观察积的特点与算式中两个因数的特点,直接对倒数形成了初步的认识,更明白了只要调换分子与分母的位置就会得到一个新的分数。为了使学生深入了解倒数的意义,我引导学生举了大量分数的例子,并通过观察、计算等方法使学生明确“互为倒数的两个数的乘积是1”、“倒数的两个数只是把分子和分母的位置进行调换”、更让我高兴的是学生能注意到“倒数是相互依存的”。抓住学生的这一发现,我引导他们很快就总结出了倒数的概念——乘积是1的两个数叫做互为倒数。2.在让学生通过研究求各种数的倒数的方法的环节上,避免了学生在学习中只会求分数的倒数的知识的单一,延伸的所学的内容。在最后,面对特殊的0和1这两个数时,学生们出现了小小的“争执”。有人认为:“0和1有倒数。”有人认为:“0和1没有倒数。”对于学生的“争执”我没有直接介入,而是引导他们互相说说自己的理由,在他们的交流中,学生们达成了一致的认识:0没有倒数,1的倒数是它本身。并且在说明理由时,学生还认为“0不能做分母,所以0没有倒数”这个理由,拓展了我所提供给学生的知识内容。如果让我重新上这节课我会设计出更多的形式多样的练习让学生在练习中得到更大的提高。

倒数的认识教学设计与评析(优质17篇)篇九

1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。

2、培养学生观察、归纳、推理和概括的能力。

出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。(通过计算,发现每组算式的乘积都是1.通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)。

师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。

让学生读一读:倒数。

出示倒数的意义:乘积是1的两个数互为倒数。

让学生说说对到数意义的理解。

提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)。

判断下面的句子错在哪里?应该怎样叙述?

因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。

出示例2,找一找那两个数互为倒数?

汇报找的结果,并说一说怎样找到的?

1,看两个分数的乘积是不是1;

2,看两个分数的分子与分母是否分别颠倒了位置。

讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)。

通过具体实例总结归纳找倒数的方法。

分子、分母交换位置。

例:3/55∕33∕5的倒数是5∕3。

(2)找倒数的倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。

分子、分母交换位置。

例:6=1∕66的倒数是1∕6.

看一看。例2中的那些数据没有找到倒数?(1,0)。

提问:1和0有没有倒数?如果有,是多少?

小组讨论、汇报。

1、关于1的倒数。

也可以这样推导:1=1∕1=1,1的倒数是1.

2、关于0的倒数。

因为0与任何数相乘都不等于1,所以0没有倒数。

交换分子、分母的位置。

也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。

1、完成做一做,先独立做,再全班交流。

2、练习六第3题。

用多媒体或投影逐题出示,学生判断,并说明理由。

3、同桌进行互说倒数活动(练习六第2题)。

今天学习了什么?

什么叫倒数?怎样找到一个数的倒数?

倒数的认识教学设计与评析(优质17篇)篇十

1.知道倒数的意义。

2.经历倒数的意义这一概念的形成过程。

3.会求一个数的倒数。

4.培养学生合作学习,激发学习兴趣,让学生体验学习数学的快乐。

知道倒数的意义,会求一个数的倒数。

:掌握倒数的意义。

师:同学们,听说我们文城中心小学要举行计算比赛,你们想参加吗?

生:想。

生:分数乘法。

师:我们来算一算怎么样?(出示口算卡算一算。)。

生:好。

师:你们的口算不错,今天要研究的这几道题肯定难不倒你们,但要想发现它们的秘密,必须得有一双火眼金睛才行哦!

1、出示例1:先计算,再观察,看看有什么规律。

3/8×8/37/15×15/75×1/51/12×12。

师:上面这几道算式你能很快地算出结果吗?

生:能。(指名上去写结果)。

师:你们算得真快!认真观察一下算式,有什么发现吗?先把你的发现与同桌交流一下。

(交流完后请个别学生说一说)。

生:乘积都是1。(师板书:乘积是1)。

师:还有别的发现吗?(相乘的两个数有什么特征?)。

生:相乘的两个数的分子、分母正好颠倒了位置。

师:你们能写出这样的两个数吗?

生:(齐)能。

2、让学生自由写后再归纳倒数的意义。

师:你们写的算式乘积都是多少?

生:乘积都是1。

师:像这样乘积是1的两个数,我们把它们叫做互为倒数。(师又接着板书:的两个数叫做互为倒数。)这也就是这节课我们要学习的内容。(板题:倒数的认识)。

(让生齐读课题和倒数的意义)。

3、理解“互为倒数”的含义。

师:“乘积是1的两个数互为倒数.”你有不理解的地方吗?

生生交流后归纳:因为倒数是表示两个数之间的关系,这两个数是相互依存的,不能单独存在。(举例说明:如3/8和8/3,可以说3/8和8/3互为倒数,也可以说3/8是8/3的倒数,但不能说3/8是倒数)。

师:好像以前也学过有这样关系的两个数,还记得吗?

生:记得,是因数和倍数。

1、出示例2:下面哪两个数互为倒数?

3/567/25/31/612/70。

让学生说,师板书:3/5——————————→5/3。

6———————————→1/6。

师:你是怎样找一个数的倒数的?

生:把分子、分母交换位置。(师板书在箭头上面)。

师:那6的倒数怎么找?

生:把6看作6/1,然后再交换分子、分母的位置。

2、师再次引导学生观察以上的数,哪两个数互为倒数?哪些数没有找到倒数?引发学生质疑。

生:1和0有倒数吗?那它们的倒数是什么呢?为什么?

同桌之间再次交流得出:1的倒数是1,0没有倒数。(师相机板书)。

3、总结求一个数的倒数的方法:求真分数和假分数的倒数只要交换分数的分子、分母的位置,而求整数的倒数要把整数看作分母是1的分数,再交换分子、分母的位置。

4、引导学生打开课本学习。

四、巩固练习。

1、课本24页做一做。

2、互说倒数。(25页练习六第2题,同桌合作,师生合作)。

3、25页第3题:下面的说法对不对?为什么?

(1)7/12与12/7的乘积为1。所以7/12和12/7互为倒数。()。

(2)1/2×4/3×3/2=1,所以1/2、4/3、3/2互为倒数。()。

(3)0的倒数还是0。()。

(4)一个数的倒数一定比这个数小。()。

4、第4题。

这节课我们学习了什么?你学到了什么知识?能说一说吗?

