六年级教案的编写需要考虑到学生的认知水平和学习进度。以下是一些经过多年实践积累的六年级教案范文,希望对大家的教学有所启示。
教案教学设计人教新课标六年级总复习范文(18篇)篇一
教学目标:通过复习使学生进一步理解立体图形的概念和特征,掌握立体图形的表面积和体积公式的推导过程,正确运用公式,熟练进行计算。
教学过程:
复习。
基本练习(立体图形的认识)。
说出各图形的名称,说一说图中各个字母表示什么。
如果把这些图形分成两类,可以怎样分?为什么?
说一说长方体和正方体有什么特点?它们有什么不同?
说一说圆柱和圆锥有什么特点?
完成131页“做一做”中的1、2题。
巩固练习。
练习二十八1、2、3。
第六课时。
巩固练习(立体图形的表面积和体积)。
教学目标:通过复习使学生进一步理解立体图形的表面积和体积的概念,掌握立体图形表面和体积公式的推导,并能熟练运用公式正确计算。
教学过程:
基本练习。
说出各图形体积的计算公式,并说一说它们有什么联系。
说出它们的表面积应怎样计算。
圆柱体表面积=正方体表面积=长方体表面积=。
134页第11题。(计算后让学生说一说理由)。
第七课时。
综合复习(平面图形的周长和面积、立体图形的表面积和体积)。
教学目标:通过复习使学生更加深刻理解平面图形的周长和面积,立体图形的表面积和体积的概念,熟记它们的公式,正确计算,并能解决实际问题。
教学过程:
说一说你学过哪些平面图形的面积?它们的计算公式各是什么?
说一说你学过哪些平面图形的周长?它们的计算公式各是什么?
说一说你学过哪些立体图形的表面积?它们的计算公式各是什么?
说一说你学过哪些立体图形的体积?它们的计算公式各是什么?
比较。
平面图形的面积和立体图形的表面积有什么不同?
平面图形的周长和面积计算单位有什么不同?
立体图形的表面积和体积的计量单位有什么不同?
巩固练习。
149页练习三十三和153页练习三十四自编练习题。
教案教学设计人教新课标六年级总复习范文(18篇)篇二
五、课题:
教学目的。
1.通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.。
2.通过复习,培养学生的分析能力以及综合能力.。
3.通过复习,培养学生认真、仔细的学习习惯.。
教学重点。
通过复习,使学生能够掌握分数应用题的数量关系,并能正确的解答.。
教学难点。
通过复习,使学生能够掌握分数应用题的数量关系,并且能够数量、正确的解答.。
教学过程。
一、复习准备.。
老师这里有两个数,一个是6,另一个是3.你能够用6与3提问并且进行回答吗?
学生回答:
(1)3是6的几分之几?
(2)6是3的几倍?
(3)3比6少几分之几?
(4)6比3多几分之几?
(5)6占6与3总和的几分之几?
(6)3是6与3差的几倍?……。
谈话导入:今天我们就来复习分数应用题.(板书:分数应用题的复习)。
二、复习探讨.。
(一)教学例4.。
学校举办的美术展览中,有50幅水彩画,80幅蜡笔画.___________?
1.教师提问:根据已知条件,你都可以提出什么问题?并解答.。
2.反馈:
(1)水彩画和蜡笔画共多少幅?
(2)水彩画比笔画少多少幅?
(3)蜡笔画比水彩画多几分之几?
(4)水彩画比蜡笔画少几分之几?
(5)水彩画是蜡笔画的几分之几?
(6)蜡笔画是水彩画的几分之几?
(7)……。
3.教师质疑.。
(1)5问和6问为什么解答方法不同?(单位1不同)。
(2)3问和4问的问题有什么不同?(单位1不同)。
(二)例题变式.。
1.学校举办的美术展览中,有50幅水彩画,蜡笔画比水彩画多,蜡笔画有多少幅?
(1)学生独立解答.。
(2)学生讨论两道题的区别.。
(三)深化.。
如果题目中的分数发生了变化,我们还会解答吗?
(1)学生独立解答.。
(2)学生讨论两道题的区别.。
三、巩固反馈.。
1.分析下面每个题的含义,然后列出文字表达式.。
(1)今年的产量比去年的产量增加了百分之几?
(2)实际用电比计划节约了百分之几?
(3)十月份的利润比九月份的利润超过了百分之几?
(4)的电视机价格比降低了百分之几?
(5)现在生产一个零件的时间比原来缩短了百分之几?
(6)十一月份比十二月份超额完成了百分之几?
2.列式不计算.。
(1)油菜子的出油率是42%,2100千克油菜子可以榨油多少千克?
(3)某工厂计划制造拖拉机550台,比原计划超额完成了50台,超额了百分之几?
3.判断并且说明理由.。
男生比女生多20%,女生就比男生少20%.。
四、课堂总结.。
通过今天这堂课,你有什么收获吗?
五、课后作业.。
某体操队有60名男队员,
(1)女队员比男队员多,女队员有多少名?
(2)男队员比女队员多,体操队员共有多少名?
(3)女队员比男队员少,女队员有多少名?
(4)男队员比女队员少,体操队员共有多少名?
六、课题:用比例知识解答应用题。
教学目的。
1.通过复习,使学生能够正确判断出应用题中所涉及的相关联的量成什么比例关系.。
2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.。
3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.。
教学重点。
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.。
教学难点。
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.。
教学过程。
一、复习准备.。
下面每题中的两种量成什么比例关系?
(1)速度一定,路程和时间.。
(2)总价一定,每件物品的价格和所买的数量.。
(3)小朋友的年龄与身高.。
(4)正方体每一个面的面积和正方体的表面积.。
(5)被减数一定,减数和差.。
谈话引入:我们今天运用正反比例的知识来解决实际问题.。
(板书:用比例知识解应用题)。
二、探讨新知.。
(一)教学例5(用比例解答下题)。
1.学生读题,独立解答.。
2.学生反馈:
3.分析:
(1)为什么需要用正比例解答?
(2)12和要求的天数之间有什么关系?
(二)反馈.。
2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?
三、巩固反馈.。
四、课堂总结.。
通过这堂课的学习,你有什么收获?
