一次函数与二元一次方程课教学设计(热门17篇)

时间:2025-08-24 作者:XY字客

教学计划是一种组织和安排教学活动的书面材料,它能够确保教学的有序进行。在这里,我们为您展示了一些经验丰富的教师编写的教学计划,希望能给您的教学工作带来一些启示。

一次函数与二元一次方程课教学设计(热门17篇)篇一

一.教学目标:

1.认知目标:

2)理解二元一次方程组的解的概念。

3)会用列表尝试的方法找二元一次方程组的解。

2.能力目标:

1)渗透把实际问题抽象成数学模型的思想。

2)通过尝试求解,培养学生的探索能力。

3.情感目标:

1)培养学生细致,认真的学习习惯。

2)在积极的教学评价中,促进师生的情感交流。

二.教学重难点。

难点:用列表尝试的方法求出方程组的解。

三.教学过程。

(一)创设情景,引入课题。

1.本班共有40人,请问能确定男*各几人吗?为什么?

(1)如果设本班男生x人,*y人,用方程如何表示?(x+y=40)。

(2)这是什么方程?根据什么?

2.男生比*多了2人。设男生x人,*y人。方程如何表示?x,y的值是多少?

3.本班男生比*多2人且男*共40人。设该班男生x人,*y人。方程如何表示?

两个方程中的x表示什么?类似的两个方程中的y都表示?

象这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。

[设计意图:从学生身边取数据,让他们感受到生活中处处有数学]。

(二)探究新知,练习巩固。

(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。

[让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解。]。

x+y=3,x+y=200,。

2x-3=7,3x+4y=3。

y+z=5,x=y+10,。

2y+1=5,4x-y2=2。

学生作出判断并要说明理由。

(1)由学生给出引例的答案,教师指出这就是此方程组的解。

(2)练习:把下列各组数的题序填入图中适当的位置:

x=1;x=-2;x=;-x=。

y=0;y=2;y=1;y=。

方程x+y=0的解,方程2x+3y=2的解,方程组x+y=0的解。

2x+3y=2。

(3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。

(4)练习:已知x=0是方程组x-b=y的解,求a,b的值。

y=0.55x+2a=2y。

(三)合作探索,尝试求解。

现在我们一起来探索如何寻找方程组的解呢?

1.已知两个整数x,y,试找出方程组3x+y=8的解。

2x+3y=10。

学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。

提炼方法:列表尝试法。

一般思路:由一个方程取适当的xy的值,代到另一个方程尝试。

2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。

(1)设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。

由学生独立完成,并分析讲解。

(四)课堂小结,布置作业。

1.这节课学哪些知识和方法?(二元一次方程组及解概念,列表尝试法)。

2.你还有什么问题或想法需要和大家交流?

3.作业本。

教学设计说明:

1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。

2.“让学生成为课堂的真正主体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。

3.本课在设计时对教材也进行了适当改动。例题方面考虑到数*时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。

2022初中语文优秀教师教案范文-语文优秀教案模板范文。

标准教案范文精选。

一次函数与二元一次方程课教学设计(热门17篇)篇二

本节课是在学生已经探究过一次函数、一元一次方程及一元一次不等式的联系的基础上进行的学习。本节教学内容是《一次函数与一元二次方程(组)》,“一个二元一次方程对应一个一次函数,一般地一个二元一次方程组对应两个一次函数,因而也对应两条直线。如果一个二元一次方程组有唯一的解,那么这个解就是方程组对应的两条直线的交点的坐标”。通过本节课的学习,让学生能从函数的角度动态地分析方程(组),提高认识问题的水平。

本节课的引入。我通过一个一次函数形式问题提问,学生看出既是一次函数,也是二元一次方程,由此创设情境,引出一次函数与方程有必然的关系,使学生主动投入到一次函数与二元一次方程(组)关系的探索活动中;紧接着,用一连串的问题引导学生自主探索、合作交流,从数和形两个角度认识它们的关系,使学生真正掌握本节课的重点知识。

在探究过程中,我把学生分为一个函数组一个方程组,使学生能身临其境感受知识,并及时的进行团结合作教育,把德育教育渗透在教学中。在探究中,我把握自己是组织者、引导者和合作者的身份,及时引导学生进行知识探究。但在实际操作过程中还是把握的不够好,没有很好的起到引导者的作用,缺乏情感性的鼓励,没有使大多数学生能完全积极融入到的知识的探讨与学习中。

本节的图象解法需要迅速画出图象,利用图象解决问题。而我的失误主要发生在画图象上。大部分学生不能迅速画出图象,并找准交点,这就使他们理解本节知识有了困难。

为了培养学生的发散思维和规范解题的习惯,我引导学生将“上网收费”问题延伸为拓展应用题,根据前面的例题教学,设置了两个小问题:

(1)上网时间为多少时,按方式a比较划算?

(2)上网时间为多少时,按方式b比较划算?

前后呼应,使学生有效地理解本节课的难点。但在此题的探讨过程中,我做的不够好,没有给学生充分思考的时间及学生探讨解决问题的方法,有点操之过急,而且我当时也没有采取补救措施,这是我的失误,也是这节课的失败之处。

一次失误也反映了一位老师驾驭课题的能力,今后,在我的课堂教学中要注重培养这种能力,关注细节,完善课堂和各个环节,不留遗憾,提高教育教学质量。

一次函数与二元一次方程课教学设计(热门17篇)篇三

本节课通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:

3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学模型间的联系.。

教学重点。

教学难点。

通过对数学模型关系的探究发展学生数形结合和数学转化的思想意识.。

1.教法学法。

启发引导与自主探索相结合.。

2.课前准备。

教具:多媒体课件、三角板.。

学具:铅笔、直尺、练习本、坐标纸.。

1.某水箱有5吨水,若用水管向外排水,每小时排水1吨,则x小时后还剩余y吨水.

(1)请找出自变量和因变量。

(2)你能列出x,y的关系式吗。

(3)x,y的取值范围是什么。

(4)在平面直角坐标系中画出这个函数的图形.(注意xy的取值范围).

2.(1)方程x+y=5的解有多少个?你能写出这个方程的几个解吗?

(3).在一次函数y=x5的图像上任取一点,它的坐标适合方程x+y=5吗?

x+y=5与y=x5表示的关系相同。

1.两个一次函数图象的交点坐标是相应的二元。

(2)两个函数的交点坐标适合哪个方程?

xy5(3).解方程组验证一下你的发现。2xy1。

练习:随堂练习1。巩固由一次函数的交点坐标找相应的二元一次方程组的解。

xy2(1)解。

2xy5(2)以方程x+y=2。

(3)以方程2x+y=5(4)方程组的解为坐标的点在图象上是哪个点?

练习:知识技能1。巩固由方程组的解求相应的一次函数的交点坐标。更深入的体会二元一次方程组的解与一次函数交点坐标之间的对应关系。

第三环节模型应用。

1.某公司要印制产品宣传材料.

印刷厂的费用。

(1)请分别表示出两个印刷厂费用与x的关系式。

(2)在同一直角坐标系中画出函数的图象。

(3)如何根据印刷材料的份数选择印刷厂比较合算?

第四环节模型特例。

想一想。

么?

(1)观察发现直线平行无交点;

(2)小组研究计算发现方程组无解;

(3)从侧面验证了两直线有交点,对应的方程组有解,反之也成立;

(4)归纳小结:两平行直线的k相等;方程组中两方程未知数的系数对应成比例方程组无解。

进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.进一步挖掘出两直线平行与k的关系。

第五环节课堂小结。

内容:以“问题串”的形式,要求学生自主总结有关知识、方法:

一次函数图像上的点的坐标都适合相应的二元一次方程.。

2.方程组和对应的两条直线的关系:

方程组的解是对应的两条直线的交点坐标;

两条直线的交点坐标是对应的方程组的解;

第六环节作业布置。

习题5.7。

一次函数与二元一次方程课教学设计(热门17篇)篇四

2、了解二元一次方程和二元一次方程组的解并会检验一对数值是不是二元一次方程(组)的解。

重点:二元一次方程(组)的含义及检验一对数是否是某个二元一次方程(组)的解。

1、知识回顾:

(1)方程的概念;

(2)一元一次方程的概念;

(3)什么是方程的解?