板书设计:

(1)3/8×8/3=17/15×15/7=15×1/5=11/12×12=1。

乘积是1的两个数互为倒数。

(2)3/567/25/31/612/70。

分子、分母交换位置。

3/5————————————→5/33/5的倒数是5/3。

分子、分母交换位置。

6=6/1———————————→1/66的倒数是1/6。

1的倒数是1,0没有倒数。

倒数的认识这部分内容是在学习分数乘法的基础上进行教学的。学好倒数的认识这部分内容能够为后面学习分数除法打好基础。所以学好这部分内容对之后学习分数除法是至关重要的。我主要结合教材编排的特点、本班学生的认知规律及教学的重、难点对教学流程进行预设,收到了较好的效果。

一、谈话导入激发求知欲望,深入研究发现其中奥秘。

在导入这个环节,我主要结合本学期要举行的计算比赛,通过谈话激发学生学习的热情及求知欲望,让学生对学习充满信心,并引发期待学好新知识的决心。从学生的表现来看,很多地方都让我意想不到,如交流1和0的倒数时,很多学生都能根据倒数的意义推理出1的倒数是1,0没有倒数,并且说得有凭有据的,这是其一。还有在互说倒数这个环节,我出示了一些真分数、假分数和整数,学生都能正确地说出它们的倒数,这纯属正常发挥,不算什么,但在最后我分别出示了一个带分数和一个小数,让学生说出它们的倒数,拓展了我所提供给学生的知识内容,我以为会把他们难住了,没想到一位同学毫不犹豫地说出了它的倒数,在我的追问下,竟然还能把找这个数的倒数的过程说得滴水不漏,这不能不让我为之竖起大拇指。

二、精心预设洞悉其中规律,引发质疑解开心中疑团。

著名教育家苏霍姆林斯基说过:“在人的内心深处,都有一种根深蒂固的需要,那就是希望自己是一个发现者和探索者。”对于我们的学生来说,这种需求特别强烈。在这部分的教学中,掌握倒数的意义是学好这部分内容的关键。因此在教学倒数的意义时,我主要是让学生通过算一算,看一看,写一写,说一说的形式,还有合作学习的方式获得“什么样的两个数是互为倒数”这个概念,为了更好地理解“互为倒数”,我让学生自己质疑,然后再给他们设计一个交流的平台,让他们自己解开心中的疑虑,使学生在深入思考中得出结论,这就是学生学习的成果。我觉得,这样做不仅活跃了课堂气氛,而且还让学生经历了探索的过程,解决了心中的困惑,更主要的是让学生体会到了成功的喜悦。

经过这节课,我最大的收获是看到学生的成长及迸发出的那股探索知识的劲头,无一不让我为之高兴。但在高兴之余,我也看到了课堂中的不足之处,有相当一部分学生不善于表现自己,思维火花受到限制,导致回答问题的人气不足,这将是我在今后教学中所面临的一大挑战。

倒数的认识教学设计与评析(优质17篇)篇十一

1、能清楚地知道倒数的概念,能求一个数的倒数。

2、培养学生动手动脑能力,以及判断、推理能力。

3、培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活。

:能求一个数的倒数。

:在小组间交流合作的基础上,得出倒数的概念,并能求一个数的倒数。

:多媒体课件

一、用汉字作比喻引入

1、师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。

2、提一个开放性的问题:看到这个课题,你们想到了什么?

二、新知探索:

1.研究倒数的意义

。乘积等于1的'两个数叫做互为倒数。

。倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

2.学生自主举例,推敲方法:

(1)师:下面,请大家各自举例加以说明。

(2)学生先独立思考,再交流。

(a.以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)

(b.以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)

(c.以“带分数”为例;带分数的倒数是真分数。)

(d.以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)

(e.以“整数”为例;整数相当于分母是1的假分数)

学生举例的过程同时将如何寻找倒数的方法也融入其中。

3.讨论“0”、“1”的情况:

1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)

4.总结方法:

(除了0以外)你认为怎样可以很快求出一个数的倒数?

三、反馈巩固:

多媒体出示:

1.写出下面各数的倒数:

2.判断:

(1)互为倒数的两个数的乘积一定等于1。()

(2)2和它的倒数的和是?()

(3)假分数的倒数是真分数。()

(4)小数的倒数大于1。()

(5)在8-7=1和3÷3=1中,8和7、3和3是互为倒数的。()

(6)a的倒数是?()

(让学生用手势判断,进行辨析,训练说理能力。)

3.游戏:找朋友

一名学生说出一个数,谁能又对又快地用一句话说出这个数的倒数,谁就和这名同学互为朋友。

四、全课总结,自我评价。

提问:通过这节课,你学到哪些知识?

倒数的认识教学设计与评析(优质17篇)篇十二

教学内容:

新人教版六年级数学上册第28页的例1。

教学目标:

1、通过学习,使学生知道什么叫做倒数,倒数表示的是两个数之间的关系,它是不能孤立存在的;掌握求倒数的方法;通过学习,使学生知道“0”没有倒数,“1”的倒数还是“1”。

2、学生根据自己的理解,发现求倒数的方法,知道不仅可以用乘法求一个数的倒数,还可以用调换分子和分母位置的方法求一个数的倒数。

3、在知识获取过程中,培养学生观察、归纳、推理和概括的能力。提高学生学好数学的信心。

教学重点:

理解倒数的意义,学会求倒数的方法。

教学难点:

熟练正确的求小数、带分数的倒数,发现倒数的一些特征。

教学准备:

多媒体课件。

教学过程:

一、猜字游戏导入,揭示课题。

上课之前,老师来考考同学们的语文学得如何。“吞”这个字读什么,如果把上下部分颠倒后是什么字?(“吞”——吴),“士”这个字读什么,如果把上下部分颠倒后是什么字?(“士”——干)。中国汉字有不少字有这样的关系,在数学中也存在这种关系。

如:(板书:3/8)如果把这个分数的分子和分母的位置调换,是哪个分数?(8/3)。

师:谁还能说出这样的数?(课件出示)。

象这样把分数的分子和分母上下颠倒之后就成另一个数,你能给这种特性给这些上下颠倒的数起个名字吗?(倒数)今天我们就一起来研究倒数(板书:倒数的认识,并让学生读一读。)。

二、出示学习目标:

1、理解倒数的意义。

2、掌握求一个数的倒数的方法,能熟练准确地写出一个数的倒数。

三、自主探究新知。

(一)探究讨论,理解倒数的意义。

1、(课件出示教材第24页例1的四个算式。)。

开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的。)。

生:我发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

2、出示倒数的意义:乘积是1的两个数互为倒数。(学生齐读三次)。

(二)深化理解。

1、乘积是1的两个数存在着怎样的倒数关系呢?