五、课后作业.。
六、板书设计。
教案教学设计人教新课标六年级总复习范文(18篇)篇三
一、指导思想:为了把好教学质量关,检测课程标准的落实请况,全面了解学生的数学学习历程,查找学生在学习过程中和教师教学经历中的问题,促进学生的学习和改进教师的教学。寻求更适应学生自我发展的学习模式,强化学校对教学管理、教师对教学行为的反思的重视程度。提升理念,更好的指导引领我们的复习,取得评价主、客体都满意的评价结果。
二、复习范围。
1-6年级学习内容,侧重5-6年级所学内容。
三、新课程命题的特点:
1、以新的教育理念为指导,重视基本技能的考查,着眼发展能力。培养学生科学的思维方式和创新意识。
2、试题力求贴近社会生活,突出联系实际,富有时代特征,引导学生关注社会,独立思考问题,学有所用。
3、具有较强的开放性和综合性,注重学科知识的内在联系和多学科的综合联系。
4、关注学生情感、态度、价值观的协调发展,彰显人文魅力。
5、关注学生知识网络的自主构建。
四、课程内容学习的核心目标及目标达成策略:
切实发展学生的数感、符号感、空间观念、统计观念、以及应用意识和推理能力。达成核心目标,学生就可以以不变应万变,灵活解决所面对的实际问题。
数感:是人对数与运算的一般理解,这种理解可以帮助人们用灵活的方法做出数学判断和为解决复杂的问题提出有用的策略。是一种主动地、自觉地或自动化地理解数和运用数的态度与意识。数感是人的一种基本的数学素养,是建立明确的数概念和有效地进行计算等数学活动的基础,是将数学与现实问题建立联系的桥梁。
数感使人眼中看到的世界有了量化的意味,当我们遇到可能与数学有关的具体问题时,就能自然地、有意识地与数学联系起来。比如:参加辅导时我们常常要估计一下大约有多少人参加;看到体形较为特殊的人,我们很多时候在估量,这个人有多少斤或千克。大家可能还记得一道期末质量检测题:选择重量单位的题目是:老师的体重可能是65()后面有三个选项(吨、千克、克)一些学习成绩优秀的孩子这道题答错了,选择了“吨”。这说明孩子没有建立相应的数感,没有形成吨这个重量单位的概念,没有衡量、辨析、推理验证的意识和能力。
我们强化发展学生的数感可从以下几个方面入手。
a、应用数字表示具体数据和数量关系。
b、能判定不同的算术运算,有计算能力,并能选择恰当的方法;
c、能依据数据进行推论,并对数据和推论的精确性和可能性进行检验。
典型例题:1、辨析:1米的50%,是50%米。
2、排列:加循环节使排列符合要求:
3.14163.14163.14163.1416。
3、一个滴水的水龙头每天白白地流掉12千克水。照这样计算,第一季度就要浪费掉()千克水。
比如|:间隔问题,间隔数与物体数有什么关系,内隐着什么规律,我们可以画图,摆学具,画线段图,用图形或可用介质来抽象其中的数量关系或变化规律。这是初步的符号感的表现。再如用n表示一个自然数,那么与之相邻的两个自然数就可以用n-1和n+1来表示。还有比较典型的用字母表示公式、关系式等。
典型例题:1、利用关系式判断:8x=yy和x成()比例。
x/2=yy和x成()比例。
y/6=3/xy和x成()比例。
2、在长方形内截取一个最大的正方形,阴影表示剩余部分。
(1)阴影部分的周长是(2a)。
(2)阴影部分的面积是((a-b)*b)b。
a
空间观念:主要表现在能由实物的形状想象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;能从较复杂的图形中分解出基本图形,并能分析其中的基本元素及其关系;能描述实物或几何图形的运动和变化;能采用适当的方式描述物体间的位置关系;能运用图形形象地描述问题,利用直观进行思考。
比如:认识球体,想象球中心的点就是球心,球心到球面的线段就是球半径。在实物不在眼前时,学生的头脑里依然有球立体的形象概念。再比如,在绿化栽树、载花,设计成什么样的图案,用哪些几何图形、如何组合等等。到第三学段经常要依据条件叙述画出图形,如果没有形成一定的空间观念是无法保证后续学习的。
典型例题:1、用4个同样的正方体木块,摆(一层两排)成一个长方体,表面积减少了32平方厘米,每一块的体积是()立方厘米。
2、用一张正方形的纸正好卷成一个圆柱,这个圆柱的底面周长和高一样长。()。
3、把圆柱的侧面展开不能得到()。
长方形、梯形、正方形、平行四边形。
4、一个正方形,以一条边为轴,旋转一周,会出现的立体图形是()。
统计观念具体表现:认识到统计对决策的作用。能从统计的角度思考与数据有关的问题;能够通过收集数据、描述数据、分析数据的过程作出合理的决策;能对数据的来源、处理数据的方法,以及由此得到的结果进行合理的质疑。
在现代社会里人们面临更多的机会和选择,常常在不确定的情境中,根据大量的无组织的数据作出合理的决策,这是每一个公民都应具备的基本素质,比如投资论证、采购、炒股等都离不开统计,需统计观念作保障的。
典型例题:污染指数。
150。
轻度污染。
100。
良
50。
优
大连太原上海杭州厦门重庆昆明。
应用意识主要表现在:认识到现实生活中蕴涵着大量的数学信息,数学在现实生活中有着广泛的应用;面对实际问题能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策论。
推理能力:能通过观察、实验、类比等获得数学猜想,并进一步寻求证据;能有条理地表达思考过程;在与他人交流的过程中能运用数学的语言合乎逻辑地进行讨论与质疑。
(推理能力已落实到了四个内容领域之中。应用意识和推理能力重在关注数学与生活的联系,能够进行理性的思考。)。
典型例题:一条平均水深为1.5米的河,一个身高1.7米、水性不好的人下河游泳有危险吗?(用你喜欢的方法简要说明)。
以上通过六个方面,说明了复习的着眼点,要使知识转化成内在的东西,形成能力,使学生得到实质的发展才是我们追求的目标。另外义务教育阶段的数学课程应突出体现基础性、普及性、和发展性,所以评价也应体现基础性、普及性、和发展性。体现国家对小学阶段学生数学素养的基本要求。因此要在基础性的基础上去追求发展性,不必过高要求。
根据建构主义理论的合理内核:学习是个体主动建构自己知识的过程,是一种结构改变的过程。不是简单的信息积累,而是新旧知识经验的冲突,经由磋商与和解引发学习者认知结构的重组或改变的过程。所以我们在上复习课时,要重视促成学生经由磋商与和解而形成知识经验的重组。经由主体作用重建形成的个性知识网络,才是学生真正获得的知识。才能达成学生真正意义的发展。
四、小学数学各模块知识网络分析:
以下提供各模块的知识网络仅供参考:(可以做学生的学案)。
数的认识简易方程。
数和数的运算数的整除代数初步知识。
数的运算比和比例。
一般复合应用题长度。
典型应用题面积。
应用题分数、百分数应用题量的计量体积。
列方程解应用题重量。
比和比例应用题时间。
线
平面图形的认识与计算角。
平面图形。
空间与图形长方体、正方体。
立体图形的认识与计算。
圆柱体、圆锥体。
统计表。
统计与概率。
统计图。
数和数的运算。
(一)数的认识。
整数的含义:像…-3,-1,0,1,2,3,…这样的数统称整数。
正数和负数的含义:像0,1,+5,6,…这样的数叫做正数;像-3,-2,-9,…这样的数叫做负数。
占位。
0是最小的自然数,0的作用表示起点。
表示界线。
a自然数1是最小的一位数,是自然数的基本单位。
数的意义:是整数的一部分,可表示基数也可以表示序数。
分数。
分类:真分数--分子比分母小(小于1)。
假分数--分子大于或等于分母(大于或等于1)。
小数有限小数。
按小数部分分无限不循环小数。
无限小数纯循环小数。
分类循环小数。
按整数部分分纯小数混循环小数。
带小数。
教案教学设计人教新课标六年级总复习范文(18篇)篇四
思考并回答:
1、在小学里我们学过哪些数?
2、最小的非0的自然数是多少?有没有最大的自然数?自然数的基本单位是多少?
3、小数又可以怎样分类?
4、我们学过的整数和小数的计数单位有哪些?数位的顺序是怎样的?
6、写数时应注意什么?用阿拉伯数字写出下面各数:七千零三十八、七亿零三十八万、
三亿零五十万六千、零点零四零六。
练习:
1、在数位顺序表里,小数点左边第一位是()位,计数单位是();第五位是()位,计数单位是()。小数点右边第一位是()位,计数单位是();第三位是()位,计数单位是()位。
2、最高位是百万位的整数是()位数;最后一位是百分位的小数是()位小数。
3、5830070420读作()。“8”在()位上,表示();“7”在()位上,表示()。
4、有一个四位数,加上“1”就变成五位数,这个四位数是();有一个四位数,减去“1”就变成三位数,这个四位数()。
5、地球有多大?请读出下面数据。
地球的半径6378.14千米赤道长40073.92千米。
地球表面积510067860平方千米地球海洋面积361745300平方千米。
思考并回答:
1、3.150=3.15、7.8=7.8000,这是根据什么?
2、一个数的小数点向左移动两位,再向右移动一位,它的值有什么变化?
3、1÷3、70.7÷33,商的小数部分的数字有什么规律?
5、下面的循环小数,如果各保留三位小数取它的近似值,该怎样写?.....
0.720.33.150。
6、以85400为例,省略万后面的尾数与写作以万为单位的数有什么区别?
8、三个连续的自然数的和是45,这三个数分别是()、()、()。
练习:
1、9035000以万为单位写作(),省略万后面的尾数写作()。408000000以亿为单位写作(),省略亿后面的尾数写作()。
2、7.85353……写作(),0.346346……写作()。
3、0.04×1000就是将0.04的小数点向()移动()位。
4、25.4÷100就是把25.4的小数点向()移动()位。3.002的小数点左移两位,是原数的(),小数点右移三位,是原数的()倍。
5、两个数相除的商是3.45,如果把被除数的小数点向右移动一位,除数的小数点向左移动一位,商是()。
数的整除。
思考并回答:
1、下面的除式,哪些是整除关系?是整除关系的两个数要具备哪些条件?