(4)一元一次方程的解如何表示?

2、合作学习:

如果设需要票额为6角的邮票x张,需要票额为8角的邮票y张,你能列出方程吗?

一次函数与二元一次方程课教学设计(热门17篇)篇五

本节课的教学设计反思是围绕着今天“六个有效”的主题活动展开反思的。

学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。在此基础上通过知识提问引导学生进一步掌握一次函数的相关知识并能灵活的应用到习题中,有效的“复习回顾”在本节课起到了承上启下的作用。

根据实际的问题情境感受生活中的一次函数,利用已知的条件,来确定一次函数中正比例函数表达式,并理解确定正比例函数表达式的方法和条件。

设置这个例题是物理学中的一个弹簧现象,目的在于让学生从不同的情景中获取信息来求一次函数表达式,一次函数表达式的确定需要两个条件,能由条件利用“待定系数”法求出一些简单的一次函数表达式,并能解决有关现实问题.并进一步体会函数表达式是刻画现实世界的一个很好的数学模型,而且体现了数学这门学科的基础性。

通过对求一次函数表达式方法的归纳和提升,加强学生对求一次函数表达式方法和步骤的理解,通过“感悟收获”解决本节课的重点和难点。

通过分小组“比一比、练一练”的活动形式,不仅激发了学生学习数学知识的兴趣,而且能将本节课的知识灵活的应用到习题中,提高了学生的解题能力和思维能力。

根据本班学生及教学情况在教学课堂后为了进一步巩固课堂知识,布置一定量的作业,难度不应过大,有效的作业更能拓展学生的思维,并体会解决问题的多样性。

一次函数与二元一次方程课教学设计(热门17篇)篇六

过程与方法。

(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。

情感与态度。

(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。

(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。

教学重点。

教学难点。

数形结合和数学转化的思想意识。

教学准备。

教具:多媒体课件、三角板。

学具:铅笔、直尺、练习本、坐标纸。

教学过程。

第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)。

内容:

1.方程x+y=5的解有多少个?是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?

3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?

由此得到本节课的第一个知识点:

(2)一次函数图像上的点的坐标都适合相应的二元一次方程。

第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)。

内容:

1.解方程组。

2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。

(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。

(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。

第三环节典型例题(10分钟,学生独立解决)。

探究方程与函数的相互转化。

内容:例1用作图像的方法解方程组。

例2如图,直线与的交点坐标是。

第四环节反馈练习(10分钟,学生解决全班交流)。

内容:

1.已知一次函数与的图像的交点为,则。

2.已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为()。

(a)4(b)5(c)6(d)7。

3.求两条直线与和轴所围成的三角形面积。

4.如图,两条直线与的交点坐标可以看作哪个方程组的解?

第五环节课堂小结(5分钟,师生共同总结)。

内容:以“问题串”的形式,要求学生自主总结有关知识、方法:

(2)一次函数图像上的点的坐标都适合相应的二元一次方程。

2.方程组和对应的两条直线的关系:

(1)方程组的解是对应的两条直线的交点坐标;

(2)两条直线的交点坐标是对应的方程组的解;

(1)代入消元法;

(2)加减消元法;

(3)图像法。要强调的是由于作图的不准确性,由图像法求得的解是近似解。

第六环节作业布置。

习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2。

一次函数与二元一次方程课教学设计(热门17篇)篇七

作为一位杰出的教职工,编写教学设计是必不可少的,教学设计是把教学原理转化为教学材料和教学活动的计划。那么优秀的教学设计是什么样的呢?以下是小编为大家收集的二元一次方程与一次函数教学设计,欢迎阅读与收藏。

2、能根据一次函数的图像求二元一次方程组的近似值。

1、用作图像法求二元一次方程组的近似值。

1、做图像时要标准、精确,近似值才接近。

先自学课本,用心思考自主学习部分,努力独立完成,再与其他同学讨论未明白的内容。课上展示,针对自己不明白问题多听多问。

问题1、

(1)方程x+y=5的解有多少组?写出其中的几组解。

(3)在一次函数y=5—x的图像上任取一点,它们的坐标适合方程x+y=5吗?

(5)由以上的探究过程,你发现了什么?

问题2、

(3)由以上探究过程,我们发现解二元一次方程组的方法除了加减消元法和代入消元法,还可以用法解方程组;我们还发现可以利用解二元一次方程组的方法求两条直线交点的坐标。

合作探究:

(1)用做图像的方法解方程组。

(2)用解方程的方法求直线y=4—2x与直线y=2x—12交点。

一次函数与二元一次方程课教学设计(热门17篇)篇八

学习目标:

2、能根据一次函数的图像求二元一次方程组的近似值。

学习重点:

学习难点:

1、做图像时要标准、精确,近似值才接近。

学习方法:

先自学课本,用心思考自主学习部分,努力独立完成,再与其他同学讨论未明白的内容。课上展示,针对自己不明白问题多听多问。

自主学习部分:

问题1.(1)方程x+y=5的解有多少组?写出其中的几组解。

(3)在一次函数y=5-x的图像上任取一点,它们的坐标适合方程x+y=5吗?

(5)由以上的探究过程,你发现了什么?

(3)由以上探究过程,我们发现解二元一次方程组的方法除了加减消元法和代入消元法,还可以用法解方程组;我们还发现可以利用解二元一次方程组的方法求两条直线交点的坐标。

合作探究:

(1)用做图像的方法解方程组。

(2)用解方程的方法求直线y=4-2x与直线y=2x-12交点。

一次函数与二元一次方程课教学设计(热门17篇)篇九

(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.

(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.

(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.

数形结合和数学转化的思想意识.

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)。

内容:1.方程x+y=5的解有多少个?是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y=的`图像上吗?

3.在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?

由此得到本节课的第一个知识点:

(2)一次函数图像上的点的坐标都适合相应的二元一次方程.

第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)。

内容:1.解方程组。

2.上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像.

(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;。

(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.

(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.

第三环节典型例题(10分钟,学生独立解决)。

探究方程与函数的相互转化。

内容:例1用作图像的方法解方程组。

例2如图,直线与的交点坐标是.

第四环节反馈练习(10分钟,学生解决全班交流)。

内容:1.已知一次函数与的图像的交点为,则.

2.已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为().

(a)4(b)5(c)6(d)7。

3.求两条直线与和轴所围成的三角形面积.

4.如图,两条直线与的交点坐标可以看作哪个方程组的解?

第五环节课堂小结(5分钟,师生共同总结)。

内容:以“问题串”的形式,要求学生自主总结有关知识、方法:

(2)一次函数图像上的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

(1)方程组的解是对应的两条直线的交点坐标;。

(2)两条直线的交点坐标是对应的方程组的解;。

(1)代入消元法;。

(2)加减消元法;。

(3)图像法.要强调的是由于作图的不准确性,由图像法求得的解是近似解.