举例:3/8×8/3=1,那么我们就说8/3是3/8的倒数,反过来(引导学生说)3/8是8/3的倒数,也就是说3/8和8/3互为倒数。(谁还想举例说说。)。

2、互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)。

例如:(2/5的倒数是5/2,5/2的倒数是2/5,……不能说5/2是倒数,要说它是谁的倒数。)。

3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

又因为0与任何数相乘都不等于1,所以0没有倒数。)。

(三)运用概念。

1、讨论求一个数的倒数的方法。

所以3/5的倒数是5/3,7/2的倒数是2/7。(能不能写成3/5=5/3,为什么?)。

小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。)。

2、怎样求小数和带分数的倒数呢?(课件演示,学生观察。)。

师强调:带分数先化成假分再把分子和分母调换位置;小数要先把它化成分数再把分子和分母调换位置。

3、怎样求整数(除外)的倒数?请求示6的倒数是几?(出示课件)。

四、堂堂清作业。

(一)填一填。(出示课件)。

1、乘积是()的()个数()倒数。

2、a和b互为倒数,那a的倒数是(),b的倒数是()。

3、只有当假分数为()时,它与它的倒数相等;而()是没有倒数。

4、一个真分数的倒数一定是()。

(二)判断题。(演示课件)。

1、5/3是倒数。()。

2、因为3/4×4/3=,所以4/3是倒数。()。

3、真分数的倒数大于1,假分数的倒数小于1。()。

4、因为1/4+3/4=1,所以1/4和/4互为倒数。()。

(三)说一说。(课本第29页的第3题)。

五、课堂小结:

今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有什么的问题吗?板书设计:

乘积是1的两个数互为倒数。0没有倒数,1的倒数是它本身。例2:写出其中2/5、7/2两个分数的倒数。

2/5的分子分母调换位置---5/27/2的分子分母调换位置---2/76的倒数是1/6求带分数的倒数先把带分数化成与假分数,再把分子和分母调换位置。

求小数的倒数的先把小数化成分数,再把分子和分母调换位置。

倒数的认识教学设计与评析(优质17篇)篇十三

教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

知道倒数的意义和会求一个数的倒数。

课件。

一、课前谈话:

师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。

生:好!

师:那你想怎样表述我们的关系?

生:我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。这样学生对马上接触到的“互为倒数”就比较容易理解了。

二、揭示倒数的意义。

师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?

生:(齐)能!

师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。

准备好了吗?开始??

师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

师:这么短的时间内就能写出这么多乘积是1的两个数,不错。

师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?

生:无数个。

出示例7。

师:那请你们来帮帮忙,找出乘积是1的两个数。

师:你们找的这些与之前写的所有算式都有怎样的共同点?

生:乘积都是1。

师:你知道吗?揭示意义】教师板书:乘积是1的两个数叫做互为倒数。生齐读。

师:黑板上所写的两个数的积都是1,所以他们互为倒数。比如3/8和8/3的乘积是1,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数)。

师:3/8和8/3互为倒数!我们还可以怎么说呢。

生:3/8的倒数是8/3;8/3的倒数是3/8。

生1:“互为”是指两个数的关系。

生2:“互为”说明这两个数的关系是相互依存的。

师:2/5和5/2的积是1,我们就说??(生齐说)。

师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。

探索求一个倒数的方法。

师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。

生1:互为倒数的两个数分子和分母调换了位置。

师:同意吗?

生:同意。

师:根据这一特点你能写出一个数的倒数吗?

生:能。

师:试一试!

师在黑板上出示3/57/2,写出它们的倒数。

师:那5(0.1)的倒数是什么?它可是没有分子和分母呀?还有1又1/8呢?

生:把5看成是分母是1的分数,再把分子分母调换位置。

求小数的倒数的方法:小数求带分数的倒数的方法:带分数。

三、分数倒数。倒数。假分数。

师:那1的倒数是几呢?

0的倒数呢?

师:为什么?

生1:因为0和任何数相乘都得0,不可能得1。

师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后。

师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个数的倒数,只要把分子分母调换位置。

生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

生3:1的倒数是1,0没有倒数。

(生齐读求一个数倒数的方法。)。

四、巩固练习。

1、打开书,阅读课本p34,把你认为重要的划起来。

2、完成练一练。

(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

(2)发现一学生书写有误,与该生交流。

(3)用展台展示该生的错误。

师:这样写可以吗?(4/11=11/4)。

生:不可以!

师:为什么?

生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。

(4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

3、小游戏:同桌互相出一题,对方说出答案。

4、先说说下面每组数的倒数,再看看你能发现什么?

(1)3/4的倒数是()(2)9/7的倒数是()。

2/5的倒数是()10/3的倒数是()。

4/7的倒数是()6/5的倒数是()。

(3)1/3的倒数是()(4)3的倒数是()。

1/10的倒数是()9的倒数是()。

1/13的倒数是()14的倒数是()。

由学生说出各数的倒数。然后。

师:请你仔细观察,看能从中发现什么,发现得越多越好。

师:小组间可以先互相说一说。

汇报:

生1:我从第一组中发现真分数的倒数都是假分数。

生2:我从第二组中发现假分数的倒数是真分数或者假分数。

生3:真分数的倒数都小于1,假分数的倒数大于1。假分数的倒数也可能等于1。生4:我发现分子是1的分数。

4、填空:

7×()=15/2×()=()×3又2/3=0.17×()=1。

五、课堂小结。

1、小结:今天我们学习了什么???

2、学了倒数有什么用呢?