32÷4、45÷7、12÷0.3、720÷90、2÷4。
4、什么叫质因数?什么叫分解质因数?
5、下面各题分解质因数是否正确?为什么?不对的应该怎样改正?
6、求下面各组数的最大公约数和最小公倍数:14和42、24和32、12和18。
7、互质的两个数一定都是质数吗?怎样判别两个数是否是互质数?
练习:
1、在16、4、8、32、36、80、84、160这些数中,80的约数有(),16的倍数有()。
2、20的约数有(),32的约数有(),20和32的公约数有(),其中最大的公约数是()。
3、按照下面要求写出互质数:两个都是质数();两个都是合数();一个是质数,一个是合数()。
能被3整除的数。
能被5整除的数能被2整除的数。
5、求下面各组数的最大公约数和最小公倍数:27和18、39和117、8和15。
6、一个数用2、3、5除正好都是整数,这个数最小是();有一个数用它去除30、45、60正好都是整数,这个数最大是()。
7、判断题:
(1)没有约数2的自然数一定是奇数。
(2)一个自然数的约数总比它的倍数小。
(3)两个质数相乘,积一定是合数。
(4)一个奇数加上7,一定能被2整除。
(5)2、3、5都是质因数。
(6)两个合数不能成为互质数。
(7)17的约数都是质数。
(8)因为3、5、6的最大公约数是1,所以它们的最小公倍数是3×5×6=90。
分数和百分数。
思考并回答:
1、先填空,在回答:4/5=1÷×、4/5=÷;7/9=1÷×、7/9=÷。
什么叫分数?分数的分子、分母个表示什么?分数单位表示什么意思?
2、什么叫百分率?“9/100米”与“9﹪”在意义上有什么区别?
3、什么是分数的基本性质?分数的基本性质与。
商不变的性质、比的基本性质有什么联系?
4、什么叫约分?什么叫通分?你能说出约分和通分的方法吗?
5、下面括号里应填什么数?其中哪一个分数是最简分数?为什么?
24/40=()/20=48/()=()/5=()/15=36/()。
6、举例说明分数、小数、百分数的互化方法。
8、分数、小数、百分数混在一起,怎样比较它们的大小?比较0.6、2/3、61﹪的大小。
练习:
1、把3米长的钢管平均分成5段,每段钢管是全长的()/(),每段的长度是()/()米,3段占全长的()﹪。
2、生产500吨化肥,计划25天完成,平均每天完成计划的()﹪,每天生产()吨。
3、3里面有()个1/3,2/3里面有()1/12,1里面有11个2/(),100个1/7是()。
4、7/15的分数单位是(),添上()个这样的分数单位等于1,减去()个这样的分数单位等于1/5。
5、5/8的分母加上24,要使分数的大小不变,分子要();6/15的分母减去5,要使分数的大小不变,分子要()。
6、一个分数,它的单位是1/8,它有7个这样的单位,这个分数是(),化成小数是(),化百分数是()。
量和计量。
思考并回答:
1、在小学里已经学过哪些量?它们各有哪些计量单位?
各种量基本单位各单位之间的关系。
长度1米1千米=()米。
1米=()分米。
1分米=()厘米。
1厘米=()毫米。
面积1平方米1平方千米=()公顷。
1平方千米=()平方米。
1公顷=()平方米。
1平方米=()平方分米。
1平方分米=()平方厘米。
体积1立方米。
1升1立方米=()立方分米。
1立方分米=()立方厘米。
1升=()毫升。
质量1千克1吨=()千克。
1千克=()克。
时间1秒1日=()时。
1时=()分。
1分=()秒。
2、在进行单位之间的换算,或单名数与复名数之间的变换时,要注意什么?
练习:
1、填空:
(1)5米=()分米3.2分米=()厘米5平方米=()平方分米。
3.2平方分米=()平方厘米52700平方米=()公顷。
(2)4.8升=()毫升1.6千克=()克7.3米=()分米=()厘米。
(3)4.2公顷=()平方米0.8平方千米=()公顷。
1.05立方米=()立方分米1.45吨=()千克。
(4)210秒=()分1/6日=()时1时20分=()分。
2、选择:
(1)下列年份中,不是闰年的年份是()a1980年bc21。
(2)25厘米×()=1米a1/2b4c40。
(3)面积是1平方米的正方形的边长是()a10厘米b100厘米c10000厘米。
3、判断题:
(1)第一季度有91天的这一年是闰年。
(2)一水池装了0.3立方米的水,这池水的容积是300升。
教案教学设计人教新课标六年级总复习范文(18篇)篇五
学习目标。
1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例或反比例。
2、使学生初步认识正比例的图像是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的信心。
考点分析。
1、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:=k(一定)。
2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。对照图像,能根据一种量的值,估计另一种量相对应的值。
3、两种相关联的量,一种量变化,另一种量也随着变化。如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy=k(一定)。
4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。
典型例题。
例1、(正比例的意义)一列火车行驶的时间和路程如下表。这两种量有什么关系?
时间/时123456……。
路程/千米120240360480600720……。
分析与解:(1)从上表可以看出,表中有时间和路程两种量。
(2)从左往右看,时间扩大,路程也扩大;从右往左看,时间缩小,路程也缩小。所以它们是两种相关联的量。
(3)路程和时间的比值始终不变,=120,=120,=120……这个比值就是火车的行驶速度。
通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值(也就是速度)是一定的,有这样的关系:=速度(一定)。
具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例关系;行驶的路程和时间成正比例的量。
点评:判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。不要省去任何一步。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:=k(一定)。
例2、(判断是否成正比例)。
练习本的单价一定,买练习本的数量和总价是不是成正比例?为什么?
分析与解:根据正比例的意义,看两个变量的比值是否一定,如果两个变量的比值一定,那么这两个变量就成正比例,反之,则不成正比例。
买练习本的数量和总价是两种相关联的量,它们与练习本的单价有下面的关系:
=练习本的单价(一定)。
所以练习本的数量和总价成正比例。
例3、(正比例的图像)磁悬浮列车匀速行驶时,路程与时间的关系如下。
时间/分1234567……。
路程/千米7142128354249……。
(1)图中的点a表示时间为1分钟时,磁悬浮列车驶过的路程为7千米。请你试着描出其他各点。
(2)连接各点,它们在一条直线上吗?
42。
35。
28。
21。
14。
7●a。
1234567时间/分。
分析与解:根据提供的各组数据描出图像的许多个点,再依次连成直线。路程和时间相对应的数的比值都是7,即速度一定,路程和时间成正比例,图像是一条直线。对照图像,可以根据时间的值估计出路程的值,也可以根据路程的值估计出时间的值,估计时允许有一定的出入。
(1)描点、连线如图。
路程/千米。
42●。
35●。
28●。
21●。
14●。
7●a。
1234567时间/分。
(2)在一条直线上,因为路程和时间成正比例,正比例的图像是一条直线。
(3)根据图像,列车运行2分半钟时,行驶的路程是17.5千米;行驶30千米大约需要4.3分钟。
例4、(辨析)圆的周长和直径成正比例,圆的面积和半径成正比例?
分析与解:圆的周长和直径成正比例,而圆的面积和半径却不成正比例。
可列表判断。
半径/cm123456……。
直径/cm24681012……。
周长/cm6.2812.5618.8425.1231.437.68……。
面积/cm3.1412.5628.2650.2478.5113.04……。
圆的周长和直径的相对应的数的比值都是3.14,所以圆的周长和直径成正比例。而圆的面积和半径的相对应的数的比值是变化的,所以圆的面积和半径不成正比例。
圆的周长和直径成正比例,圆的面积和半径却不成正比例。
例5、(反比例的意义)。
每小时加工零件的个数/个2030406080……。
加工的时间/时128643……。
分析与解:(1)从上表可以看出,表中有每小时加工零件的个数和加工的时间两种量。(2)从左往右看,每小时加工零件的个数扩大,加工的时间反而缩小;从右往左看,每小时加工零件的个数缩小,加工的时间反而扩大。所以它们是两种相关联的量。(3)每小时加工零件的个数和相对应的加工的时间的积都始终不变,如20×12=240,30×8=240,40×6=240……而这个积就是这批零件的总个数。
通过观察和计算,我们发现:每小时加工零件的个数和加工的时间是两种相关联的量,每小时加工零件的个数随着加工的时间变化而变化,但无论它们怎么变化,相对应的积是一定的,有这样的关系:每小时加工零件的个数×加工的时间=零件的总个数(一定)。
所以每小时加工零件的个数和加工的时间成反比例的量,它们之间的关系叫做反比例关系。
点评:判断两种量是不是成反比例,和正比例一样,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的乘积是否一定,进行判断。不要省去任何一步。如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy=k(一定)。
例6、(判断是否成反比例)。
总产量一定,每公顷的产量和公顷数是不是成反比例?为什么?