第六环节作业布置。

习题组(优等生)1、2、3b组(中等生)1、2c组1、2。

附:板书设计。

六、教学反思。

一次函数与二元一次方程课教学设计(热门17篇)篇十

鹿泉市上庄镇中学    张亚茹。

1.知识与能力目标。

(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。

2.情感态度价值观目标。

通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。

前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。

2、能根据一次函数的图象求二元一次方程组的近似解。

方程和函数之间的对应关系即数形结合的意识和能力。

学生操作------自主探索的方法。

学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程组和“形”----函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。

一.  故事引入。

迪卡儿的故事------蜘蛛给予的启示。

在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。

二.  尝试探疑。

学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。

然后学生会用同样的方法得出另一个结论:以方程x-y=-1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x-y=-1到底有何关系呢?通过交流自动得出结论:

教师作最后总结:

解方程组 x-2y=-2      。

2x-y=2。

学生会很快的用消元法解出来。

老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。

一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:

1.把两个方程都化成函数表达式的形式。

2.画出两个函数的图象。

3.画出交点坐标,交点坐标即为方程组的解。

y=1.9  有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。

老师提问:你能说一下用图象法解方程组的不足吗?

学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!

教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用z+z智能教育平台演示一下。

[点评]用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。

四.  引申。

方程组  x+y=2。

x+y=5  解的情况如何?你能从函数的角度解释一下吗?

学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。

[点评]因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。

五.  课后小结。

本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程与“形”------函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。

六.  作业 。

1.   用作图象法解方程组2x+y=4。

2x-3y=12。

2.如图,直线l、l相交于点a,试求出a点坐标。

这节课由故事引入,激发了学生极大的学习兴趣。然后提出了三个尖锐的问题,让学生尝试探索,在探索中既体会到了探索的艰辛,又体会到了成功的喜悦。在应用和引申过程中,尽量让学生自主的发现问题,自主的解决问题。学生在紧张、愉快中完成了这节课的学习。

一次函数与二元一次方程课教学设计(热门17篇)篇十一

本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。

2.理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想。

三、教学重难点。

2.难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。

四、教学过程。

(1)复习引入。

设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。

(2)探究新知。

此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。

一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的解释,怎么变化而来。

播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。接着完成配套的3个习题,强化训练。

(3)例题讲解。

让学生尝试解答。

设计意图:让学生通过例1和例2的对比,引出如何选择变化有利于计算的问题。

预想大部分学生例2会存在这样的问题到底选择哪个方程变形,当学生做出例1,犹豫例2时,提出这样两个问题:

(1)在解二元一次方程组的步骤中变形的过程我们应当如何变形?把一个方程变形为用含x的式子表示y(或含y的式子表示x)。

(2)选择哪个方程变形比较简便呢?

再一次激起学生的学习兴趣,接着播放洋葱视频继续代入消元法片段视频,让学生清楚的知道在不同的二元一次方程组中在变形的过程选择那一个方程,选择那一个未知数变形能简便的进行运算。

五、课堂小结。

1.这节课你学到了哪些知识和方法?

2.你还有什么问题或想法需要和大家交流分享?

一次函数与二元一次方程课教学设计(热门17篇)篇十二

本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的.

学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决.

1.教学目标

知识与技能目标

(1) 初步理解二元一次方程和一次函数的关系;

(2) 掌握二元一次方程组和对应的两条直线之间的关系;

(3) 掌握二元一次方程组的图像解法.

过程与方法目标

(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力.

(3) 情感与态度目标

(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.

(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.

2.教学重点

(1)二元一次方程和一次函数的关系;

(2)二元一次方程组和对应的两条直线的关系.

3.教学难点

数形结合和数学转化的思想意识.

1.教法学法

启发引导与自主探索相结合.

2.课前准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置.

第一环节: 设置问题情境,启发引导

内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?

3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?

由此得到本节课的第一个知识点:

二元一次方程和一次函数的图像有如下关系:

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系.

效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识.

前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系.顺其自然进入下一环节.

第二环节 自主探索方程组的解与图像之间的关系

内容:1.解方程组

2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的`图像.

(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.

(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.

意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础.

效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力.

第三环节 典型例题

探究方程与函数的相互转化

内容:例1 用作图像的方法解方程组

例2 如图,直线 与 的交点坐标是 .

意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解.通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理.这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫.

效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.

第四环节 反馈练习

内容:1.已知一次函数 与 的图像的交点为 ,则 .

2.已知一次函数 与 的图像都经过点a(2,0),且与 轴分别交于b,c两点,则 的面积为( ).

(a)4 (b)5 (c)6 (d)7

3.求两条直线 与 和 轴所围成的三角形面积.

4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?

意图:4个练习,意在及时检测学生对本节知识的掌握情况.

效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性.

第五环节 课堂小结

内容:以问题串的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一次函数的图像的关系;

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

(1) 方程组的解是对应的两条直线的交点坐标;

(2) 两条直线的交点坐标是对应的方程组的解;

3.解二元一次方程组的方法有3种:

(1)代入消元法;

(2)加减消元法;

(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.

意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用.

第六环节 作业布置

习题7.7

附: 板书设计

本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化.教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解.因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题.

一次函数与二元一次方程课教学设计(热门17篇)篇十三

1.知识与能力目标。

(3)通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组的图象解法。同时培养学生初步的数形结合的意识和能力。

2.情感态度价值观目标。

通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发了学生学习数学的兴趣,使学生体验数学活动充满探索与创造。

教材分析。

前面已经分别学习了一次函数和二元一次方程组,这节课研究二元一次方程组(数)和一次函数(形)的关系,是这两章知识的综合运用。强化了部分与整体的内在联系,知识与知识的内在联系,并为今后解析几何的学习奠定基础。

教学重点。

教学难点。

方程和函数之间的对应关系即数形结合的意识和能力。

教学方法。

学生操作------自主探索的方法。

学生通过自己操作和思考,结合新旧知识的联系,自主探索出方程与图象之间的对应关系,以引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程组和“形”----函数的图象(直线)之间的对应关系,培养了学生数形结合的意识和能力。

教学过程。

一、故事引入。

迪卡儿的故事------蜘蛛给予的启示。

在蜘蛛爬行的启示下,迪卡儿创建了直角坐标系,在坐标系下几何图形(形)和方程(数)建立联系。迪卡儿坐标系起到了桥梁和纽带的作用。从而我们可以把图形化成方程来研究,也可以用图象来研究方程。

二、尝试探疑。

1、y=x+1。

你们把我叫一次函数,我也是二元一次方程啊!这是怎么回事,你知道吗?

学生先是疑惑:方程就是方程,函数就是函数,它们能有什么联系呢?然后通过思考、交流,最后恍然大悟。初步感受一次函数与二元一次方程的内在联系。

2、函数y=x+1上的任意一点的坐标是否满足方程x-y=-1?

学生会迫不及待地拿起笔来计算。从函数y=x+1图象上找几个点看它们的坐标是否满足方程x-y=-1。结果都满足。然后学生就会自主和同伴交流,问一问同伴函数y=x+1图象上的点满足不满足方程x-y=-1。结果也都满足。这样他们就会搭成共识:函数y=x+1上的任意一点的坐标都满足方程x-y=-1。

然后学生会用同样的方法得出另一个结论:以方程x-y=-1的解为坐标的点一定在函数y=x+1的图象上。然后开始思索函数y=x+1和方程x-y=-1到底有何关系呢?通过交流自动得出结论:以方程x-y=-1的解为坐标的点组成的图象与一次函数y=x+1的图象相同。

3.在同一坐标系下,化出y=x+1与y=4x-2的图象,他们的交点坐标是什么?

方程组y=x+1的解是什么?二者有何关系?

y=4x-2。

y=x+1的解。

y=4x-2。

教师作最后总结:因为函数和方程有以上关系,所以我们就可以用图象法解决方程问题,也可以用方程的方法解决图象问题。

解方程组x-2y=-2。

2x-y=2。

学生会很快的用消元法解出来。

老师发问:谁还有其他的方法?如果有,鼓励学生大胆提出。并给予口头表扬。如果没有人用其他的`方法,老师提出问题:你能不能用图象的方法求方程组的解呢?这时,学生就会去探索新的思路、方法。

一回忆方程与函数的关系,有了!方程组的解不就是两个方程变形得到的两个函数图象的交点坐标吗?学生就会迅速动笔用这种方法把方程解出来。作完之后,互相交流。学生总结一下做题步骤:

1.把两个方程都化成函数表达式的形式。

2.画出两个函数的图象。

3.画出交点坐标,交点坐标即为方程组的解。

问题又出来了,有的同学的解是x=2有的同学的解是x=2.1y=2.1。

y=1.9有的同学的解是……虽然都和消元法得到的结果相近,但各不相同。

老师提问:你能说一下用图象法解方程组的不足吗?