大家课后可去思考一下。

倒数的认识教学设计与评析(优质17篇)篇十四

1、通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。

2、使学生经历倒数意义的概括过程,提高衙门观察、比较、概括和归纳的能力以及灵活运用知识解决问题的能力。

3、通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。

认识倒数并掌握求倒数的方法。

小数与整数求倒数的方法。

ppt课件,卡片。

1、列举数学中两个数乘积是1的算式。

2、揭示课题:倒数的认识。

(设计意图)问题是数学的心脏,是学生探究的起点和动力,在谈话、游戏情境中引导学生发现问题,提出问题。

1、探究倒数的意义。

(1)观察刚才列举的例子,找出特点。

(2)出示倒数的意义:乘积是1的两个数互为倒数。

(3)小组讨论,什么是倒数?

学生独立思考后,组内交流。

全班汇报,教师根据学生的汇报点拨引导。

师生共同归纳倒数的意义:乘积是1的两个数叫做互为倒数。(教师板书)。

(5)口答练习:

2、探究求一个数(分数)的倒数的方法。

(1)小组合作,自学例1。

(2)小组派代表交流例1。

(3)学生交流求一个分数倒数的方法。

师:互为倒数的两个数相等吗?怎么样表示它的结果?也可用—(破折号)表示。

(4)教师引导质疑:0有没有倒数?为什么?学生讨论释疑。

1×()=1,所以1的倒数是1。而0×()=1呢?

1的倒数是它本身,0没有倒数。

(5)引导学生概括求倒数的方法。

求一个数(0除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。

(6)练习:师生对口令,找倒数。

老师说一个数,学生快速抢答出它的倒数。

3、探究求整数、小数、带分数的倒数方法。

师:同学们已经会求一个分数的`倒数了。想一想,我们还学过哪些数?(整数、小数、带分数),那么怎么样求整数、小数、带分数的倒数呢?选择一种,在小组内探究。

a:学生选择一种研究,教师巡视指导。

b:学生交流汇报,教师分别板书一例。

(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。

1、请你填一填。

2、我是小法官。

3、游戏:找朋友。

师:老师这里有一些卡片,上面写了一些数字,哪两个数是互为倒数关系,哪两个数就是好朋友。请你把这样的两张卡片找出来。

(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。

这节课你们有什么收获?还有什么疑问?

(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。

板书设计:倒数的认识。

乘积是1的两个数互为倒数。

求一个数(0除外)倒数的方法:

把这个数分子、分母调换位置。

倒数的认识教学设计与评析(优质17篇)篇十五

1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

3.培养学生的观察能力和概括能力。

1.正确理解倒数的意义及互为的含义。

2.正确地求出一个数的倒数。

(一)激发兴趣,引出概念

1.投影。哪个同学和老师比赛?谁说得快?

师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)

2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。

板书:乘积是1 两个数

3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?

生:两个数分子、分母颠倒位置就可以了。

师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)

4.举例说明,什么叫互为倒数?

师:3是倒数这句话对吗?为什么?

你们说得对,谁能说出几组倒数?

同桌互相说,每人说两组。(指名说)

问:怎样判断他们说得是否正确?

生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于

倒数的认识教学设计与评析(优质17篇)篇十六

本班级学生在学习本课时内容时,已经学会了分数乘法的计算,在具备分数乘法计算能力的基础上进行学习《倒数的认识》,我相信本班级学生能顺利地完成这一课时内容的学习,且学会这一课时也将为以后学习分数除法打下坚实的基础。

1、理解倒数的意义,掌握求倒数的方法,并能正确、熟练地求出一个数的倒数。

2、在充分的观察、思考、分析、讨论活动中,培养学生的思维能力和灵活解决问题的能力。

3、通过本节课的学习,激发学生学习数学的兴趣,让学生体验成功的快乐。

重点:倒数的意义与求法。

难点:1、0的倒数,整数、小数、带分数的倒数的求法。

课件(或练习张贴纸)。

一、揭示倒数的意义。

同学们,我们已经学会了分数乘法的计算。这节课我们将运用分数乘法的知识去解决新的问题,大家有信心学好吗?请看大屏幕。课件依次展示(一).(二):

(一)同学们认识以下各组汉字吗?请仔细观察每组汉字,你有何发现?

吴——吞杏——呆干——士。

(二)仔细观察下列各组算式,再进行计算。

(三)计算过后,你们发现了什么?

(四)指出今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?

答后组织学生进行一场写乘积是1的任意两个数的算式的比赛。(限时1分钟)。

(五)学生汇报,教师有选择地进行板书。

对学生的学习成果加以肯定表扬。进而追问:

1,如果给你们充足的时间,你们还能写出多少个这样的乘法算式?(指名让学生回答)。

2,那么你们是根据什么条件写出这么多的算式呢?(思考后指名让学生回答并集体交流订正。)。

(六)揭示倒数的意义:刚才同学们所写的两个数的乘积都是1。像这样乘积是1的两个数,我们把它们称之为互为倒数。

板书:乘积是1的两个数叫做互为倒数。(生齐读,师让生划出关键词进行交流熟记。)。

(七)举例说明倒数的意义。

1,黑板上所写的两个数的乘积都是1,所以它们互为倒数。比如和乘积是1,我们就说和互为倒数,或的倒数是、是的倒数。

板出:和互为倒数的倒数是是的倒数。

2,为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?(思考后指名学生回答)。

3,指出倒数是表示两个数之间的关系,它们是相互依存的,所以必须说一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?(预设:约数和倍数。)。

4,举例引导学生认识今天学习的倒数与约数、倍数一样都是表示两个数之间的关系,必须是相互依存,而不能独立地存在。5和的积是1,我们就说……(生说)×=1,这两个数的关系可以怎么说?(生说)。

5,同学们都学得不错,现在老师要考考大家是不是真正理解了倒数的意义。

(八)课件出示测试题。

1、判断。

1.得数是1的两个数叫做互为倒数。()。

2.因为10×=1,所以10是倒数,是倒数。()。

3.因为+=1,所以是的倒数。()。

2、口答练习。

1×()=1×()=1×()=1×()=1。

下面哪两个数互为倒数。(连线)注:以下为例7学习内容。

二、探索求一个数的倒数的方法。

(一)引导观察,发现特征:

1,我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起观察一下刚才的这些例子,看有何发现?(观察后指名学生回答)。

2、指出分子和分母调换了位置,相乘时分子和分母就可以完全约分,得到乘积是1。

3、根据这一特点你能写出一个数的倒数吗?