分析与解:根据反比例的意义,看两个变量的乘积是否一定,如果两个变量的积一定,那么这两个变量就成反比例,反之,则不成反比例。
每公顷的产量和公顷数是两种相关联的量,它们与总产量有下面的关系:
每公顷的产量×公顷数=总产量(一定)。
所以每公顷的产量和公顷数成反比例。
例7、(辨析)和一定,一个加数和另一个加数成反比例。
分析与解:判断两个变量是否成反比例,关键是看两个变量的乘积是否一定。很明显,和一定,两个加数的积是变化的,所以它们不成反比例。
和一定,一个加数和另一个加数不成反比例。因为它们的积不一定。
点评:有些相关联的量,虽然也是一种量变化,另一种量也随着变化,但它们不是积一定,也不是比值一定,它们就不成比例。像这样的还有:人的跳高高度和身高;减数一定,被减数和差等。
例8、(综合题1)。
(1)长方形的面积一定,长和宽成反比例吗?为什么?
(2)长方形的周长一定,长和宽成反比例吗?为什么?
分析与解:判断时可以用列表的方式列举数据,也可以根据计算的公式来推导。
(1)因为长方形的长×宽=长方形的面积(一定),所以长和宽成反比例。
(2)长方形的周长=(长+宽)×2,长方形的周长一定,长+宽的和一定,但不是积一定,所以长和宽不成反比例。
例9、(综合题2)。
分别说明大米的总千克数、每天吃的千克数和天数这三种量中,每两种量的比例关系。
(1)大米的总千克数一定,每天吃的千克数和天数;
(2)每天吃的千克数一定,大米的总千克数和天数;
(3)天数一定,大米的总千克数和每天吃的千克数。
分析与解:在大米的总千克数、每天吃的千克数和天数这三种量中,当某一种量一定时,另外两种量可能成正比例关系,也可能成反比例关系。可以根据数量关系式来判断。
(1)因为每天吃的千克数×天数=大米的总千克数(一定),所以大米的总千克数一定时,每天吃的千克数和天数成反比例。
(2)因为=每天吃的千克数(一定),所以每天吃的千克数一定时,大米的总千克数和天数成正比例。
(3)因为=天数(一定),所以天数一定时,大米的总千克数和每天吃的千克数成正比例。
教案教学设计人教新课标六年级总复习范文(18篇)篇六
第2课时(总第11课时)。
一、教材分析。
【复习内容】。
【知识要点】。
1.平面图形的特征。
图形边的特征角的特征。
长方形对边平行且相等四个角都是直角。
正方形四条边都相等四个角都是直角。
平行四边形对边平行且相等对角相等。
梯形只有一组对边平行四个角的内角和是360。
三角形两边之和大于第三边三个角的内角和是180。
圆由一条曲线围成通过圆心两端在圆上的线段叫直径。
2.画平面图形的高。
3.三角形的内角和。
求三角形中未知的一个角或几个角的度数,涉及到综合运用直角三角形的特征,等腰三角形的特征以及有关比的知识。
4.把多边形分成几个简单的图形。
【教学目标】。
1.通过复习,使学生加深对长方形.正方形.平行四边形.梯形.三角形和圆等平面图形基本特征的认识,进一步理解这些平面图形之间的关系,完善认知结构。
2.通过复习,使学生进一步体会平面图形与现实生活的密切联系,积累学习有。
关平面图形知识的经验和方法,发展简单的推理能力,增强空间观念。
3.通过复习,使学生进一步感受空间与图形领域学习内容的趣味性和挑战性,产生继续探索学习的积极心向,增强学好数学的信心。
二、教学建议。
复习近平面图形的特征时一、要抓住从直观图形到抽象知识的概括,由具体的某个图形再进行归类,找出共同特征。二、可引导学生思考以下几方面的问题:等边三角形与等腰三角形具有怎样的关系?它们与三角形具有怎样的关系?平行四边形.梯形和四边形具有怎样的关系?正方形.长方形与平行四边形具有怎样的关系?圆的圆心.半径.直径的含义分别是什么?分别用什么字母表示。三、解决“练习与实践”的7.8.9题时,要注重学生方法的指导,画法要规范,围三角形时要考虑全面,求角的度数时的方法是否最优。
三、知识链接。
1.长方形和正方形(教科书三上p58例题)。
2.平行四边形.梯形(教科书四下p43.47例题)。
3.三角形(教科书四下p23例2,p24例3,p28的例题)。
四、教学过程。
(一)回顾并整理“围成的平面图形”
1.提出要求:请大家回忆,我们学过哪些围成的平面图形?先画出相关的图形,再在小组里交流一下。
2.进一步要求;如果把这些平面图形分成两类,可以怎样分?
引导学生认识到:由线段围成的平面图形分为一类,由曲线或由曲线和线段共同围成平面图形分为一类。
4.让学生在画出的三角形.平行四边形和梯形上作高,在画出的圆中用字母标出圆心.半径和直径。
(二)回顾并整理三角形的特征.分类,以及有关特殊三角形之间的关系。
1.提出要求:关于三角形的知识,你能想到哪些?小组先交流再全班交流。
2.出示三角形的分类图。(图1)。
(图1)(图2)。
说说你是怎样理解这个图形的?什么样的三角形是锐角三角形.直角三角形和钝角三角形?
追问:能不能找到一个三角形,既不是锐角三角形.直角三角形和钝角三角形?
讨论:在一个三角形中,最多有几个直角,最多有几个钝角?为什么?
3.出示三角形的集合图(图2)。
判断下面说法是否正确:
(1)等边三角形一定是等腰三角形。()。
(2)等腰三角形一定是等边三角形?两边之和大于第三边。
你能用学过的其他知识来解释上面的结论吗?
4.完成“练习与实践”第8.9题。
第8题让学生先独立选一选,再要求说说选择时是怎样想的。
第9题先让学生独立算一算.填一填,再指名说说计算时的思考过程。
(三)回顾并整理四边形的特征,以及相关四边形之间的关系。
2.学生尝试画图并进行交流。
判断下面说法是否正确。
(1)长方形一定是平行四边形。()。
(2)平行四边形一定是长方形。
(3)正方形一定是长方形。
(4)长方形一定是正方形。
提问:平行四边形.长方形.正方形之间的关系还可以怎样表达?
3.指导完成“练习与实践”第7题。
提醒学生要借助工具规范地作图,再指名说说具体的画图过程。
(四)指导完成“练习与实践”第10题和思考题。
第10题先让学生在小组里讨论分割图形的方法,并试着分一分,再通过交流和评点,使学生进一步体会不同分割方法的特点。
思考题可以先让学生在图中画出相应的线段,再数一数三角形一共有多少个,并说一说这些三角形各是什么三角形。
(五)全课小结。
教案教学设计人教新课标六年级总复习范文(18篇)篇七
教学目标:通过复习使学生进一步理解圆与扇形、对称图形的概念;掌握它们的特征和性质;以及各图形之间的联系。
教学过程:
圆与扇形。
请你画一个半径为2厘米的圆,并用字母o、r、d分别标出它的圆心、半径和直径。
回答:
什么叫圆的半径?直径?
在同一个圆里,、有多少半径?有多少直径?它们的长度有什么关系?
什么叫扇形?(让学生笔做上题再回答)。
想一想:扇形的大小是由什么决定的?
完成126页的“做一做”
轴对称图形。
什么叫图形叫做轴对称图形?
什么叫做对称轴?