学生争先恐后的回答:用这种方法求的解是近似值。不准确。学生提出疑问:既然不准确,那学习它有什么用呢?用消元法就足够了!

教师解释一下:在现实生活和生产中,我们会遇到特别复杂的方程,用消元法解不太容易,我们就可以用电脑绘制成函数图象,很容易找出交点坐标。教师可以用z+z智能教育平台演示一下。

用作图象的方法解方程组,这体现了两个知识点的内在联系。学数学知识,探索知识点之间的联系,可起到化新为旧的作用,达到事半功倍的效果。逐步让学生学会这种学习新知识的技巧。

四、引申。

方程组x+y=2。

x+y=5解的情况如何?你能从函数的角度解释一下吗?

学生用消元法开始解方程组,结果无解,怎么回事呢?学生会尝试运用方程组的图象解法。画出两个函数图象。答案有了!图象是平行的,没有交点。所以方程组无解了。哇!太神奇了!方程的问题可以用图象的方法解决了。

因为有了上面的用作图象法解方程组,在这里,学生就会自觉地从函数的角度探究方程的问题,初步具有了数形结合的意识和能力。

五、课后小结。

本节课我们通过操作和思考,揭示了二元一次方程和函数图象之间的对应关系,从而引入二元一次方程组的图象解法,同时也建立了“数”----二元一次方程与“形”------函数图象之间的对应关系,培养了学生初步的数形结合的意识和能力。

六、作业。

1.用作图象法解方程组2x+y=4。

2x-3y=12。

2.如图,直线l、l相交于点a,试求出a点坐标。

教学反思。

这节课由故事引入,激发了学生极大的学习兴趣。然后提出了三个尖锐的问题,让学生尝试探索,在探索中既体会到了探索的艰辛,又体会到了成功的喜悦。在应用和引申过程中,尽量让学生自主的发现问题,自主的解决问题。学生在紧张、愉快中完成了这节课的学习。

一次函数与二元一次方程课教学设计(热门17篇)篇十四

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美,学生在探索过程中体验到的数形结合以及数学建模思想,既是对前面所学知识的升华,同时也对今后学习高中的解析几何有着十分重要的意义。

情感态度方面:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信。

从以上目标可以看出,学生既要通过对一次函数与二元一次方程(组)关系的探究,习得知识、培养能力,又要用此关系解决相关实际问题,因此,本节课的教学重点应是一次函数与二元一次方程(组)关系的探索。考虑到八年级学生的数学应用意识不强,本节课的难点应是综合运用方程(组)、不等式和函数的知识解决相关实际问题。而关键则是通过问题情境的设计,激发学生的求知欲,引导学生探索、交流,引导学生发现、分析、解决问题。

《数学课程标准》明确指出“数学教学是数学活动的教学”,“学生是数学学习的主人”。教师的职责在于向学生提供从事数学活动的机会,在活动中激发学生的学习潜能,引导学生自由探索、合作交流与实践创新。对于认知主体来说,八年级学生乐于探索,富于幻想,但他们的数学推理能力以及对知识的主动迁移能力较弱,为帮助学生更好地构建新的认知结构,促进学生的主动发展,本节课我采用情境—探究式教学法,以“情境――问题――探究――交流――应用――反思――提高”的模式展开,以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快学习。

本着重实际、重探究、重过程、重交流的教学宗旨,我将本节课的教学设计成以下六个环节:情景导入——探究合作——解决问题——巩固提高——归纳小结——布置作业。

这节课,我首先用贴近学生实际、学生感兴趣的问题——上网交费问题引导学生进入本节课的学习,充分调动学生的积极性。课件展示学生回答的用列方程组解答的过程,并提出问题:“同学们在解这个二元一次方程组时,基本上都是用的代入法或加减法,那么解二元一次方程组还有其它的方法吗?”学生讨论后可能会感到束手无策,感到原有的知识不够用了。一石激起千层浪,问题提出来后,如何解决呢?此时,作为教师,应把握好组织者、引导者和合作者的身份,不要急于发表自己的意见,而应启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的态势,从而唤起学生强烈的学习热情,使他们主动积极地投入到探索活动中来。另外,此问题的设置也为后面例题的讲解作好铺垫,有利于教学难点的突破。

为使学生更好地掌握本节课的重点知识,我遵循从特殊到一般,再从一般到特殊的认知规律,设计了以下问题“你们能否将方程转化为一次函数的形式呢?”“如果能,你们能在平面直角坐标系中能画出它的图象吗?”在学生将方程转化为一次函数的形式并画出图象后,我引导学生观察直线上的几个点,发现它们的坐标都是方程的解,紧接着问“直线上任意一点的坐标一定是方程的解吗?”“是否任意的二元一次方程都可以转化为一次函数的形式呢?”“是否所有直线上任意一点的坐标都是它所对应的二元一次方程的解呢?”学生先独立思考,然后小组讨论,不难发现:每个二元一次方程都对应一个一次函数,于是也就对应一条直线。一连串的问题由浅入深,环环相扣,引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

紧接着问学生:“你能用刚才的方法研究另一个方程2x—y=1吗?”学生在同一坐标系中画出一次函数y=2x—1的图象后,发现两条直线有一个交点,我又问“这个交点坐标与这两条直线所对应的方程的解有什么关系?与这两个方程组成的方程组的解又有什么关系?”此时,学生慢慢体会到:既然每个二元一次方程都对应一条直线,二元一次方程的每一个解又对应直线上的每一个点,那么两个二元一次方程的公共解就对应着两条直线的公共点,也就是说,二元一次方程组的解不就是对应着两条直线的交点吗?这个时期,教师应留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予及时帮助,师生共同归纳出:用画图象的'方法可以解二元一次方程组,从而解决了本节课开头所提出的问题。然后共同归纳:从“形”的角度看,解方程组相当于确定两条直线交点的坐标。这告诉我们,既可用画图象的方法可以解二元一次方程组,也可用解方程组的方法求两条直线交点的坐标。利用刚才已有的探究经验,学生很容易想到此问题的探究还可以从数的角度看,进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,这个函数值是何值。

这样,学生经过自主探索、合作交流,从数和形两个角度认识了一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,并使学习过程成为一种再创造的过程。学生从一个个小问题的回答,到最后的归纳,充分享受学习、探究带来的快乐,此时教师应充分肯定学生的探究成果,及时对学生进行鼓励,关注学生的情感体验。

为满足学生学以致用、争强好胜的心理需求,我特意设计了两个抢答题,既加强了对所学知识的消化理解,又调动了学生的积极性,更让他们在抢答中品味到了成功的快乐。趁着学生高涨的情绪,我迅速引入开头部分意犹未尽的上网收费问题,加以变式,再次激起学生强烈的求知欲望和主人翁的学习姿态。经过一番探索,学生可能想到:要选择合理的收费方式就需要对它们所收费用的大小进行比较,因此一定会有学生用过去的知识——方程或不等式解决问题,对于这部分学生的想法要给予充分的肯定表扬,然后继续提问“你能用今天所学的图象法来解决这个问题吗?”引导学生建立函数模型进行探索。