4、试一试:写出、的倒数。(完后指名板演,集体交流订正)。

5、引导小结:求一个数的倒数的方法,只要把分数分子分母调换位置。

(二)思考讨论,延伸运用:1,除了真假分数外,其它数的倒数你们能写出来吗?

2,课件出示讨论题:

(1)18的倒数是什么?1的倒数是什么?0的倒数呢?

(2)的倒数是什么?

(3)0.2的倒数是什么?

3,练习:写出下列各数的倒数:

8370.31.2。

4,我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。(生思后指名说)。

5,引导总结:求一个分数的倒数,只要把分子分母调换位置。如果是求一个带分数的倒数时要先化成假分数;求一个小数的倒数时要先化成分数(最简分数);求一个整数(0除外)的倒数时,可以把这个整数看成分母是1的分数;然后再调换分子分母的位置。(让生齐读)。

三、练习巩固,加深认识。

1、请打开课本p50阅看,把你认为重要的划起来读一读。

2、完成“练一练”。

写出下面各数的倒数。

8

(1)完后问学生的倒数可以这样写吗?=。(预设:1除外互为倒数的两个数是不会相等的。)。

(2)师:我们在书写时要写清谁是谁的倒数,或谁的倒数是谁。

3、先说说下面每组数的倒数,再看看你能发现什么?

(1)的倒数是();的倒数是();的倒数是();

(2)的倒数是();的倒数是();的倒数是();

(3)的倒数是();的倒数是();的倒数是();

(4)3的倒数是();9的倒数是();14的倒数是();

4、填空。

7×()=×()=()×=0.17×()=1。

5、独立完成课本p51练习十第1-6题,师巡视。完后师问生答进行对照,共同订正。

四、课堂总结:今天我们学会了什么知识?还有不理解的地方吗?

五、布置作业:练习十第2、3题。

倒数的认识教学设计与评析(优质17篇)篇十七

教学内容:教科书第24页例1、例2及做一做。

教学目标:

1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。

2、培养学生观察、归纳、推理和概括的能力。

教学过程。

出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。(通过计算,发现每组算式的乘积都是1、通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)。

师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。

让学生读一读:倒数。

出示倒数的意义:乘积是1的两个数互为倒数。

让学生说说对到数意义的理解。

提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)。

判断下面的`句子错在哪里?应该怎样叙述?

因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。

出示例2,找一找那两个数互为倒数?

汇报找的结果,并说一说怎样找到的?

1,看两个分数的乘积是不是1;

2,看两个分数的分子与分母是否分别颠倒了位置。

讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)。

通过具体实例总结归纳找倒数的方法。

找分数的倒数;交换分子与分母的位置。

分子、分母交换位置。

例:3/55∕33∕5的倒数是5∕3。

(2)找倒数的倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。

分子、分母交换位置。

例:6=1∕66的倒数是1∕6、

看一看。例2中的那些数据没有找到倒数?(1,0)。

提问:1和0有没有倒数?如果有,是多少?

小组讨论、汇报。

1、关于1的倒数。

也可以这样推导:1=1∕1=1,1的倒数是1、

2、关于0的倒数。

因为0与任何数相乘都不等于1,所以0没有倒数。

交换分子、分母的位置。

也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。

1、完成做一做,先独立做,再全班交流。

2、练习六第3题。

用多媒体或投影逐题出示,学生判断,并说明理由。

3、同桌进行互说倒数活动(练习六第2题)。

今天学习了什么?

什么叫倒数?怎样找到一个数的倒数?