想一想:我们学过的图形中,还有哪些是轴对称图形。观察你周围的物体,看看有哪些物体的形状是轴对称图形。
完成127页练习二十六第1~4题。
空间与图形。
第一课时。
教学过程:
直线、射线、线段。
提问:1)分别说一说什么叫直线、射线、线段?
直线、射线和线段有什么区别?
完成123页上面的“做一做”。(学生笔做)。
角
提问:1)什么叫做角?
2)角的大小与什么有关?
整理:把表中的空格填写完整。
完成123页下面“做一做”的1题、2题。
锐角直角钝角平角周角。
大于0°。
小于90°。
垂直与平行。
提问:
1)在同一平面内,两条直线的相互位置有哪几种情况?
2)什么样的两条直线叫做互相垂直?
什么样的两条直线叫做互相平行?
回答:下面几组直线中,哪组的两条直线互相垂直?哪组的两条直线互相平。
完成教材124页的“做一做”
三角形。
提问:
1)什么叫做三角形?
2)在下面的三角形中,顶点a的对边是指哪一条边?
先笔做:以顶点a的对边为底,画出三角形的高,并标出底和高。(前页一幅图)。
在下面的表中填写三角形的名称和各自的特征。
名称。
图形。
特征。
回答:锐角三角形、直角三角形、钝角三角形的联系与区别。
四边形。
提问:什么叫四边形?
回答:看图说出下面各图的特点,再说一说图中各字母表示什么。
完成125页“做一做”中的1、2题。
教案教学设计人教新课标六年级总复习范文(18篇)篇八
班级姓名小组小组评价。
学习目标:
1、学会用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。会分析除法应用题中的数量关系,学习用线段图表示题中数量关系的方法。
2、通过独立思考、小组合作、展示质疑,在学习过程中,感悟分数除法应用题之间的内在联系,培养推理能力。
3、极度热情,全力以赴,精彩展示,做最好的自己。
重点:会用方程解答“已知一个数的几分之几是多少,求这个数”的实际问题。
难点:根据分数乘法的意义,找到等量关系,正确列出方程。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够学会用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。会分析除法应用题中的数量关系,学习用线段图表示题中数量关系的方法。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:
1、自学课本p37-p39页。
思考:1)、列方程解应用题的关键。
2)、用算术法解除法应用题的关键。
2、填空。
1)、米是米的();米相当于()米。
2)、自行车的速度是汽车的,把()看作单位“1”。
3)、一个数的是,这个数是()。
4)、一根卅绳长54米,剪去,还剩()米,把()看作单位“1”。
3、解方程。
二、合作探究:
例1、根据测定,成人体内的水分约占体重的,而儿童体内的水分约占体重的,小明体内有28千克的水分,小明的体重是爸爸的。
1)、小明的体重是多少千克?
2)、小明爸爸的体重是多少千克?
要求:(1)、用两种方法解答。
(2)、画出线段图表示题中的数量关系。新课标第一网。
小结:(1)、列方程解应用题的关键:
(2)、用算术法解分数除法应用题的关键:
要求:1)、用两种方法解答。
2)、画线段图表示题中的数量关系。
小结:1)、分数连除应用题的解题关键:
2)、分数连除应用题的解题方法:
方程解法:
算术解法:
三、学以致用:
1、画线段图表示下面各数量关系。
1)、鸡的只数是鸭的。
2)、女生人数占全班的。
2、列式计算新课标第一网。
1)、一个数的是64,求这个数。
2)、12的与什么数的2倍相等?
3)、加上一个数的,和是1,求这个数。
四、解决问题:
1、小红看一本书,已看了76页,是未看页数的,这本书小红还有多少页未看?
教案教学设计人教新课标六年级总复习范文(18篇)篇九
班级姓名小组小组评价。
学习目标:
1、掌握用方程和算术方法解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题。学会运用线段图帮助分析数量关系。
2、在分析数量关系解决实际问题的过程中,提高学生分析问题和解决问题的能力。
3、极度热情,全力以赴,精彩展示,做最好的自己。
重点:掌握解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题的方法。
难点:学会分析题中数量之间的关系。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够掌握用方程和算术方法解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题。学会运用线段图帮助分析数量关系。
并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,补充之后由老师进行点拨,最后巩固知识。
一、自主学习:
1、自学课本p39-p40页。
2、直接写出得数。
3、画线段图表示下面各数量关系,并写出等量关系式。
1)、杨树比柳树少。
2)、柳树比杨树多。
二、合作探究:
例1、美术小组有25人,美术小组的人比航模小组多,航模小组有多少人?
要求:1)、画线段图表示题中的数量关系。
2)、用方程和算术方法两种方法解答。
小结:解决稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题的解题关键是:
要点提示:解答分数应用题,在找准单位“1”的同时,还要看清所要求的问题与单位“1”的关系。
三、学以致用:
1、想一想,填一填。
商店运来彩电150台,(),运来空调多少台?
1)、空调比彩电少,列式是()。
2)、150除以(1-),条件是()。
3)、空调比彩电多,列式是()。
4)、彩电比空调多,列式是()。
2、列式计算。
1)、一个数的是的,求这个数。
2)、与的积再除以,商是多少?
3)、的倒数的3倍减去,差是多少?
四、解决问题:新课标第一网。
3)、一筐苹果的是16千克,吃去这筐苹果的,还剩多少千克?
新课标第一网。
教案教学设计人教新课标六年级总复习范文(18篇)篇十
教学目标:
使学生进一步理解和掌握用比例知识解答应用题的方法。
抓住解题关键进行熟练准确的判断,从而找准题中的等量关系。
通过与算术方法解答相比较,加强知识之间的联系,使学生进一步理解能用比例知识解答应用题的数量关系。
教学过程:
师:谁能够说说用比例知识解应用题的关键是什么?
判断下题中各量成什么比例?并说明理由?
指导学习题例。
让学生独立解答例7。
在弄清题意后,把例5未完成的部分写完整然后比较这两种解答方法的异同点。
相同点:都是抓住商一定来建立等量关系列出方程或比例式解答的。
不同点:第一种解法是直接设所求问题为x。
第二种解法是间接设,即解出x后,还要用x减3才是所求问题。
师:除了这两种方法解答外,还能用其它方法吗?请用算术方法解答例7。
学习例6。
师:请同学们在教材上完成例6后,再用算术方法解答。说说用比例解例6的关键。
对比小结。
比较例5例6有什么不同?分别是根据什么关系来解答的?
(强调用比例知识解应用题,关键是判断题中的数量成什么比例,再根据题中比例关系找准等量关系,把其中未知数量用x代替,列出方程解答)。
算术解法和比例解法的比较和联系。
观察算式(例5)。
练习巩固。
笔答题:教材117页1~3题。
全课总结(略)。
教案教学设计人教新课标六年级总复习范文(18篇)篇十一
教学目标:
引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法;通过互助活动,培养学生与人合作、与人交流的习惯;通过自行设计方案,培养学生自主探索和创新的意识。
教学重、难点:理解倒数的含义,掌握求倒数的方法。
教学过程:
(一)导入。
1.找找下面文字的构成规律。
呆---杏土---干吞---吴。
2.按照上面的规律填数。
--()--()--()。
能根据分之和分母的位置关系,给这三组数取个名吗?揭示课题:倒数。
(二)教学实施。
关于倒数同学们想知道些什么呢?学习倒数的含义。
1.观察教材24页的例1,归纳,总结倒数的含义,
2.举例验证:4和1/4,7和1/7,3和1/3。
4乘1/4的积是1,所以4和1/4互为倒数;7可以看成分母是1的分数,把分子、分母调换位置后就是1/7,所以7和1/7互为倒数。
归纳:乘积是1的两个数互为倒数。
3.特殊数:0和1(引导学生辩论0有没有倒数,1有没有倒数,是多少?)。
教师归纳板书:0没有倒数,1的倒数就是它本身。
4.学习例2--求倒数的方法。
5.