学生在同一坐标系中分别画出两个一次函数的图象后,我引导学生观察图象的特征,学生讨论后发现当0≤x400时,红色点在蓝色点的上方;当x=400时,红色点与蓝色点重合;当x400时,红色点在蓝色点的下方,这样利用直线上点位置的高低直观地比较函数值的大小,从而找到答案。为避免图象法作图误差造成的不足,可引导学生通过代数计算求出交点坐标。为培养学生一题多解的能力,我启发学生用作差法,类似地用点位置的高低直观地找到y0,y=0及y0时所对应的x的范围,进而得到答案。通过对实际问题的探究,学生可以发现图象法的直观性,体会数形结合这一思想方法的应用,并学会用函数的观点,动态地分析不等式和方程(组)。

为了巩固学生的学习成果,我把刚刚结束不久的铁山矿冶文化旅游节带进课堂,让学生欣赏一组美丽的黄石矿冶文化景点图片,在学生体验家乡美好的轻松愉快氛围中,我再一次出示了一个与之有关的旅游购票问题,并鼓励学生用不同的方法进行解答,进一步培养学生应用数学的意识,从而更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

在课堂临近尾声时,引导学生对本节课所学进行小结,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。尝试开放式课堂教学,以真正体现学生的主体地位,使课堂活动民主化,多样化。

本节课的作业由必做题和选做题组成,体现分层教学,让不同的学生在数学上得到不同的发展。

这节课,我始终贯穿以学生为主体的原则,突出数形结合的思想,体现数学建模的价值,渗透应用数学的意识,关注学生个性的发展,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的学生在数学的各个不同方面上都得到不同的发展。

一次函数与二元一次方程课教学设计(热门17篇)篇十五

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

教学重难点。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

教学过程。

(一)引入新课。

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

(二)进行新课。

(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。

进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

3、列一元二次不等式。

解法1:设上网时间为分,若按方式a则收元;若按方式b则收元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式a省钱;当上网时间等于400分时,选择方式a、b没有区别;当上网时间多于400分时,选择方式b省钱。

解法2:设上网时间为分,方式b与方式a两种计费的差额为元,得到一次函数:,即,然后画出函数的图象,计算出直线与轴的交点坐标,类似地用点位置的高低直观地找到答案。

注意:所画的函数图象都是射线。

4、习题。

(1)、以方程的解为坐标的所有点都在一次函数_____的图象上。

(2)、方程组的解是________,由此可知,一次函数与的图象必有一个交点,且交点坐标是________。

5、旅游问题。

古城荆州历史悠久,文化灿烂。

一次函数与二元一次方程课教学设计(热门17篇)篇十六

二元一次方程组是新人教版七年级数学(下)第八章第一节的内容。在此之前,学生已学习了一元一次方程,这为过渡到本节的学习起着铺垫作用。本节内容主要学习和二元一次方程组有关的四个概念。本节内容既是前面知识的深化和应用,又是今后用二元一次方程组解决生活中的实际问题的预备知识,占据重要的地位,是学生新的方程建模的基础课,为今后学习一次函数以及其他学科(如:物理)的学习奠定基础,同时建模的思想方法对学生今后的发展有引导作用,因此本节课具有承上启下的作用。

2.教学目标。

[知识技能]。

掌握二元一次方程、二元一次方程组及它们的解的概念,通过实例认识二元一次方程和二元一次方程组也是反映数量关系的重要数学模型。

[数学思考]。

体会实际问题中二元一次方程组是反映现实世界多个量之间相等关系的一种有效的数学模型,能感受二元一次方程(组)的重要作用。

[解决问题]。

通过对本节知识点的学习,提高分析问题、解决问题和逻辑思维能力。

[情感态度]。

引导学生对情境问题的观察、思考,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

3.教学重点与难点。

按照《课程标准》的要求,根据上述地位与作用的分析及教学目标,本节课中相关概念的掌握是教学重点。

七年级学生思维活跃,好奇心强,希望平等交流研讨,厌烦空洞的说教。因此,在教学过程中,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,激发他们的兴趣。一方面通过学案与课件,使他们的注意力始终集中在课堂上;另一方面创造条件和机会,让学生自主练习,合作交流,培养学生学习的主动性、与人合作的精神,激发学生的兴趣和求知欲,感受成功的乐趣。

1.教法。

数学课程标准明确指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。所以我在教学中不只传授知识,更要激发学生的创造思维,引导学生探究,发现结论的方法。正所谓“教是为了不教”。所以我采用引导发现法为主,情景问答法、讨论法、活动竞赛法、利用多媒体课件辅助教学等完成本节的教学,真正做到教师的主导地位。

2.学法。

学生是学习的主体,所以本节教学中,引导学生自主探究、归纳总结,运用自主探索与合作交流开拓自己的创造思维。这样调动学生的积极性,激发学生兴趣,使学生由被动学习变为积极主动的探究,这也符合数学的直观性和形象性。

为了达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为五个环节:

1、创设情境,引入概念。

nba篮球联赛情景再现,利用世界男篮亚裔球星林书豪激励学生相信自已能够创造奇迹的励志教育,感受数学来源于生活,调动学生顺利引入新课。

2、观察归纳,形成概念。

概念的教学,不纠缠于其语言本身,而是通过类比整合形成新的概念。由于学生对一元一次方程概念已经很了解,我主要采用了类比的方法,弱化概念的教学,强化对概念的正确理解,通过学案与课件相结合的方式,以题组形式分层渐进式训练,让学生明晰概念,巩固概念,强化概念,提升能力。

3、拓展延伸,深入概念。

知识的掌握,能力的提升是一个不断循序上升的过程,而教学过程更是一个生动活沷,主动和富有个性的过程,让学生认真听讲、积极思考,动脑动口,自主探索,合作交流。

4、当堂检测,强化概念。

通过课堂随机选题的形式答题,通过合作小组交流,全班展示交流,使学生互相学习、互相促进、互相竞争,将小组的认知成果转化为全班同学的共同认知成果,从而营造宽松、民主、竞争、快乐的学习氛围,让学生体验到学习的快乐,成功的喜悦,从而充分体现数学教学主要是学生数学活动教学的基本理念。

5、反思小结,回归概念。

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,培养学生形成完整的知识体系,养成及时反思的习惯。

美国国家研究委员会在《人人关心数学教育的未来》的报告中指出“没有一个人能教好数学,好的教师不是在教数学,而是在激发学生自已去学数学”。只有学生通过自已的思考建立对数学的理解力,才能真正的学好数学。本节课,我致力于让学生自已去发现数学,研究数学,加强数学思想、方法及科学研究方法的指导,引导学生不断从“学会数学”到“会学数学”,但教无止境,课堂仍然留有遗憾,在今后的教学中,我将从这样的三个方面加强对课堂的研究:一是加强对学法研究、学情研究,让教学方式与内容更符合学生认知规律,更贴近学生实际;二是重视学生课堂的学习感受,营造民主、开放、合作、竞争的学习氛围;;三是提高教学机智、不断创新优化教学方法,科学、合理、灵活地处理课堂上生成的问题。

一次函数与二元一次方程课教学设计(热门17篇)篇十七

本节教学内容是《二元一次方程与一次函数》,这节课以“回顾,提问”为先导,以“操作,思考”为手段,以“数,形结合”为要求,以“引导,探究”为主线,处处呈现出师生互动,生生互动的景象,较好地体现了新的课程理念与要求,充分让学生自主探究,合作交流,时刻注重学生学习过程的体验与评价。新的课程标准提出:数学教学活动必须建立在学生的认知发展水平和已有的生活经验基础之上,教师应帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能、教学思想和方法,获得广泛的数学活动经验。由此,我设计了本节课的教学设计,基于上完课后的感想,我对本节课有如下的反思:

1、从旧识引入,自然过渡。

这节课由复习一次函数解析式和二元一次方程的形式引入,再提出x+y=5是一次函数还是二元一次方程这一问题,进而引出本节课的第一个内容,激发了学生的兴趣,使他们更快的融入课堂。