猜你喜欢 网友关注 本周热点 精品推荐
优秀作文是一种才华的展示,它不仅要有深入的思考,还要有独特的表达方式。现在就让我们一起来欣赏一些优秀作文的片段,相信会给我们的写作带来一些启发。你,那如溪水般清
作文是语文考试中的重点,写好一篇优秀作文可以为我们带来不少分数。对于写作优秀作文来说,阅读一些优秀的范文是非常有帮助的,下面是一些值得一读的例子。亮山、玉龙河,
优秀作文的写作过程需要积累素材、构建结构、展开论述等多个环节。以下是小编为大家整理的一些优秀作文范文,希望能够对大家的写作有所启发。汉字,是中华民族的无价之宝,
学习心得是对学习过程中所获得的知识和技能进行总结和概括的一种方式,它能够帮助我们更好地掌握学习成果。以下是小编为大家整理的一些学习心得范文,供大家参考借鉴。
优秀作文不仅要有创新的思维和独特的个人见解,还应该注意文字的优美和表达的方式。下面是一些常见作文错题及解析,希望能帮助大家避免类似的错误。既然说到了这里,那就得
优秀的作文需要充分准备,包括思路清晰、材料充足以及结构合理。这些范文中思想深刻、观点清晰,值得我们反复品味和思考。20年后,我已经成为著名的科学家,我发明的好多
岗位职责的清晰性可以帮助组织吸引和留住适合岗位要求的人才。这是一份总结了众多岗位职责要求的范文,希望给大家提供参考和借鉴。为深入贯彻中共中央《关于实行党风廉政建
社会实践报告是一种反思性的写作,通过对社会实践活动的回顾和思考,可以帮助我们更好地把握社会发展的脉搏。以下是一些写作社会实践报告的范文,可以帮助大家更好地掌握写
通过撰写读书心得,我们可以更加深入地理解书中的主题和观点。通过阅读这些读书心得范文,我们可以更好地启发自己的思维,提升自己的表达能力。。朱自清先生的《匆匆》,告
入党转正申请书的写作是一个重要的自我思考和总结的过程,它能够帮助入党积极分子更好地了解自己的优点和不足。以下是小编为大家整理的一些入党转正申请书范文,希望对大家
述职报告需要客观地总结自己在工作中的业绩和成果,同时也要诚实地反映自己的不足和改进计划。以下是小编为大家收集的述职报告范文,仅供参考,希望能给大家提供一些启示和
教案也是教师与学生之间教学交流的桥梁,能够加强双方的互动与合作。接下来是一些六年级教案的范例,这些教案经过多次实践和修改,已经得到了良好的效果。本节复习课,目的
优秀作文的写作过程不仅需要有丰富的词汇和句型运用,还需要我们有较强的逻辑思维和条理性。以下是小编为大家准备的一些优秀作文范文,希望能对大家的写作提供一些参考和启
在实习期间,我们可以利用实习计划来规划每天的活动,以充分利用时间和资源。以下是小编为大家收集的实习计划范文,仅供参考,希望对大家制定实习计划有所帮助。
教学工作总结可以帮助教师梳理教学思路,明确教学目标,并及时调整教学策略。通过阅读这些教学工作总结范文,可以了解到其他教师在教学过程中的心得和教学理念。
自我介绍是建立人际关系的基础,它可以拉近与陌生人之间的距离,为未来的交流打下良好的基础。接下来,我们一起来看看一些成功自我介绍的案例,或许能够给大家提供一些灵感
写心得体会是一个反思和自我反馈的过程,可以帮助我们更加客观地认识自己的优点和不足。在以下的范文中,我们可以看到作者通过心得体会来梳理自己的思路,并对自己的成长做
实习心得是在实习期间对工作经验、职业能力和自我成长等方面进行总结的一种文书,对于个人的职业发展具有重要意义。在实习的过程中,我经历了许多挑战和机遇,收获了宝贵的
通过分析和学习优秀作文,可以提高自己写作的水平和能力。优秀作文是语文学习中的重要组成部分,它能够展现一个人的思考能力和语言表达水平。如何才能写出一篇优秀的作文呢
优秀作文能够展现作者对社会现象的洞察力和批判精神,帮助读者更好地认识社会。根据您给出的分类名称"优秀作文",可以随机选择一条:一次,我去广场玩,正坐在广场的石凳
一篇优秀的作文不仅能让读者读后感受到作者的思想深度和观点独到,还能引起读者的共鸣和思考。最后,我为大家精选了一些优秀作文范文,希望能够给大家提供一些有益的指导和
规章制度的修改应该经过合理的程序,充分听取各方意见。我们整理了一些规章制度的规范和标准,希望能为大家提供一些参考和指导。一旦发现不使用劳保用品要追查原因,还要严
转正思想汇报是员工对自己能力和表现的自我评价,也是对公司培养和支持的感恩和回馈。以下是小编为大家整理的一些优秀转正思想汇报范文,供大家参考和学习。敬爱的党组织:
优秀作文是在语文教学中被认可的一种写作形式,它要求学生在语言、表达和逻辑思维等方面都具备一定的水平。下面是一些优秀作文的片段摘录,让我们一起来欣赏和借鉴其中的写
活动方案的实施需要考虑到各种可能出现的问题和风险,并提出相应的预防和应对措施。活动方案的编写是一项需要经验和创新的工作,以下是一些范文供大家参考和学习。
优秀作文透露出作者的个人修养和情感世界,给读者以启示和思考。以下是一些优秀作文的片段选取,它们体现了文学艺术的魅力和价值。在我来到成功少年的日子里,这个陌生的老
写心得体会是一种对自己成长经历的记录和回顾,它能够帮助我们更好地认识自己和发现自己的不足之处。在这里,小编为大家整理了一些经典的心得体会例文,希望能给大家带来一
在销售工作总结中,我们可以总结销售过程中的成功经验和问题,以便将来能够改进和提高销售策略和技巧。销售工作总结范文可以帮助我们了解其他销售人员在总结中常用的表达方
述廉报告是一种对个人或组织廉洁与廉政情况进行总结和陈述的书面材料。以下是小编为大家收集的述廉报告范文,供大家参考学习。xxx,男,中共党员,生于xx年x月,xx
写心得体会是对自己学习和工作的一种总结和回顾,它能够帮助我们更好地认识自己的长处和短处。心得体会是我们在学习和工作生活中得出的宝贵经验和教训,撰写心得体会可以帮
个人总结是一种整理思路的方式,通过总结我们能够将学习和工作中的杂乱思绪整理出一条清晰的思路。以下是小编为大家收集的个人总结范文,希望能够给大家提供一些写作的灵感
从述廉报告中,我们可以发现一些廉洁的典型案例,对于提升全社会的廉洁意识有着重要的作用。请大家关注下面的述廉报告范文,相信会给大家的写作提供一些参考和思路。
教学计划需要考虑学生的实际情况和学习需求,灵活调整教学策略和方法。在这里,我们为大家推荐一些经过实践检验的教学计划样本,希望能对你们有所帮助。小数点位置移动引起