完成教材24页的“做一做”,完成练习六的第3、4题。
(二)课堂练习。
找一找下列数中哪两个数互为倒数。
2101/21/10。
填空。
1的倒数是(),()的倒数是2/3。
10的倒数是(),()没有倒数。
(三)课堂小结。
学完本节课,我们知道了乘积是1的来年各个数互为倒数。1的倒数是它本身,0没有倒数。
课后反思:
整理复习。
教学目标:
复习分数乘法的意义和计算法则,掌握乘法运算定律在分数乘法中的推广和分数乘法的简便计算;提高学生分析,解答分数应用题的能力;进一步培养学生认真书写及良好的审题习惯。
教学重、难点:巩固分数乘法的意义,提高灵活计算的能力,正确分析数量关系,熟练掌握求一个数的倒数的方法。
教学过程:
(一)复习分数乘法的意义。
1/2×6=2/3×5=2/5×8=。
口算。
75×2/15=3/2×1/3=4×3/8=36×5/9=。
以上几道题有的是整数乘分数,有的是分数乘分数,都可以看成是一个数乘分数,一个数乘分数的意义是什么?分别说出以上几道题的意义。
(一)复习分数乘法的计算方法新课标第一网。
让学生看教材第26页的第1题,问:为了计算简便,在分数乘法中应该先做什么?(先约分,再做乘法)在本题中,都有一个因数是整数,约分的时候要注意什么?(整数与分数的分母约分)。
(二)复习乘法运算定律和简便计算。
问:我们学过哪些乘法定律?它们在分数乘法中适用吗?然后独立完成第26页第2题,练习七第1、4题,再请个别学生说说自己是怎样做的,着重说说在进行简便运算时运用了什么定律。
(三)复习分数乘法的应用题。
1、完成教材第26页第3题,练习七第2、3题。
学生独立完成,同时请一名学生板演,并讲一讲是怎样分析数量关系的,在计算中把什么数量看着单位“1”。教师要进一步强调在解答分数乘法应用题时,一定要找准单位“1”。因为分数乘法应用题是根据分数乘法的意义计算的,求哪个数量的几分之几,就是要把哪个数量当做为单位“1”。在解答两步计算的分数应用题,要注意每一步是把什么数量关系看作单位“1”,在两步计算中的单位“1”可能是不同的。
(四)复习倒数的知识。
什么是倒数?怎样求一个数的倒数?完成教材第26页第4题及27页第7题。
课堂小结:
通过复习,我们能正确分析“求一个数的几分之几是多少”的应用题的数量关系,可以熟练地求出一个数的倒数。
教案教学设计人教新课标六年级总复习范文(18篇)篇十二
教科书第96~97。
教学目标。
通过复习,使学生全面掌握小学阶段所学的各种图形的特点关系以及部分图形的周长与面积的计算。引导学生通过分类、比较、辨析、认识图形的联系与区别、形成比较清晰的知识网络。
促进学生对空间图形与图形知识的理解,能借助形体的直观性在整理的过程中培养学生逻辑思维能力,提升学生的空间观念。
培养学生良好的合作能力养成良好学生习惯,提高学生能力的提高。
教学重点。
使学生通过复习,形成比较清晰的知识网络。
教学难点。
培养学生的逻辑思维能力和空间想象力。
谈话导入,自主复习。
比如:画直线的时候,让一名学生在黑板上面。其他学生在自己的练习本上画,教师巡视,看学生画图的情况。指名说一说是怎样画的。
小组交流,集体汇报,加深图形之间的联系与区别。
先在小组之内依次解决例1提出的几个问题,然后集体交流。
(一)直线、射线和线段。
教师:“根据我们画的图形,想一想,直线、射线和线段有什么相同点?有什么不同点?”(相同点:直线、射线和线段都是直的;不同点:直线没有端点,射线有一个端点,线段有两个端点)。
(二)角。
1、角的概念。
师:请同学们看着自己画的角,谁来说一下你画了一个什么样的角。一共画出几种角。请把不同的角画在黑板上。
教师从以下几个方面让学生汇报:“谁能用自己的话说一说角是什么样的图形?”“角的各部分的名称是什么?”“角的大小与什么有关系?”“角的大小与所画角的长短有没有关系?”“角用什么样的符号表示?”“计量角的大小单位是什么?用什么符号表示?”
2、角的分类。
师:“我们可以把小于180度的角分成哪几类?每一类的名称是什么?“教师出示准备好的小黑板。
提问:“小黑板上画的每一个图形是哪一种角,它的度数在什么范围内?”让学生同桌之间交流一下,集体订正。
3、画角和量角。
师:“我们还学过画角和量角,同学们还记得是怎样做的吗?”让学生自己任意画一个角。量一量自己画的角的度数是多少。
(三)三角形、四边形和圆的特点。
仍然采用先画再小组交流后汇报的学习方法。
说一说三角形是什么样的图形。(三角形是由三条线段围成的图形)让学生指一指三角形名部分的名称。
师:三角形具有什么特性?日常生活中哪些地方用到这一特性?让学生举例说一说。
师:在三角形中一个顶点的对边是哪一条边?看一看自己画的三角形,指一下每个顶点的对边。
每个学生自己指,同桌的同学相互检查指得对不对。
师:想一想三角形的高指的是什么,怎样画一个三角形的高。
三角形的分类。
(四)四边形。
师:什么样的图形是四边形?自己画一个四边形。学生独立画,教师巡视,看学生画了几种四边形。集体订正时,让学生说一说他们各画的是什么四边形的是什么四边形。教师根据学生的回答,形成教科书96页的图例。
指名说每个图形的特点。如平行四边形:“什么样的图形叫做平行四边形?”“平行四边形有什么特点?“平行四边形的底指的是什么?”“平行四边形的高指的是什么?”“怎样画出平行四边形的高?”让学生自己画一画。其他图形可以仿照上面的提问进行。还要引导学生说一说图形间的关系:“长方形与平行四边形有什么关系?”教师可以用准备好的活动的平行四边形进行演示。“正方形与长方形有什么关系?”
(五)“刚才我们复习的图形是由直线的围成的。我们还学过了一种由曲线围成的图形。同学们能想出是什么图形吗?”(圆)“圆是平面上的一种曲线图形。”让学生用圆规自己画一个圆。画完后,指名说一说是怎样画的。然后,教师根据学生的回答,在黑板上画一个圆。
师:我们在学习圆时,学了与圆有关的哪些概念?(圆心、半径和直径)。
让学生分别说一说用什么字母表示,教师根据学生的回答,在黑板上标出圆心、画出半径和直径,写上相应的字母。
师:同一个圆内的所有半径的长度怎样?直径呢?(长度相等)半径和直径有什么关系?(半径是直径的一半)。
师:想一想,要画一个指定的圆,应该怎样画?
先让学生想一想,然后让学生画一个半径是2厘米的圆,教师巡视,看学生画圆的方法是否正确,发现问题及时纠正。教师还可以问:“通过画圆你们发现圆的大小与什么有关?”(与半径的长短有关)。
可以多让几个学生说一说道理,注意提问一些学习有困难的学生。
图形的测量(例2)。
先让学生独立完成填空,再引导学生回忆思考回答这些公式是怎样推导的。
面积的计算公式都是以长方形的面积计算为基础的。正方形可以看作是长和宽相等的正方形。
平行四边形可能通过割补、平稳转化成长方形。
三角形和梯形有多种方式可以转化成平行四边形或长方形求出面积。
课堂练习。
练习十九第1~4题。
作业。
练习十九第2~10题。
图形与变换。
教学目标:
1、比较系统地帮助学生掌握图形变换的常用方法,加深学生对图形的平移、旋转、图形的放大和轴对称图形的理解。
2、渗透审美教育,让学生感受几何图形蕴藏的美,产生创造美的欲望,进而培养学生对数学学科的兴趣的情感。
教学重点:
让学生感受图形变换的方法之间的相互联系和区别,加深学生对图形变换知识的理解。
教学过程:
回顾图形变换的有关知识。
学生观察、讨论、汇报。
教师指出:图形的变换可以用轴对称图形、平移、旋转、缩放等到方法。
师:下面我们就来复习这些知识。
(一)复习轴对称图形。
师:生活中有哪些轴对称图形?它们有什么共同的特点?
学生讨论、汇报。
教师引导学生得出:轴对称图形沿着对称轴对折,两侧图形能够完全重合。
让学生自己设计出轴对称图形。可以画可以用纸折等。
完成练习104第1、2题。
(二)复习旋转。
师:生活中,你看见哪些旋转现象?