2、在操作中,提出问题,深化认识。

对于此阶段学生来说,他们乐于探索,富于幻想,但他们的数学推理能力以及对知识的主动迁移能力较弱,为帮助学生更好地构建新的认知结构,促进学生主动发现问题,本节课我让学生亲自动手操作画出一次函数的图像,并解出二元一次方程的解,在画图过程中发现:“以二元一次方程的解为坐标的点都在相应的函数图像上”,接着引导学生反思:“一次函数图像的点坐标都适合相应的二元一次方程吗?”通过举例、验证,得出结论。同样,在探索二元一次方程组与一次函数关系时,也是在操作中发现问题,这样就给了学生充分体验、自主探索知识的机会,使他们在自主探索、合作交流中找到了快乐,深化了认识。

3、以能力培养为核心,引导探索为主线,数形结合为要求。

能力的培养是以自主探究为平台,我通过让学生小组交流合作并讨论来解答几个问题,进而得出结论,培养了他们的发现、分析、解决问题、归纳总结的能力。再由二元一次方程与一次函数的关系进一步扩展到二元一次方程组与一次函数的关系,层层递进,学生基本掌握了本节课的重点、难点问题。通过总结二元一次方程组的解法:加减、消元、图像法,通过分析他们的优缺点可知图像法得出的解是近似的这一结论,让学生又体会到了数学的严谨性。在教学过程中,我充分渗透了数形结合的思想,让学生体会了数学的美。

1、学生自己画图时不好确定交点坐标,在做这样的题时,就一定会存在如何确定交点的精确度问题,从而使学生会认为应用图像法来解二元一次方程组的方法无用处,进而不重视本节课的内容。

2、教学过程中,在探索二元一次方程与一次函数关系时,提出的问题与ppt课件中展示的问题部分重复了,浪费了一些时间,板书设计不够简洁。

1、对于交点坐标问题,应该跟同学们讲解清楚,我们要求的是掌握这个解二元一次方程组的图像解法,我们借助科学技术很容易画出一次函数的图像,也就容易找到交点的精确坐标。此外,一般来说如果考试当中是会给出交点的坐标。