实习心得体会是对实习过程中所获得的知识和技能的总结和梳理。以下是一些来自不同行业的实习心得体会,对于不同领域的实习也有一定的参考价值。从一个大学的校园里面变化到
在今天的信息爆炸时代,报告范文能够帮助人们更好地了解和掌握各种知识和信息。在下面这些报告范文中,我们可以看到作者对所研究项目的深入分析和细致总结。成长中,我们都
优秀作文不仅要有准确、流畅的语言,还要有独特的观点和深入的思考。以下是一些备受瞩目的优秀作文范文,这些作品可以给我们提供一些宝贵的写作经验。看到“有你真好”这个
一篇优秀作文需要有独特的观点和深入的思考,以及准确的语言表达。接下来,让我们一起欣赏一些优秀作文的范文,希望能给大家带来启发和灵感。中华民族的统文化真的很丰富,
揭示问题、指出不足、总结经验是述廉报告的基本内容,对于改进工作非常有意义。请大家参考下面的述廉报告示例,希望能够对大家写作提供一些帮助和启发。一年来,按照x委、
开学典礼是学生们互相认识和交流的好机会,也是展示团队精神的时刻。随后,让我们一起来欣赏一些精彩的开学典礼总结,感受学生们的真情流露。亲爱的老师、同学们:大家新年
述廉报告是对某个人、某个组织或某个事务在特定时间周期内进行廉政情况概述的一种书面材料,它可以帮助我们全面了解廉政工作的进展和成果,我想我们需要写一份述廉报告了吧
优秀作文需要作者充分观察和思考,以及对所表达内容的深度思考和独到见解。8.通过阅读这些优秀作文,我们能够提升自己的思维能力和表达能力。在田野有小鸟、有小溪和庄稼
优秀作文是每个语文学习者追求的目标,它体现了一个人的语言功底和思维深度。小编为大家精选的这些优秀作文范文,不仅在内容上有新意和独特性,在语言表达上也别具一格。
自我评价需要在客观的基础上加上一定的主观判断,同时也要尊重他人对我们的评价和建议。以下是小编为大家准备的自我评价范文,希望能够给大家提供参考和启示。
在社交场合中,一个恰当的自我介绍能够引起他人的兴趣,为建立良好的人际关系打下基础。自我介绍是在与他人初次见面时向对方介绍自己的一种方式。在社交场合中,自我介绍是
一个好的月工作总结,可以为未来的发展和晋升打下基础。下面是一些月工作总结的优秀样例,希望能够给大家写作提供一些灵感和思路。当日历一页页撕落得只剩下最后一页,一年
撰写策划书的过程不仅是为了让他人了解我们的计划,还可以帮助我们自己更清晰地思考和整理想法。小编整理了一些成功案例的策划书,希望对大家在编写策划书时有所启发和借鉴
自我评价可以帮助我们确定自身的优势和劣势,从而更好地规划个人发展和提升自我能力。在下面的范例中,你可以看到不同人对自己的评价,也可以从中获得一些写作的灵感。
合同协议的签署可以规范市场秩序,维护公平交易的基础。合同协议是指当事人在平等、自愿、公平的基础上,通过协商达成的一种法律文件,约定双方的权利和义务,具有法律效力
行政工作需要不断学习和提升,以适应不断变化的环境和需求。以下是一些行政工作的工作方法和技巧,供大家参考和借鉴。个人信息。目前所在:三水区年龄:25岁。户口所在:
技术合同的签订需要双方共同遵守相关法律法规和合同约定。如果你需要一份规范且详细的技术合同,不妨阅读一下下面的范例。签字地点:__________________
月工作总结可以帮助我们建立积极向上的工作态度和心态。小编整理了一些月工作总结的典型范文,供大家参考和借鉴。。一年的时间是过得很快的,在这一年中我学习到了很多,也
发言稿可以帮助自己在重要场合更加从容自信地发表自己的观点。以下是小编为大家收集的一些优秀发言稿范文,供大家参考。通过阅读这些范文,我们可以学习到一些写作技巧和经
年度总结是对过去一年学习和工作生活进行回顾和总结的重要内容。我们来看看一些著名企业高管的年度总结范文,或许我们可以从中学到一些管理经验和思维方式。20_年财务部
劳务费是指雇主向劳务提供方支付的报酬,它通常是按照劳务方提供的服务量和质量来确定的。以下是小编为大家整理的劳务管理经验,供大家参考借鉴。甲方:乙方:甲乙双方经友
写心得体会不仅能够提高我们的文字表达能力,还有助于培养我们的观察力、思考力和创新力。参加社交舞蹈比赛的经历让我体验到了舞蹈带来的艺术和自我表达的乐趣,心得体会是
国旗下讲话稿的内容应丰富多样,涵盖国家的历史、文化、成就和未来的展望。以下是一些备受赞誉的国旗下讲话稿范文,供您参考借鉴。亲爱的老师、同学们:大家好!重阳节,又
优秀学生不仅关注学业,还广泛涉猎各个领域的知识,拓宽自己的眼界,并且能够将所学知识应用于实际问题的解决。以下是一些优秀学生的自述,他们分享了自己的成长经历和学习
国旗下是我们学习和成长的场所,我们在这里接受爱国主义的教育。小编将为大家介绍一些关于如何保持国旗整洁和庄重的经验和方法。老师们、同学们:大家好!每年的1月1日为
在制定策划书时,要明确活动的目的、受众、预期效果等关键信息。在阅读下面的策划书范文时,请注意思考其中的创意和解决问题的方法。本公司以“与绿色同行,与自然为本”为
规章制度的修订和完善是一个动态的过程,需要随时根据情况做出调整和改进。规章制度的制定和实施对于组织来说至关重要,下面是一些成功案例的分享。一、器材管理员全面负责
教学计划是教师在一学期内组织教学活动的蓝图,有助于教师合理安排教学内容和时间。想要提高教学效果,不妨参考一些成功的教学计划范例,借鉴其中的经验和方法。
实习报告的写作过程中需要注意语言的准确性和严谨性,避免使用模糊的词汇和不恰当的表达,以确保文笔的流畅和文采的横溢。以下是一些实习报告范文供大家参考,希望能够对大
在市场经济中,买卖是供求关系的表现,通过买卖双方的交易达成价值的互换。在这里,我们为您提供一些买卖中常见问题的解答,希望对您有所启发。甲方:乙方________
编写一篇安全演讲稿可以促使我们思考和关注日常生活、工作中的安全问题,加强对潜在风险的识别和控制。安全是一道红线,触碰了就是后悔莫及。我们要时刻警惕各种潜在的安全
优秀作文是文学的精华,是作者思考和感悟的结晶,也是传递情感和价值观的媒介。以下是一些老师点评的优秀作文示范,希望能给大家提供一些写作的思路和技巧。昨天,表弟过生
入党积极分子是指那些在思想上高度认同党的理论和纲领,具备良好的道德品质和组织纪律,能够积极发挥先锋模范作用的党员候选人。入党积极分子的发展历程可以启发我们更好地