学生讨论回答。
师用时钟演示。顺时针旋转和逆时针旋转。让学生说出旋转多少度?
师:我们说一个图形旋转时,要注意什么问题?
完成书上第三题。
你能画出三角形绕a点顺时针旋转90度后的图形。
学生画完后互相检查。
(三)复习图形的平移。
师:生活中有哪些平移的现象?让学生看上做一做题,说出从a-b-c-d是如何变化过来的?引导学生说出平移时要注意说清平移的方向,以及平移的距离。
(四)复习图形的放大和缩小。
师:一个图形放大或缩小后现原来图形有什么关系?
引导学生说出:大小不同,形状相同。
完成105页第六题。
(五)设计图案。
让学生根据自己的想象,设计图案。进行展示。
教案教学设计人教新课标六年级总复习范文(18篇)篇十三
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。
教学重点。
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则。
教学难点。
引导学生总结分数乘整数的计算法则。
教学过程。
一、设疑激趣。
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)。
(二)计算下面各题,说说怎样算?
++=++=。
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。
同学之间交流想法:++==3××3=。
×3这个算式表示什么?为什么可以这样计算?
教师板书:++=×3=。
二、自主探索。
(一)出示例1小新、爸爸、妈妈一起吃一块蛋糕,每人吃块,3人一共吃多少块?
1、读题,说说块是什么意思?
2、根据已有的知识经验,自己列式计算。
三、交流、质疑。
(一)学生汇报,并说一说你是怎样想的?
方法1:
方法2:
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的。
区别:一种方法是加法,另一种方法是乘法。
教师板书:
(三)为什么可以用乘法计算?
加法表示3个相加,因为加数相同,写成乘法更简便。
(四)×3表示什么?怎样计算?
表示3个的和是多少?
用分子2乘3的积做分子,分母不变。
(五)提示:为计算方便,能约分的要先约分,然后再乘。
四、归纳、概括:
(一)结合=×3=和++=×3=,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算。
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变。
五、巩固、发展。
(一)巩固意义。
1、改写算式。
2、只列式不计算:3个是多少?5个是多少?
(二)巩固法则。
1、计算(说一说怎样算)。
思考:为什么先约分再相乘比较简便?
2、应用题。
(三)对比练习。
1、一条路,每天修千米,4天修多少千米?
2、一条路,每天修全路的,4天修全路的几分之几?
六、课后作业。
(一)的3倍是多少?的10倍是多少?
(二)一个正方形的边长是米,它的周长是多少米?
(三)一种大豆每千克约含油千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计。
分数乘整数。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
将本文的word文档下载到电脑,方便收藏和打印。
教案教学设计人教新课标六年级总复习范文(18篇)篇十四
班级姓名小组小组评价。
学习目标:
1、理解比的意义,掌握比的各部分名称。理解分数、除法和比三者之间的联系和区别。掌握求比值和比的未知项的方法。
2、通过独立思考、小组合作、展示质疑,培养迁移、体会数学知识之间的普遍联系。
3、激情投入,阳光展示,全力以赴,做最好的自己。
重点:分数、除法、比三者之间的联系和区别。
难点:理解求比值和比的未知项的方法。
使用说明与学法指导:
先由学生自学课本,经历自主探索总结的过程,并独立完成自主学习部分,通过独立思考及小组合作,能够理解比的意义,掌握比的各部分名称。理解分数、除法和比三者之间的联系和区别。掌握求比值和比的未知项的方法。并独立完成导学案,然后学习小组讨论交流,让同学们进行展示,小组间互相点评,对于有疑问的题目教师点拨、拓展。
一、自主学习:
1、自学课本p43-p44页。
2、填空。
1)、比的书写符号是()叫做()。
2)、10比15写作()或()。
3)、35:21读作()。
4)、比的各部分名称。
5)、在两个数的比中,()叫做比的前项。()叫做比的后项。
6)、()叫做比值。
二、合作探究:
例1、求下面各比的比值。
10:5:40.3:0.5。
小结:1)、求两个数比的比值的方法就是:
2)、比值可以用()、()或()表示。
例2、讨论比和比值的区别和联系。
例3、讨论比和分数、除法之间有什么联系和区别呢?
例4、求比中未知项的方法。
():8=215:()=。
要点提示;已知比的前项、后项和比值中的任意两项,都可以根据它们之间的关系来求出第三项。
三、学以致用:新课标第一网。
1、读一读,写一写。
5:3读作:10:11读作:
35比36写作:55比39写作:
2、想一想,填一填。
1)、7比4记作(),7是比的(),4是比的(),写成分数形式是()。
2)、比和分数相比,()相当于分数的分子,()相当于分数的分母,()相当于分数值。
3)、0.3==():()。
4)、甲是乙的5倍,甲和乙的比值是(),乙和甲的比值是()。
5)、爸爸今年36岁,小红7岁,今年爸爸与小红年龄的比是():(),比值是();今年小红与爸爸年龄的比是():()比值是()。
6)、汽车每小时行驶60千米,猎豹的速度是每小时96千米,猎豹与汽车速。
度的比是():(),比值是()。
7)、修一条公路,甲队18天修了1620米,乙队10天修了1000米,甲队与乙队所修路程的比是():(),比值是();所用时间比是():(),比值是()。
8)、360千克与0.84吨的比值是();40分钟与时的比值是()。
3、判断题。
1)、比的前项不能为0。()2)、a:b的比值3:1。不是()。
3)、3km:4km=km()。
4)、甲数:乙数=5:2,则甲数是乙数的2.5倍。()。
5)、小明和哥哥去年的年龄比是5:8,今年年龄比不变。()。
4、求比值。
0.8:1.660米:70米。
1.5吨:1.2吨9:8:
四、解决问题:
1、求比的未知项。
4:()=0.5():12:()=。
教案教学设计人教新课标六年级总复习范文(18篇)篇十五
教学目的:。
1了解基本事件、等可能性事件的概念;。
教学重点:等可能性事件的概率计算公式。
教学难点:等可能性事件的概率计算公式。
授课类型:新授课。
课时安排:1课时。
教具:多媒体、实物投影仪。
教学过程:。
一、复习引入:。
1事件的定义:。
随机事件:在一定条件下可能发生也可能不发生的事件;。
必然事件:在一定条件下必然发生的事件;。
不可能事件:在一定条件下不可能发生的事件。
说明:三种事件都是在一定条件下发生的,当条件改变时,事件的性质也可以发生变化。
2.随机事件的概率:一般地,在大量重复进行同一试验时,事件发生的频率总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件的概率,记作.
教案教学设计人教新课标六年级总复习范文(18篇)篇十六
掌握100以内的加、减法的计算方法,加深对其理解。
难点。
掌握100以内的加、减法的'计算方法,加深对其理解。
教学仪器与媒体。
投影仪、卡片。
教学基本思路。
掌握方法提高能力。
板书设计。
计算法则:
1、——。
2、——。
3、——。
教学过程。
一、谈话引入,揭示课题。
二、分类整理。
三、分小组活动。
四、巩固练习。
五、小结:
反思:
同学们,今天我们来把学过的100以内的加减法整理和复习,比一比,看谁学得好。
1口算(出示题)。
师:开火车说答案。然后分类。
生:a加法、减法。
b两位数加两位数、两位数减两位数。
根据学生的分类板书。
2学生总结计算方法。
3、师总结。
2小组活动,教师巡视。
3交流汇报,师生共评。
比赛算题,看谁能全做对。
做课本的105页1、2集体订正。
教案教学设计人教新课标六年级总复习范文(18篇)篇十七
教学内容:
数学第十一册19页----倒数的认识。
教学目标:
(1)知识目标:理解倒数的意义,掌握求倒数的方法。
(2)能力目标:会求倒数,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。
教学重点:
理解倒数的意义和怎样求一个数的倒数。
教学难点:
正确理解倒数的意义及0为何没有倒数。
一、游戏导入。
教师:我知道同学们特别喜欢做游戏。今天我们一起做个游戏。这个游戏是这样的。如果我说1、2,大家就说2、1。那我说1、2、3,大家该怎么说?好!游戏正式开始。喜欢!我教育你!我吃西瓜!我打篮球!谁能说一说这个游戏的规则是什么?在数学当中,我们还可以怎样玩这个游戏?继续玩,我说分数,大家倒过来说。3/8、15/7、1/80、3(板书)。
二、探究意义。
1.找特点。
师:请同学们观察黑板上四组数都有什么特点。
(生:分子、分母互相颠倒)。
师:请同学们把每一组中的两个数相乘,看乘积是多少?