2、重新整理资料,将一些重复问题删去,提取结论中一些重点语句,关键词,板书做到精炼。

猜你喜欢 网友关注 本周热点 精品推荐
在学校里,我们不仅得到了老师的关怀和教导,还培养了自己的创新精神和实践能力。以下是小编为大家准备的学校教育的一些成功案例,让我们一起来分享学习。为了切实加强学校
总结心得体会可以帮助我们更好地认识他人,增强人际关系的处理能力。通过这次经历,我认识到自我反思和自我认知的重要性,只有不断审视自己,才能更好地了解自己的优点和不
大学生演讲稿是大学生在公开场合展示自己文化素养和思想修养的重要载体。以下是小编为大家收集的优秀大学生演讲稿范文,供大家参考学习。尊敬的各位老师。亲爱的同学们:巴
在写月工作总结时,要尽量客观、详细地记录自己的工作内容和成果。在这里,我们列举了一些关于月工作总结的典型问题和解决方案,供大家参考和借鉴。1、工作表现与学习态度
写心得体会是对自身成长和提高的一种自我激励和自我评价手段。为了让大家更好地理解如何写心得体会,特别整理了一些实例,供大家学习参考。第一段:引入电网会议报告的重要
服务月是社会进步的一种重要举措,通过集中资源和力量,有效地解决社会问题。通过阅读这些服务月总结范文,可以更好地理解服务的目标和重要性。甲方(用户):甲、乙、丙三
通过教学工作总结,可以了解教学的得失和成效,以便进一步完善教学方法和提高教学质量。接下来是一些教学工作总结的范文,希望对大家的教学工作有所帮助。转眼间,一学期的
在工作学习中,我们常常需要总结自己的心得体会,这有助于不断提升自己的能力和水平。以下是一些总结自己学习和工作经验的心得体会,希望能够给大家带来一些启示和思考。
通过月工作总结,我们可以清晰地了解自己在工作中取得的成绩和进步,同时也能够反思自己的不足和需要改进的地方。在下面的范文中,我们可以看到不同领域和行业的人们如何通
范文是一种可以供人们借鉴和模仿的文学作品,它可以帮助我们提高写作水平和表达能力,我想我们需要一些范文来作为参考吧。在下面的范文中,作者运用了恰当的语言表达,使总
今天的活动既是一个庆祝,更是一个充满意义和启示的时刻。我们的目标是为大家提供有价值的内容,希望能够得到您的反馈和建议。开场:合:春风送祝福,平安永相伴!尊敬的各
更多申请书是在求职、留学或其他各类申请中必不可少的一部分,它能够展示自己的能力和潜力。如果你想了解一些写作申请书的技巧和方法,以下是一些值得一看的示范范文。
阅读范文范本有助于我们了解作品的结构和框架,从而更好地进行写作。范文范本收集了许多经典的范文,通过阅读和学习这些范文,我们可以提高自己的写作水平。性的问题。诸如
教学工作计划应该针对不同学生的差异性进行个性化的设计,充分考虑学生的特点和需求。接下来,小编将为大家介绍一些编写教学工作计划时常用的软件和应用。八年级的新学期时
在写心得体会时,要注意结合具体的事例和感受,使其更加生动和有说服力。以下是小编为大家收集的心得体会范文,供大家参考和借鉴。杨美云的《丁香结》一直是文学书籍中的佳
通过分析范文范本,我们可以学习到不同类型作品的写作方法和技巧。以下是几篇精选的范文范本,希望能够给大家带来一些启发。牢记使命”成果,围绕“强化理论武装,加强政治
尊敬的各位领导、嘉宾和朋友们,大家好!我将担任今天的主持人,为大家提供一个优雅而难忘的活动体验。现在,请大家一起来阅读一些优秀的范文,希望能够给大家带来些许启示
青春是拼搏和奋斗的舞台,只有付出才能收获成功和成就。以下是小编为大家整理的青春总结范文,希望对大家有所启发。青春年少时,我以为那时候青涩懵懂的我们是最好的;青春
只有拥有高尚的师德才能够真正引领学生,培养他们积极向上的人生态度和正确的价值观。这些优秀教师的师德事迹向我们传递了正能量和教育责任的重要性。检点前路,我一直行走
入党是对个人思想、品德和行为的一次细致审视和考察,它要求党员具备良好的党性修养。以下是一些入党积极分子考核材料的范文,希望对大家有所启发。。敬爱的党组织:本人×
幼儿园工作计划是幼儿园管理与评估的重要依据,可以帮助幼儿园进行定期的工作总结和改进。教师们在编写幼儿园工作计划时,可以参考一些范文,以提升自己的工作水平和教学质
个性化学习型教案模板可以根据学生的个体差异和学习需求,设计个性化学习任务和学习方式,提高学生的学习效果。教案模板的使用应该注重灵活性,根据实际教学情况进行必要的
读后感是读者通过阅读和解读书籍,对书中情节和主题进行总结和评价的表达形式。以下是小编为大家搜集整理的一些精彩读后感范文,希望对大家有所帮助。最近,我读了《童年的
通过年度总结,我们可以对自己的发展轨迹进行梳理,以更好地规划未来的目标和计划。在这里,我们为大家收集了一些年度总结的范文,供大家参考。为进一步加强基层党风廉政建
教学工作计划是教师提高教学管理和组织能力的重要工具之一。以下是小编为大家收集的教学工作计划范文,供大家参考。通过系统丰富的培训训练,我深刻熟悉到中华民族共同体意
写心得体会可以促使自己更深入地思考和理解所学内容,也可以帮助他人更好地理解和运用相关知识。以下是一些优秀心得体会的案例,希望能够给大家提供一些写作的灵感。
培训心得体会是对培训成果和收获的总结和展望,有助于提高个人职业素质。以下是一些值得参考的培训心得体会范文,希望能给大家在写作过程中提供一些思路和思考角度。
心得体会是一种对自己的告诫和鞭策,帮助我们更加努力地改进和提高自己。最后是一些关于人生的心得体会范文,希望能给大家一些启示和思考。一、引言:玩具是孩子们成长过程
每个月的工作总结都是对自己成长和进步的一次回顾和展望。这个月的工作总结,反映出了团队成员在工作中的积极性和主动性。2、做好绿化长期目标规划,营造良好氛围。抓住每
月工作总结是对过去一个月的工作进行回顾和概括,是自我提升和进步的重要途径。下面,小编为大家推荐一些月工作总结范文,希望对大家的写作有所帮助。20xx学年第一学期
月工作总结可以帮助我们发现自身的不足之处,促使我们进行自我改进和成长。以下是小编为大家整理的月工作总结范文,供大家参考和学习。组织学习廉政宣传片、共和国的精神宣
通过写心得体会,我们可以找到自己在学习或者工作中的优点和不足,有针对性地改进自己。参考他人的心得体会可以帮助我们对特定主题有更全面的了解和认识。在大学生活中,参
优秀的作文不仅需要有深入的思考和独到的见解,还需要用生动的语言和精准的表达来展示出来。如果你对如何写一篇优秀作文感到迷茫,可以先阅读一些优秀作文范文,以下是一些
一个成功的活动方案能够对参与者和组织产生积极的影响,达到预期的效果。希望这些活动方案范文能够给大家提供一些启发和思路,帮助大家更好地制定自己的活动方案。
心得体会具有反思和思考的作用,让我们更清晰地认识自己的优点和不足。这些心得体会范文包含了学习、工作、生活等方面的体验和感悟,非常有参考价值。作为人类,我们每个人
工作心得的总结可以给予我们客观的反馈和建议,帮助我们更好地规划未来的职业发展。为了帮助大家更好地总结和反思自己的工作经验,以下是一些工作心得的案例供大家参考和学
通过写心得体会,可以让我们更好地理清思路、总结经验、反思问题。小编为大家精选了一些优秀的心得体会样本,供大家参考和学习。朗诵是一种口语演艺,也是一种表达艺术,而
国旗下讲话稿应该从中华优秀传统文化中汲取智慧,传递真挚情感。下面是一些经典的国旗下讲话稿范文,希望能够给大家在撰写讲话稿时提供一些启发和帮助。敬爱的老师、亲爱的
实习心得体会不仅仅是简单罗列所做的事情,更要关注实习过程中遇到的问题和解决的方法,以及对自身能力的提升。另外,以下是一些实习心得体会是关于如何克服困难和坚持的经
计划书的好坏直接关系到后续工作的顺利进行,因此我们必须认真对待每一项细节。以下是小编为大家收集的计划书范文,供大家参考和借鉴。为了正确、及时地处置各种火灾事故,
内蒙古的地理位置十分重要,是中国与俄罗斯等国家经济合作的重要通道。以下是小编为大家整理的内蒙古特色手工艺品购买指南,希望能给您的购物带来一些帮助。七月二日下午,
梦想是智慧的种子,是我们培育人生美好未来的希望之花。梦想的实现需要借鉴他人的成功经验和故事,让我们一起来分享。水,是至清至纯之物,是我们生命中不可缺少的一部分,
总结是一种对自我进行反思和审视的方式,它不仅可以概括经验,还能够发现错误和改进之处。下面是一些关于心得体会的范文选集,希望能够激发大家写作的灵感和创造力。
心得体会是对于某一事物或某一经历的内心感受和思考,它能够帮助我们更好地理解和认识自己。下面小编为大家整理了一些优秀的心得体会范文,希望能给大家的写作提供一些启发
通过写作的过程,能够培养学生的观察力、思考力和表达能力,提高他们的综合素质和竞争力。下面是一些优秀作文的分享,希望对大家的写作有所启发。冷风飕飕,穿过我的身体,
规划计划是指在特定时间内,对未来的目标和计划进行规划和安排。下面是小编为大家整理的一些规划计划范文,希望对大家有所帮助。村看村,户看户,群众看党员,党员看干部。
建设方案的编制需要考虑各种因素,包括经济、技术、环境等,以满足项目的要求并兼顾各方面的利益。学习他人的经验和教训,能够更好地指导我们的建设方案制定工作。
心得体会是我们在学习和工作中对经验和收获的总结和反思,它可以帮助我们更好地成长和提升。欣赏心得体会范文可以让我们感受到他人的思考和成长,唤起我们对学习的共鸣和勉
青春是我们最美好的年华,让我们用青春的力量改变世界和自己。接下来是一些关于青春的纪录片和影视剧推荐,希望能给大家带来一些思考和启示。尊敬的各位领导,敬爱的同志们
通过写心得体会,我们可以把握自己的成长轨迹,发现自己的不足并努力改进。以下是小编为大家收集的一些心得体会范文,供大家参考。通过阅读这些范文,你可以了解到写心得体
优秀作文是积极思考和扩展思维的产物,它通常能够引起读者的思考和共鸣。接下来,小编为大家推荐一些优秀作文选段,每一篇都有其独特之处,可供大家欣赏与学习。
写心得体会是一种对于自己成长和进步的记录和证明,可以激励自己不断前行。接下来,小编将分享几篇关于心得体会的文章,让我们一起来看看吧。四月十九日,是我在这学期里最
教学工作计划的制定要充分考虑学生发展规律和学科规律,注重培养学生的综合素质和能力。以下是一些在实际教学中得到验证的教学工作计划范文,供大家参考和学习。
心得体会是对自己在学习、工作或生活中所获得的经验和感悟的总结。小编为大家整理了一些关于心得体会的范文,希望能够给大家提供一些写作方面的参考和帮助。母婴连锁店是帮
心得体会是在学习、工作或生活中获得的经验和感悟的总结,有助于我们深刻理解和总结经验。下面是一些具有指导性的总结范文,希望可以为大家提供写作的思路。红薯是我国常见
以安全演讲稿作为平台,能够促进安全文化的传播,营造和谐的社会环境。为了帮助大家更好地写出出色的安全演讲稿,小编为大家精选了一些实用的范文,供参考。各位领导,各位
教学工作计划的执行需要及时调整和改进,根据实际情况进行灵活变化,确保教学效果的最优化。教学工作计划的编写是教师工作的一项基础性工作,只有做好了这项工作,教学才能
心得体会是一种将自己的感悟和思考进行整理和提炼的方式,它能够帮助我们更好地认识自己和提升自己。小编为大家搜集了一些有关心得体会的相关资料,希望可以对大家写作有所
策划方案不仅仅是一个计划,更是对所需资源的详细细化和安排。通过参考这些策划方案范文,你可以学习到一些项目控制和风险管理的经验。  (1)活动的前期宣传:  1、
通过写心得体会,我们可以不断提高自己的思考深度和思考角度,从而更好地理解世界和自己。以下是小编为大家收集的一些优秀心得体会范文,供大家参考借鉴。这些范文内容丰富
在各个领域中,策划方案都扮演着非常重要的角色,它能够为工作和项目的顺利进行提供指导和支持。下面是一些经典的策划方案案例,通过学习借鉴可以提升我们的策划能力。
在写作过程中,优秀作文常常具备清晰的思路、准确的语言和丰富的事例。以下是小编整理的一些优秀作文范文,希望对大家有所帮助。仰着头静静的听着。麻雀也不再叽叽喳喳,轻
优秀的作文不仅仅是语言流畅,更需要思想独到、观点独特,让人叹为观止。接下来是一些优秀作文的段落,希望能够给大家提供一些写作的参考和指导。我的妈妈留着一头短发,柳
心得体会是个人对某个事物、经历或工作的深刻认识和理解。随后,我们将阅读一篇来自一位普通人的心得体会,从中寻找共鸣和启发。姓名:学号:js1002216。班级:1
通过制定教学计划,可以明确学习目标和教学内容,提高教学效果。接下来是一些获得良好教学效果的教学计划范文,希望能给大家带来一些借鉴和启示,提高教学质量。
心得体会是一种自我反省和总结,通过这个过程可以更好地发现自己的潜力和信心。以下是小编为大家收集的心得体会范文,希望对大家的写作有所启示。作为中国的西北边陲地带,
通过实习心得体会的写作,我们可以更加清晰地认识到自己的优势和不足,并为今后的发展做出更好的准备。借助以下的实习心得体会,我们可以更好地理解实习的意义和价值,为今
心得体会是我们在学习和工作中积累的经验总结,可以帮助我们更好地成长。这些心得体会范文或许不完美,但它们无疑都蕴含着作者的真实体验和思考。携带着对教好小学科学这门
教案的编写需要根据五年级学生的认知能力和实际情况来确定合适的内容和教学方法。请大家认真阅读以下的五年级教案范文,它们有助于提高教学质量和效果。1.引导学生读懂课
一个详细和全面的策划书可以帮助我们提前预见并解决潜在的问题。这些策划书范文涵盖了不同领域的活动和项目,展示了不同行业和场合下的成功策划经验。为方便学习新生顺利完
通过写心得体会,我们可以更深入地反思自己的学习或工作过程,发现其中的问题和不足。总结过去的经历,我意识到自己在很多方面都有所成长和进步。我的沟通能力和团队合作意
心得体会是我们积累经验、沉淀思考的过程,它能够帮助我们更好地提升自己的能力和素质。在这里,小编为大家整理了一些写心得体会的范文,希望能帮助大家更好地掌握写作技巧
心得体会是一种回忆与思考的结合,可以促使我们更好地理解和应对类似情况。我们一起来看看下面这些心得体会的范文,或许能够给我们带来一些新的思考和启迪。来到x中学也有
教学工作计划的制定需要考虑学生的特点和需求,以及教学资源的合理利用。阅读以下教学工作计划,了解如何根据学生的学习特点和需求,合理安排教学过程。1、能正确、流利地
活动总结可以发现活动组织和执行过程中的流程不畅和问题所在。这些精心挑选的活动总结范文,将带领大家走进活动的世界,感受其中的乐趣和改变。为庆祝五一劳动节,4月30
优秀作文是对思想、语言和结构等进行全面综合考察的一种文学作品,它能够展现出作者的才华和文学水平。阅读优秀的作文范文,可以帮助我们开阔思路,提升写作水平,以下是一
写心得体会时,应注意语言的准确性和文字的流畅性,以便于让读者更好地理解和接受。如下是一些关于心得体会的案例分析,希望可以激发大家对写作的兴趣和思考。
通过撰写心得体会,我们可以更好地总结和概括自己在某一领域的经验和见解,形成自己的个人风格和特点。总结心得体会的过程不仅有助于我巩固所学知识,还让我更加明确了自己
写心得体会可以促使我们思考和深化对某个问题的理解,提升自己的思维能力。在这里,小编为大家整理了一些精彩的心得体会范文,希望能对大家有所帮助。经过收看《榜样》,我
通过写心得体会,我们可以更好地反思自己的行为和思维方式,从而不断提高个人能力。下面是小编为大家整理的一些优秀心得体会样本,供大家参考和借鉴。近年来,随着社会的进
写总结范文时,要注意语言简练、准确,避免冗长和啰嗦,突出重点和亮点。接下来给大家分享一篇精彩的总结范文,希望能给大家启发和帮助。实践总结是一种重要的学习方法,能
优秀作文通过恰当运用比喻、象征等修辞手法,增强文章的艺术感。如果你想了解更多优秀作文的写作技巧和经验,不妨参考以下范文。走过一座山,又是一座山。水情似水,爱似水
写心得体会的过程就是一个反思、总结和成长的过程,通过深入思考,我们能够更好地认识自己,并且不断提升自己。下面是一些作者们分享的心得体会,希望能够对大家的写作有所
优秀作文需要注意段落结构的合理安排,使文章的层次清晰可见。下面是一篇优秀作文的样例,希望能给大家提供一些写作的思路和方法。最近的秋雨下的很频繁,每下一场秋雨,就
心得体会是一种宝贵的财富,它可以帮助我们总结经验教训,发现问题并寻找解决办法。通过阅读下面的范文,我们可以对心得体会的写作方式和技巧有一个更直观的了解和认识。
优秀作文要能够抓住读者的心理需求,引发读者的兴趣和思考。接下来是一些网络上热门的优秀作文分享,让我们一起来品味吧。在一条宽大的水泥道上,两边都有许多梧桐树,一阵
写心得体会可以促使我们提高自我认知,发现并改正不足,从而不断成长和进步。以下是小编为大家收集的一些优秀心得体会范文,供大家参考借鉴。这些范文内容丰富、观点独到,
写心得体会有助于我们形成对所学知识的系统化思考和理解。心得体会是我们对某个经历或事件所得到的深刻认识和感悟,它能够帮助我们成长。首先,在写心得体会时,我们可以先
调研报告的目的是为了全面了解问题,并提出相应的建议和解决方案。调研报告是对某一特定问题进行系统调查和研究的书面材料,通过收集、分析相关数据和信息来得出结论和建议
班主任工作计划可以帮助班主任合理安排时间和资源,实现班级管理的科学化。下面是一些班主任工作计划的成果展示和反馈情况,供大家了解和参考。作为学前班班主任,我将努力
很荣幸能够成为今天的主持人,我将全力以赴为大家提供一个高效、有序的会议平台。接下来是一个重要的环节,让我们一起见证并享受其中的乐趣。在语文教学活动中阅读教学占有
规划计划是成功的关键,它可以使我们更加有条理地思考和行动。不同的规划计划有不同的特点,以下是小编整理的一些典型范例,供大家参考。新课改理念在不断地提升,对教师的
优秀作文是思想的飞翔,是灵魂的呼唤,是对真理的追求。这些优秀作文范文给我们提供了很好的写作参考和借鉴,有助于我们提高写作的水平和思考的深度。有人说,幸福是我们健
读后感是一种文化素养的体现,有助于提高我们的审美和鉴赏能力,丰富我们的人生阅历。接下来是一些优秀的读后感范文,希望能为大家提供一些参考和借鉴。西游记是古代四大名
优秀作文需要有清晰的结构和逻辑,让读者能够明确地理解和接受作者的观点。通过欣赏这些优秀作文范文,我们可以了解到一些优秀作文的写作技巧和方法。60年,祖国历尽沧桑
通过活动总结,我们可以分析活动中的亮点和不足,进一步完善我们的工作。这里有一些精彩的活动总结范文,相信会给大家的写作提供一些启示和思路。通过讲话学生知道了革命先
合作可以帮助我们建立良好的人际关系,促进社会和谐发展。以下是一些成功案例,展示了合作在项目中的重要性和价值。第一条(以下简称甲方)(以下简称乙方)。第二条甲方聘
作文是语文学习中的一项重要内容,通过写作可以提高我们的思维能力和表达能力。阅读一些优秀作文范文能够帮助我们更好地理解优秀作文的特点和要求。我的老家在山东禹城,那
卫生工作总结是一种重要的管理工具,可以使我们更加系统地了解自身工作的优势和不足。小编为大家整理了一些精选的卫生工作总结案例,供大家参考学习。我校爱国卫生活动月活
培训工作总结是培训管理的重要环节之一,需要制定科学、有效的总结流程和规范。以下是一些关于培训工作总结的范文,它们能够让你更好地了解和学习如何写总结。