学生会申请书不仅是一种表达意愿的方式,同时也是一种展示个人能力和经验的机会。最后,祝愿所有申请者都能够成功地完成学生会申请,并为学校的发展做出积极贡献。
通过个人总结,我们可以更好地激励自己,保持良好的工作状态。小编为大家准备了一些精选的个人总结范文,希望能够帮助大家更好地写出自己的总结。本学期,我着重从德育出发
讲话稿的撰写需要注意结构的合理安排,以及语言的简洁明了。掌握了一些讲话稿的写作技巧后,就让我们一起来看看下面这些优秀的讲话稿范文吧。尊敬的各位家长:大家好!今天
在工作或学习中,经常需要写报告来总结工作进展、项目成果等,这对于提高工作效率和个人能力成长非常重要。在阅读这些报告范文时,我们可以学习他们的条理和表达方式,提高
生日是一个年龄的里程碑,它代表着我们走过了一年的时光。最后,以下是一些关于生日的趣闻和历史知识,希望能让您更加了解生日的意义和起源。尊敬的老师、同学:大家好!
[论文摘要]文章通过分析江苏省4所高校100份大学生职业生涯规划书,发现大学生职业生涯规划书中存在诸多问题,并对其问题的原因进行了分析,提出应该加强学生对自我探
写心得体会可以让我们对自己的成长和进步有更全面的认识,从而更好地调整自己的学习和工作方法。以下是小编为大家精选的心得体会范文,希望能给大家一些启发和借鉴。
个人简历是一份详细记录个人学习、工作经历和能力特长等信息的重要材料。个人简历是你向雇主展示自己的机会,要用心对待,全力以赴。个人相片。。姓名:性别:女。民族:汉
优秀作文需要具备清晰的逻辑结构、丰富的语言表达和深入的思考。以下是小编为大家整理的优秀作文范文,希望能够对大家的写作有所借鉴和提高。春节到了,我们一家回到了老家
发言稿中的语言应该简洁明了,避免使用难懂的术语和长句子,让听众容易理解和接受演讲内容。发言稿是一种在公开场合为特定目的发表演讲的书面材料,它具有一定的格式和要求
在培训工作总结中,可以对培训内容、方式和方法进行回顾和反思。培训工作总结虽然形式多样,但是以下为大家提供的范文可以作为参考和借鉴的案例。磐安县双峰乡位于磐安县西
在现代社会,规章制度被广泛运用于各个领域,以便于管理和维持秩序。随着社会的不断发展,规章制度也在不断创新和完善,下面是一些最新的规章制度案例。1、禁止员工落座店
通过编写工作计划书,我们可以清晰地了解自己的工作目标和任务,并根据自己的优先级进行排序。下面是一些常见的工作计划书写作技巧和注意事项,请大家参考。为了能够成为一
发言稿是在正式场合中为了传递信息、引起共鸣和表达态度而准备的一种书面材料,它要求我们用恰当的语言和思维逻辑来打动或影响听众。通过学习这些范文,我们可以更好地理解
心得体会是我们对工作和生活中遇到的问题和困惑的思考和解决之道。接下来是一些关于心得体会的范文,希望能给大家带来一些启发和思考。当《舌尖上的中国》在全国风靡的时候
在策划方案中,我们还应该考虑到可能出现的问题和挑战,并制定相应的解决方案和备选方案。接下来是一些策划方案的关键要素和重点,希望对大家的工作有所启示。
在制定活动方案时,我们需要详细列出每个活动的具体内容和要求,以确保整个活动能够顺利进行。下面是一些实用的活动方案范文,希望对大家在实际操作中有所帮助。
通过销售工作,我了解到了市场需求和消费者的心理变化。以下是一些销售工作总结的实际案例和分析,希望能够为大家的工作带来一些新的灵感和启示。自x月x日进入xx销售部
服装不仅仅是一种物质,它还是身份认同和社会交往的表达方式。以下是一些品牌推荐和购物网站的介绍,希望可以帮助大家找到适合自己的服装和购买渠道。1、公司新进员工须经
讲话稿是演讲者能够清晰地表达自己意见的有力工具,能够传递出演讲者的个性和魅力。以下是小编为大家收集的一些优秀讲话稿范文,供大家参考和学习。各位领导、企业代表、求
一分钟,是最短暂的时刻,也是我们可以做很多事情的时间段。借鉴他人的经验和智慧,是我们成长和进步的必经之路。以下是一些值得借鉴的一分钟总结范文,供大家参考。
教学工作计划的编写需要具备一定的专业知识和经验,同时也需要与其他教学活动相互配合。走进优秀教师班级,探寻他们成功的教学工作计划的秘密。本学期,数学教研工作以课程
发言稿应该包含清晰的开场白、主体内容和结尾,以便使演讲传递的信息更有条理和逻辑。如果您在写发言稿时感到困惑,请参考以下小编为您整理的一些成功发言家的发言稿范文。
作文不仅是展示我们知识水平和思考能力的窗口,还是培养我们逻辑思维和创造力的重要途径。接下来,小编为大家分享一些优秀作文的范文,供大家参考和借鉴。济源市东园小学三
规章制度的定期评估和更新,是确保其与实际工作需求相适应的关键一环。看看下面这些规章制度的提案,或许能够解决你们组织中存在的问题。综合部工作的职责范围:行政管理、
读后感是对读书心情和体验的记录,可以帮助我们保持对阅读的热爱和持续的学习动力。9.让我们一起来看看这些读者的读后感范文,看看他们是如何评价这本书的。
优秀作文是一种才华的展示,它不仅要有深入的思考,还要有独特的表达方式。通过阅读这些优秀的作文范文,我们可以提高自己的写作水平和审美素养。那杯香茶像退了潮的大海,
通过总结,我们可以及时发现并纠正自己的错误,提高个人素质和能力。以下是小编为大家收集的个人总结范文,供大家参考和学习。。大家好!我是青马二期第七支部的支部书记李
讲话稿是在特定场合下,用于向听众传达信息、表达观点或发表演讲的一种书面材料,它可以对特定主题进行深入阐述,激发听众的思考和共鸣。有时候,我们需要准备一份讲话稿来
演讲稿范文是一种以文字形式呈现的演讲内容,它具有概括性和影响力。小编精心挑选的演讲稿范文,希望能为大家提供一些实用和有效的写作技巧和方法。同志们:刚才,会上表彰
这个月的工作总结使我意识到自己在某些方面还有一些提升空间。以下是一些关于月工作总结的模板和范文,供大家参考和借鉴,希望能够帮助大家写出一份优秀的总结。
加工可以分为机械加工、热加工、化学加工等不同的方法,每种方法都有其特点和适用范围。以下是一些加工经验的总结,希望能够对大家的加工生产提供一些指导。甲乙双方本着诚
培训心得是对参加培训活动后的反思和总结,可以帮助我们更好地理解和运用所学内容。从第二部分中随机选择一条:如何写一篇较为完美的培训心得是一个需要思考和探索的问题。
培训计划应该根据员工的职业发展需求和岗位要求来制定,具有针对性和可操作性。通过以下是一些培训计划的实施效果和成果展示,希望能够对大家的培训工作有所启发。