(生:每一组中的两个数乘积都是1)师及时板书。
师:谁还能很快说出乘积是1的两个数吗?
(生回答)。
师:同学们说得这么快一定找到了窍门,把你找到的窍门跟同学门说说好吗?
(生:两个数分子分母颠倒位置乘积是1)。
师:那么乘积是1的两个数数学给它起个什么名呢?
(生回答,师板书:乘积是1的两个数叫互为倒数)。
师:在这个概念中你认为哪个词比较重要?让学生自由说出自己的想法。
重点讲解“互为”的意思,就是互相是的意思。例如:
3/8×8/3=1我们就说3/8是8/3的倒数,或者说3/8的倒数是3/8,也可以说8/3和3/8互为倒数。而不能说8/3的倒数,或3/8是倒数。
师:谁来把黑板上的后三组数仿照老师刚才叙述的来说一遍,用上“因为”“所以”一词。
(指名叙述)。
师:根据同学们的叙述,我们可以看出倒数不是指某一个数,而是指两个数相互依存的关系,是相对两个数而言,不能孤立的说某一个数是倒数。
三、探究求倒数的方法。
师:现在我们已经理解了倒数的意义,那么怎样求一个数的倒数呢?继续观察黑板上的四组数,看互为倒数的两个数有什么特点,(分子,分母调换了位置)根据这个规律我们试着求下面几个数的倒数。
出示:3/57/28/65/1210/4。
(指名回答师板书)。
师:你们是怎么找出每个数的倒数的?
(说自己的方法)。
师:除了这些分数外我们还学过哪些数?(整数、小数、带分数)怎样求它们的倒数呢?求同学们试着求下面书的倒数。
出示:60.527/81。
(生回答,师板书)并说说你是怎样求的?
师:是不是所有的数都有倒数呢?同桌讨论。
0为什么没有倒数?(0和任何数相乘都不得1)。
师:通过同学们的练习,谁来总结求一个数的倒数的方法?
(生总结,师板书)。
四、小结并揭示课题。
同学们我们今天重点认识了什么?(板书课题:倒数的认识)你们在这节课都学会了什么?下面老师想知道你们是否真正的掌握了没有,所以老师要考考你们,。
五、巩固练习。
1、填空。
1、乘积是()的两个数叫()倒数。
2、因为7/15x15/7=1所以7/15和15/7()。
3、5的倒数是()。0.2的倒数是()。
4、()的倒数是它本身。()没有倒数。
5、8×()=10.25×()=1。
()×2/3=17/2×()=()×8=()×0.15=1。
2、当把小医生。
1、得数是1的两个数叫互为倒数。()。
2a是一个整数,它的倒数一定是1/a。()。
3、因为2/3×3/2=1,所以2/3是倒数。()。
4、1的倒数是1,所以0的倒数是0。()。
5、真分数的倒数都大于1。()。
6、2.5和0.4互为倒数。()。
7、任何真分数的倒数都是假分数。()。
8、任何假分数的倒数都是真分数。()。
3、面各数的倒数。
2.541/826/70.12。
4、列式计算。
1、7/6加上它的倒数的和乘2/3,积是多少?
2、1减去它的倒数后除以0.12,商是多少?
3、已知a×3/2=b×3/5,(a、b都是不为0的数)。
求a、b的大小。
六、教学反思:
倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。
教案教学设计人教新课标六年级总复习范文(18篇)篇十八
三、教学目标:加强学生对人民币的认识,掌握人民币。
在活动活动过程中渗透思想教育。
四、教学重点:通过小小商店里的买与卖进一步让学生训练掌握人民币的换算及计算方法。
五、教学难点:正确计算找零。
六、教学方法:讲授法、练习法、谈话法等。
七、教具:小黑板、挂图、有关的物品等。
八、教学课时:1课时。
九、教学过程:
(一)、导入新课。教师要提前把这次活动的大致情况给学生介绍一下,说明这次活动需要准备什么东西,让学生把经常使用的玩具、学习用品、简单的生活用品以及家里废弃的易拉罐和矿泉水瓶带来,并通过不同的方式了解这些物品的价格并制作出价格标签(最好有用小数表示的价签),例如,到商店实地调查,询问家人,查书籍资料,等等。
(二)、模拟购物。
1、上课时,教师先要给学生简单介绍一下玩具、学习用品和生活用品的概念,然后让学生根据一年级上学期所学的分类方法,把带来的东西分成不同的类。如果有的物品类别不太明确,学生分类的时候会存在一定的困难,教师要加以适当的指导。
2、在学生把所有的物品分好类以后,老师要带着学生把教室布置成一个小商店。可以仿照教科书上的样子,设置玩具、学习用品、生活用品等柜台和回收站,也可以根据实际情况的不同设置其他的柜台。然后让学生把各种物品分别放在相应的货架上(货架可以用课桌代替),可以请几位学生读一读标签上的价格,如果学生所标的价格过于偏离实际,教师要根据实际情况做出适当的调整。
3、选一部分学生扮演售货员,一两名学生扮演废品回收员,其余的学生扮演顾客。在全体学生开始活动之前,可以先做一个示范。教师可以先提出一个问题,例如,“你怎样买一块橡皮?”指定一名学生用学具卡片上的人民币买一块橡皮。在此基础上,教师可以用提问的形式,给其他学生一些提示:顾客先要确定买什么东西,再到相应的柜台找到该商品,读出商品的价格,再决定怎样付钱最方便;而售货员需要熟练地计算出顾客付的钱够不够,是否需要找零,找多少,等等。
4、全体学生开始活动。“顾客”可以根据自己的实际需要和手中有的钱数确定买什么东西,而“售货员”要针对“顾客”的需要做出相应的对策。在活动过程中,“顾客”和“售货员”都要进行人民币的计算。活动中学生会碰到各种各样的问题,有数学问题,也有其他问题。教师要注意观察学生在进行人民币的计算时有没有发生错误,碰到了些什么问题,碰到问题时是用什么方法解决的,是不是用了比较简单的方法,等等。如果学生遇到不会解决的问题,教师要引导学生把实际问题和数学问题联系起来,从实际问题中抽象出数学问题。如果学生提出的问题用已学的数学知识还不能解决,教师也要鼓励学生提出来,要抓住一切机会培养学生的数学意识和创新意识,激励学生的求知欲,使学生在活动中感受和体验数学的力量。教师要利用“回收站”的题材,向学生介绍环境知识,宣传环保思想,培养学生从小爱护环境的意识和观念。
5、在活动结束之后,可以让学生对活动进行总结和讨论,例如,可以让学生交流在商品交易中碰到了哪些问题,是怎样解决的,如果有两个同学碰到了同样的问题,比较他们的解决方法有什么不同,哪个更好一些。还可以让几名“顾客”汇报一下原来有多少钱,一共花了多少钱,买了哪些东西,还剩多少钱,原来的钱数减去花去的钱数是否等于剩下的钱数,让几名“售货员”汇报一下卖出多少东西,收入多少钱,等等。还可以让废品回收员数一下一共回收了多少个易拉罐和多少个矿泉水瓶,收入多少钱。通过全班的讨论,培养学生在学习数学时进行交流的习惯。
在整个活动过程中,教师要充分调动全体学生参与活动的积极性,并发挥学生个体的特点,帮助学生通过自己的活动提高学习数学的兴趣。同时,教师也要注意把握好自己的角色,由于活动的实践性、现实性、开放性都比较强,教师要做好组织和引导工作,但不要过多地干预或打断学生的活动。活动的目的也不能简单地定为复习巩固已学的知识,更重要的是提高学生学习数学的积极性,增加学生的数学交流,使学生认识数学与现实生活的紧密联系,培养学生的创新意识和实践能力以及用数学知识解决实际问题的能力。
十、课后小结: