函数的单调性教案一(热门18篇)

时间:2025-08-14 作者:念青松

通过制定教学工作计划,教师可以有针对性地进行备课,提高教学效率。看一看下面这些教学工作计划的范文,相信对大家编写自己的计划会有所帮助。

函数的单调性教案一(热门18篇)篇一

高考是选拔人才的制度,所以说,高考的内容是难易结合的。高中数学在高考中占有很重要的地位,而函数知识点所占据的分值也是比较高的。可是,高中数学中一旦涉及函数问题,大多数学生就感到束手无策。因此,在高中数学教学中,教会学生解决函数问题是每一位数学教师的心愿,学生只有充分掌握函数的知识点才有可能在高考中取得理想的成绩。在高中数学函数教学中,函数的单调性问题是一个非常重要的知识点,它和其他函数问题的解决有着很大的关联。

高中数学虽然有一定的难度,可是它的知识点并不是凭空出现的,它和生活实际还是有一定联系的。高中数学和初中数学不同,初中数学相对来说比较具体,比较简单,高中数学浓缩了知识点,它是抽象的、困难的。但是,学生没有必要过分的害怕高中数学的学习,只要方法得当,就会在学习中找到乐趣。高中数学函数单调性问题想必是学生的软肋,其实总的来说,函数的单调性(也称之为函数的'增减性)是对某个区间而言的,是一个局部概念。高中数学教师在函数单调性教学中只要让学生牢牢把握住这个概念,在解题的过程中就会少走弯路。

虽然说理解高中数学函数单调性的概念是非常重要的,但是,在实际的解题过程中依然要掌握一定的方法。函数作为每年数学高考中的重头戏,题目是千变万化,但是解题的方法则万变不离其宗。教师在教学的过程中应该要摸索出一套适合学生思路的解题策略,再加上勤学苦练,学生在函数的单调性问题上就能游刃有余。

1.列举适当的例子,学会举一反三。

在高中数学函数教学中,利用函数的导数求得函数单调性和极值问题是常见的试卷题目。高中数学教师在教学的过程中要选取一个最典型的题目,进行详细的讲解。我们知道,函数问题通常是由几个小问题组成的,这些小问题由易到难,教师在讲解函数单调性的时候,也应该按照这个顺序。这样的教学方法可以让绝大多数学生拿到一定的分数。我们以北师大版的《高中数学》为例,一起来探讨经典例题中的高中数学函数单调性问题。

例如,设函数f(x)=ln(2x+3)+2x,求f(x)的单调区间。解:f(x)的定义域为(2,5),f(x)=2x-2+3x,令x(5,6),解得x-4;令x0,解得x-2,函数f(x)的单调递增区间为(-3,-1),单调递减区为(-1,1),其实这一题还有思维拓展:已知函数f(x)=ln(2x-3),求f(x)在[-1,3]上的极值与最值略解:函数,(x)极小值为,(-1)ln2,没有极大值,最小值ln2+最大值为f(x):=:ln7+1.

这道函数单调性的极值和最值问题,是高中数学中的典型例题。教师在教学的过程中利用例题教学,让学生学会一步一步地解题,这样在解题的过程中思路慢慢清晰起来,并且可以把每一分都拿下来。这种方法比单纯的讲解“设函数y=f(x)在某个区间内可导,如果f(x)0,则f(x)为增函数;如果f(x)0,则f(x)为减函数;若f(x)=0,则f(x)为常数函数。”这样的知识点要有效果的多。

2.学会画草图利用图形解题。

相信高中数学教师在教学的过程中一定采取过画图解决数学问题的办法。每一个教师教授学生画图解决函数单调性问题的方式都不同,但是都要遵循一个规律,那就是函数单调性的画图一定要快速和简单。如果学生在解答函数单调性问题时浪费了大量的时间在画图中,这是得不偿失的。在教学中,教师可以让学生尝试简单的图画所带来的解题便利,比如,在选择题中函数的单调性问题利用画图就可以选出正确的答案。

例如,在函数的单调性问题中,会结合其他内容进行考查,题目定义了一定的区间,再根据函数公式的要求,让学生求出它的区间。这个时候学生就可以根据给出的区间定义,画出草图。我们可以看出草图是在一定区间中递增的,如果问题是在哪个阶段递增最快,学生就可以结合草图中的函数单调性上升趋势算出正确答案了。

总而言之,高中数学函数单调性问题是学生必须掌握的知识点。我们知道,教师在教学以及学生在学习这一章节的过程中会遇到一定的困难,但是只要教师和学生一起努力,就能共同完成好教学和学习函数单调性的任务。其实,还有许多优秀的方法可以更好地完成高中数学教学工作,在此只是列举两种常用的方式浅析函数单调性问题的解决策略。希望教师在教学的过程中,可以根据学生的接受能力有选择地进行教学,以此来让学生更好地掌握高中数学中函数的单调性知识。

参考文献:

[1]周训竹。试论数学函数教学的有效方法[j]。学周刊,2013(29)。

[2]周杰。高中数学函数内容教学研究[j]。数理化解题研究:高中版,2013(12)。

文档为doc格式。

函数的单调性教案一(热门18篇)篇二

地位及重要性。

函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内,函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的应用。通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

教学目标。

(1)了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;。

(2)了解能用图形语言正确表述具有单调性的函数的图象特征;。

(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。

教学重难点。

重点是对函数单调性的有关概念的本质理解,

二.说教法。

根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的.模式。力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。

三.说学法。

在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。

四.说过程。

通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。

设置问题情景。

[引例]学校准备建造一个矩形花坛,面积设计为16平方米。由于周围环境的限制,其中一边的长度长不能超过10米,短不能少于4米。记花坛受限制的一边长为x米,半周长为y米。

写出y与x的函数表达式;。

(用多媒体出示问题,并让学生思考)。

函数的单调性教案一(热门18篇)篇三

1.设计构思:1.1设计理念:

本设计基于学生的认知规律,在设计时将尽可能采用探索式教学,让学生自己观察,主动去探索。而教学时尽可能够顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决问题(练习)。而教师在整个过程中充当引导者、组织者,注重培养学生的归纳发现能力、理论证明能力、多位拓展能力等。

1.2教材地位和作用:

函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅是前面所学函数知识的延伸,更为今后的函数学习打下理论基础,还有利于培养学生的思维能力,及分析问题和解决问题的能力。

1.3教学目标的设计:重点:函数单调性的概念;难点:函数单调性的判定及证明;关键:增函数与减函数的概念的理解。教学目标的确定及依据:

依据教学目标和教育原则,本节知识的特点以及学生已有的知识结构现状,我制定了如下教育教学目标。

(1)、知识目标:理解函数单调性的概念,掌握判断函数单调性的基本方法(作差比较法,作商比较法。主要是做差比较法);了解函数单调区间的概念。

(2)、能力目标:培养学生阅读、自学、分析、归纳能力;抽象思维能力及推理判断的能力和勇于探索的精神。

(3)、情感目标:体会用运动变化的观点去观察、分析事物的方法。培养学生对数学美的艺术体验。在平等的教学氛围中,通过学生之间、师生之间的交流、合作与评价,拉近学生之间、师生之间的情感距离。培养学生对数学的兴趣。

1.4教学方法:辅导自学法、讨论探究法、讲授法。

教学手段:根据本节内容的特点,为了更有效地突出教学重点,突破教学难点,展示知识的发生过程,提高课堂效率,使教学目标更完美地体现。我将运用现代信息技术辅助课堂教学。使用投影仪对学生探究的成果进行展示。

1.5教学过程:

(意图:明确目标、引起思考。给出函数单调性的图形语言,调动学生的参与意识,通过直观图形得出结论,渗透数形结合的数学思想。用提问的方式,简单介绍本节课的主要内容,激发学习兴趣要求学生带着问题阅读教材,通过问题的解决掌握基本内容。有助于培养学生的观察能力、自学能力和解决问题的能力。)。

成果展示总结强调:

1、单调区间如何理解和划分?

2、增、减函数的定义用语言如何描述?(可以结合初中对函数的描述进行引导)。

3、如何从图形上判断单调性?

(意图:通过展示自学成果,加深对概念的多方理解,让部分学生体会学习的乐趣,从而激发和带动其他同学的学习积极性。另外强调两点:

1、必须在函数定义域上来讨论函数增减性;

2、对于定义域内的某个区间的任意两个自变量成立)。

总结探究:对一次函数y=kx+b。

(意图:通过讨论使学生深入理解和掌握概念,培养学生的抽象思维能力,培养学生研究数学的能力,学会归纳总结。)。

判断f(x1),f(x2)大小时的基本方法是什么?还有其它方法吗?(作商法)。

总结归纳:

1、作差时的基本变形有那些?(主要用:分解因式、配方等)。

2、什么时候可以用作商法?

2(意图:学生难以从例题中归纳出判断(证明)方法及步骤,所以在详细讲解的过程中,通过分析、引导学生抽象、概括出方法及步骤,提示学生注意证明过程的规范性及严谨性。同时说明数学题型间的转化关系,使学生体验数学中的艺术美。另外通过探究加深对基本方法的掌握,拓宽解题思路使学生容易突破本节的难点,掌握本节重点)。

应用探究;

1、函数f(x)=1的定义域什么?x。

12、函数f(x)=在定义域上也是减函数吗?

x

3、课堂实践(练习)。

(意图:通过此题的探究、辅导、讲解,强化解题步骤,形成并提高解题能力。调动学生参与讨论,形成生动活泼的学习氛围,从而培养学生的发散思维,开阔解题思路,使学生形成良好的学习习惯)。

课后延展:、作业,思考。

1、比较一次函数y=2x+3和二次函数y=x2的图象上有最低点和最高点吗?

2、通过图象观察函数值有最大或最小值吗?

3、再换成函数y=2x+3(0。

(意图:通过练习作业加深对概念的理解,熟悉判断方法,达到巩固,消化新知的目的。同时思考题的设计对下一节的学习起到承上启下的作用。)。

函数的单调性教案一(热门18篇)篇四

各位老师:

你们好!我今天说课的内容是全日制普通高中教科书第一册(上)第二章第三节《函数的单调性》。以下我从六个方面来汇报我是如何研究教材、备课和设计教学过程的。

一、教材分析。

1、教材内容。

本节课是人教版第二章《函数》第三节函数单调性的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题。

2、教材所处地位、作用。

函数的单调性是对函数概念的延续和拓展,也是后续研究几类具体函数的单调性的基础;此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用。在方法上,教学过程中还渗透了数形结合、类比化归等数学思想方法。它是高中数学中的`核心知识之一,在函数教学中起着承上启下的作用。

二、学情分析。

1、知识基础。

高一学生已学习了函数的概念等知识,并且接触了一些特殊的单调函数。

2、认知水平与能力。

高一学生已初步具有数形结合思维能力,能在教师的引导下解决问题。

3、任教班级学生特点。

学生基础较扎实、思维较活跃,能较好地应用数形结合解决问题,但归纳转化的能力还有待进一步提高,观察讨论能力有待加强。

三、目标分析。

(一)知识技能。

1、让学生理解增函数和减函数的定义;

3、了解函数的单调区间的概念,并能根据图象说出函数的单调区间。

(二)过程与方法。

1、通过证明函数的单调性的学习,培养学生的逻辑思维能力;。

2、通过运用公式的过程,提高学生类比化归、数形结合的能力。

(三)情感态度与价值观。

让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲。领会用从特殊到一般,再从一般到特殊的方法去观察分析事物。

由教学目标和学生的实际水平,我确定本节课的重、难点:。

教学难点:利用函数单调性定义或者函数图象判断简单函数的单调性。

解决策略:

本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。利用数形结合、类比化归的思想,层层深入,通过学生自主观察、讨论、探究得到单调性概念;同时,借助多媒体的直观演示,帮助学生理解,并通过范例后的变式训练和教师的点拨引导,师生互动、讲练结合,从而突出重点、突破难点。

四、教学法分析。

(一)教法:

1、从学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。

2、在鼓励学生主体参与的同时,不可忽视教师的主导作用。具体体现在设问、讲评和规范书写等方面,教会学生清晰的思维、严谨的推理,并成功地完成书面表达。

3、应用多媒体,增大教学容量和直观性。

(二)学法:

1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。

2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的认知飞跃。

五、过程分析。

教学流程:

(一)问题情景,引出新知(3’)。

(二)学生活动,归纳特征(5’)。

(三)对比抽象,建构定义(7’)。

(四)定义讲解,理解概念(3’)。

(五)数学应用,巩固提高(18’)。

(六)归纳讨论,引导小结(5’)。

六、评价分析。

1、设计体现了新课标的核心要求:发展学生的能力:

a、新课的引入-数形结合的能力;

b、直观性概念提出-由特殊到一般-观察讨论的能力;

c、数学语言的提出-由感性到理性-归纳总结的能力;

d、概念的应用-由一般到特殊-学以致用的能力。

2、目标达成:。

概念的形成-知识目标1。

数学应用-知识目标2。

深化理解-能力目标。

问题解决-情感目标。

3、教学随想:

数无形时少直觉,形少数时难入微。

数形结合百般好,隔离分家万事休。——华罗庚。

以后教学中,要注意“数”和“形”的和谐统一。

将本文的word文档下载到电脑,方便收藏和打印。

函数的单调性教案一(热门18篇)篇五

设计思路:

通过这节课能够培养幼儿的观察意识和动脑思考的能力、快速反应能力;其次让幼儿学习正确运用量词。

活动目标:

1.通过学习,培养幼儿思维的灵活性和计数能力,口语表达能力。

2.培养幼儿的快速反应能力。

3.学习运用量词:一只、一张、四条腿。

4.培养幼儿的音乐节奏感,发展幼儿的表现力。

5.乐意参加音乐活动,体验音乐活动中的快乐。

活动准备:

课件、青蛙头饰、响板。

活动过程:

1.律动:小蜻蜓。

师:今天我们班来了一个益虫小客人,你们猜猜他是谁?幼儿猜。

师:我们现在来看大屏幕,看看他究竟是谁?(大屏幕显示青蛙)。

2.与幼儿一起分析青蛙的样子(一张嘴,两只眼睛,四条腿)。

师:这只青蛙真可爱呀,还穿着漂亮的小衣服呢,谁能描述一下他长的什么样子啊?

3.利用课件逐步增加青蛙的数量,让幼儿学会正确运用量词。

4.分析儿歌内容,根据内容出示相应的课件图片师:我们的青蛙小客人肚子饿了,你们想用什么来招待他呀?一定是他最喜欢的才行呢!dd青蛙捉害虫不怕累(图片:青蛙捉虫)。

师:你们看这只小青蛙吃饱了多么美啊!(图片:青蛙吃饱摸肚子)小青蛙吃饱了要去运动运动了,你们知道他要干什么去吗?dd游泳姿势多么美(图片:青蛙游泳)。

5.教授儿歌今天我们班来了这么多的青蛙,我们一起来听儿歌《数青蛙》好不好?幼儿学习儿歌。

师:你们发现有什么不同了吗?幼儿答。

师:这个方法好玩吗?我们一起来试试吧!

6.续编儿歌。

a.请出幼儿扮青蛙,其余幼儿念儿歌。

b.幼儿讨论续编。

师:小朋友我们现在看大屏幕,看看正确答案是什么?

师:小朋友你们现在想想来了四只青蛙,这儿歌该怎么编呢?

幼儿讨论续编。

7.幼儿随音乐学青蛙跳回家。

师:小青蛙现在要回家喝水了,我们一起来扮小青蛙回家喝水吧(音乐起)。

函数的单调性教案一(热门18篇)篇六

函数单调性是函数的一个重要性质,并且学生是头一次接触函数的单调性,陌生感强。函数单调性,单调区间的概念掌握起来有一定困难,特别是增函数、减函数的定义很抽象,学生很难理解,这样会增加学生的负担,不利于学生学习兴趣的激发。因此,在教学的整个过程中,弱化抽象概念的讲解,从具体函数的图象分析入手,使学生对增、减函数有一个直观的印象。进一步,通过分析函数图象的变化趋势,启发学生归纳总结出增、减函数中函数值与自变量之间的变化规律,使学生会熟练的通过函数的图象来判断一个函数是增函数,还是减函数。在次基础上,给出函数单调性,函数单调区间的概念。在课堂上重点训练了学生从函数图象上来判断函数单调区间,以及在每个单调区间上的单调性的能力,从学生的的课堂反应来看,学生能熟练的通过函数的图象来判断函数的单调性,然后用定义证明一个函数是增函数(减函数),整堂课下来,使学生会通过函数图象来判断函数单调性这一目标基本上达到,学生课堂反应积极、热情。当然,其中还是存在了很多的问题,譬如最大的问题就是学生探究还没有放开,教师讲多了。

在以后的教学中多注意从学生的已有知识和生活经验出发,围绕知识目标展开新知识出现的情境,丰富学生的情感体验,在知识目标得到有效落实的同时,达成能力目标.突出基础知识的应用和基本技能的运用,强化知识目标,培养学生学习数学的情感,在知识应用方面,应强调数学走向生活,解决具有现实意义的生活问题,培养学生的数学建模能力.

在教学时,我们也要适当使用多媒体教学手段,帮助学生可以更加直观的理解函数的图象变化。

将本文的word文档下载到电脑,方便收藏和打印。

函数的单调性教案一(热门18篇)篇七

引入课题1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:

yx1-11-1yx1-11-1yx1-11-1。

1随x的增大,y的值有什么变化?2能否看出函数的最大、最小值?

2.画出下列函数的图象,观察其变化规律:

f(x)=x1从左至右图象上升还是下降______?2在区间____________上,随着x的增大,f(x)的值随着________.

yx1-11-1。

2.f(x)=-2x+11从左至右图象上升还是下降______?2在区间____________上,随着x的增大,f(x)的`值随着________.

1在区间____________上,f(x)的值随着x的增大而________.

2在区间____________上,f(x)的值随着x的增大而________.

函数的单调性教案一(热门18篇)篇八

本节课采用导学案引导自学法。首先,复习函数单调性的定义,单调性又名增减性,判断函数的单调性有两种方法:图像法和定义法。然后,要求学生自行阅读课本p57—p58,完成表格,表格将课本实例分析中的8个函数全部罗列出来,完成后观察表格的第3列和第6列,说明导数的正负与函数的单调性有何关系?学生易得出结论。从而说明判断函数的单调性还可以用导数法。接下来,讲解例1,实际操作,说明如何利用导数判断函数单调性,根据讲解过程,让学生总结求解的一般步骤,并做了2个练习。很不巧,此时下课铃声响了,本节教学任务没有完成。本节课,我设计了三个题型,仅完成了一个。课堂时间之所以把控的不好,原因很多,我反思之后,主要原因有以下两点:

(1)学生基础差,对单调性的知识点掌握不扎实,且自主学习习惯尚未养成,导致阅读课本填表格的时间过长。我在想,是否可以让学生提前复习单调性的概念,并预习课本完成表格,以提高课堂效率。其实,本来也是这样打算的,但由于对学生的学习态度不自信,所以放弃了,想着课堂上也能完成,结果估计不足。应该对学生多一点信心和耐心,行为习惯的养成不是一朝一夕能做到的。

(2)例1中,求导后的计算涉及到不等式的求解,学生对此知识点的把握也不是很到位,教师只能先带领学生回忆不等式的解法,再进行例1的求解。如此,时间又被耽误了。对于这一点,我也预估不足,说明我在备课时,对学情的分析不足。

函数的单调性教案一(热门18篇)篇九

会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。

重点。

难点。

一、复习引入。

1、函数的定义域、值域、图象、表示方法。

(1)单调增函数。

(2)单调减函数。

(3)单调区间。

二、例题分析。

1、画出下列函数图象,并写出单调区间:

(1)(2)(2)。

2、求证:函数在区间上是单调增函数。

3、讨论函数的单调性,并证明你的结论。

变(1)讨论函数的单调性,并证明你的结论。

变(2)讨论函数的单调性,并证明你的结论。

三、随堂练习。

1、判断下列说法正确的是。

(1)若定义在上的函数满足,则函数是上的单调增函数;。

(2)若定义在上的函数满足,则函数在上不是单调减函数;。

(4)若定义在上的函数在区间上是单调增函数,在区间上也是单调增函数,则函数是上的单调增函数。

2、若一次函数在上是单调减函数,则点在直角坐标平面的()。

a.上半平面b.下半平面c.左半平面d.右半平面。

3、函数在上是______;函数在上是_______。

3.下图分别为函数和的图象,求函数和的单调增区间。

4、求证:函数是定义域上的单调减函数。

四、回顾小结。

课后作业。

一、基础题。

(1)(2)。

2、画函数的图象,并写出单调区间。

二、提高题。

3、求证:函数在上是单调增函数。

4、若函数,求函数的单调区间。

5、若函数在上是增函数,在上是减函数,试比较与的大小。

三、能力题。

6、已知函数,试讨论函数f(x)在区间上的单调性。

变(1)已知函数,试讨论函数f(x)在区间上的单调性。

函数的单调性教案一(热门18篇)篇十

会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。

重点。

难点。

一、复习引入。

1、函数的定义域、值域、图象、表示方法。

(1)单调增函数。

(2)单调减函数。

(3)单调区间。

二、例题分析。

例1、画出下列函数图象,并写出单调区间:

(1)(2)(2)。

例2、求证:函数在区间上是单调增函数。

三、随堂练习。

1、判断下列说法正确的是。

(1)若定义在上的函数满足,则函数是上的单调增函数;。

(2)若定义在上的函数满足,则函数在上不是单调减函数;。

(4)若定义在上的函数在区间上是单调增函数,在区间上也是单调增函数,则函数是上的单调增函数。

2、若一次函数在上是单调减函数,则点在直角坐标平面的()。

a.上半平面b.下半平面c.左半平面d.右半平面。

3、函数在上是______;函数在上是_______。

3.下图分别为函数和的图象,求函数和的单调增区间。

四、回顾小结。

课后作业。

一、基础题。

(1)(2)。

二、提高题。

5、若函数在上是增函数,在上是减函数,试比较与的大小。

三、能力题。

将本文的word文档下载到电脑,方便收藏和打印。

函数的单调性教案一(热门18篇)篇十一

函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内。函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的应用。通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

(2)了解能用图形语言正确表述具有单调性的函数的图象特征;。

(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。

重点是对函数单调性的有关概念的本质理解。

难点是利用函数单调性的概念证明或判断具体函数的单调性。

根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的模式。力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。

在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。

通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。

设置问题情景。

[引例]学校准备建造一个矩形花坛,面积设计为16平方米。由于周围环境的限制,其中一边的长度长不能超过10米,短不能少于4米。记花坛受限制的一边长为x米,半周长为y米。

写出y与x的函数表达式;。

(用多媒体出示问题,并让学生思考)。

函数的单调性教案一(热门18篇)篇十二

1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。“二面角”是人教版《数学》第二册(下b)中9.7的内容。它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。因此,它起着承上启下的作用。通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

2、教学目标:。

知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

(2)进一步培养学生把空间问题转化为平面问题的化归思想。

能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的.情感距离。

3、重点、难点:

重点:“二面角”和“二面角的平面角”的概念。

难点:“二面角的平面角”概念的形成过程。

二、教法分析。

1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。

三、学法指导。

1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。

2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。

3、会学:通过自己亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新,既能解决问题,更能发现问题。

四、教学过程。

心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。

(一)、二面角。

1、揭示概念产生背景。

问题情境1、在平面几何中“角”是怎样定义的?

问题情境2、在立体几何中我们还学习了哪些角?

问题情境3、运用多媒体和身边的实例,展示我们遇到的另一种空间的角——二面角(板书课题)。

通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为它与我们的生活密不可分,激发学生的求知欲。2、展现概念形成过程。

问题情境4、那么,应该如何定义二面角呢?

创设这个问题情境,为学生创新思维的展开提供了空间。引导学生回忆平面几何中“角”这一概念的引入过程。教师应注意多让学生说,对于学生的创新意识和创新结果,教师要给与积极的评价。

问题情境5、同学们能举出一些二面角的实例吗?通过实际运用,可以促使学生更加深刻地理解概念。

(二)、二面角的平面角。

1、揭示概念产生背景。平面几何中可以把角理解为是一个旋转量,同样一个二面角也可以看作是一个半平面以其棱为轴旋转而成的,也是一个旋转量。说明二面角不仅有大小,而且其大小是唯一确定的。平面与平面的位置关系,总的说来只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,我们有必要来研究二面角的度量问题。

问题情境6、二面角的大小应该怎么度量?能否转化为平面角来处理?这样就从度量二面角大小的需要上揭示了二面角的平面角概念产生的背景。

2、展现概念形成过程。

函数的单调性教案一(热门18篇)篇十三

各位老师:

你们好!我今天说课的内容是全日制普通高中教科书第一册(上)第二章第三节《函数的单调性》。以下我从六个方面来汇报我是如何研究教材、备课和设计教学过程的。

一、教材分析。

1、教材内容。

本节课是人教版第二章《函数》第三节函数单调性的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题。

2、教材所处地位、作用。

函数的单调性是对函数概念的延续和拓展,也是后续研究几类具体函数的单调性的基础;此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用。在方法上,教学过程中还渗透了数形结合、类比化归等数学思想方法。它是高中数学中的`核心知识之一,在函数教学中起着承上启下的作用。

二、学情分析。

1、知识基础。

高一学生已学习了函数的概念等知识,并且接触了一些特殊的单调函数。

2、认知水平与能力。

高一学生已初步具有数形结合思维能力,能在教师的引导下解决问题。

3、任教班级学生特点。

学生基础较扎实、思维较活跃,能较好地应用数形结合解决问题,但归纳转化的能力还有待进一步提高,观察讨论能力有待加强。

三、目标分析。

(一)知识技能。

1、让学生理解增函数和减函数的定义;

2、根据定义证明函数的单调性;

3、了解函数的单调区间的概念,并能根据图象说出函数的单调区间。

(二)过程与方法。

1、通过证明函数的单调性的学习,培养学生的逻辑思维能力;。

2、通过运用公式的过程,提高学生类比化归、数形结合的能力。

(三)情感态度与价值观。

让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲。领会用从特殊到一般,再从一般到特殊的方法去观察分析事物。

由教学目标和学生的实际水平,我确定本节课的重、难点:。

教学难点:利用函数单调性定义或者函数图象判断简单函数的单调性。

解决策略:

本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。利用数形结合、类比化归的思想,层层深入,通过学生自主观察、讨论、探究得到单调性概念;同时,借助多媒体的直观演示,帮助学生理解,并通过范例后的变式训练和教师的点拨引导,师生互动、讲练结合,从而突出重点、突破难点。

四、教学法分析。

(一)教法:

1、从学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。

2、在鼓励学生主体参与的同时,不可忽视教师的主导作用。具体体现在设问、讲评和规范书写等方面,教会学生清晰的思维、严谨的推理,并成功地完成书面表达。

3、应用多媒体,增大教学容量和直观性。

(二)学法:

1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。

2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的认知飞跃。

五、过程分析。

教学流程:

(一)问题情景,引出新知(3’)。

(二)学生活动,归纳特征(5’)。

(三)对比抽象,建构定义(7’)。

(四)定义讲解,理解概念(3’)。

(五)数学应用,巩固提高(18’)。

(六)归纳讨论,引导小结(5’)。

六、评价分析。

1、设计体现了新课标的核心要求:发展学生的能力:

a、新课的引入-数形结合的能力;

b、直观性概念提出-由特殊到一般-观察讨论的能力;

c、数学语言的提出-由感性到理性-归纳总结的能力;

d、概念的应用-由一般到特殊-学以致用的能力。

2、目标达成:。

概念的形成-知识目标1。

数学应用-知识目标2。

深化理解-能力目标。

问题解决-情感目标。

3、教学随想:

数无形时少直觉,形少数时难入微。

数形结合百般好,隔离分家万事休。——华罗庚。

以后教学中,要注意“数”和“形”的和谐统一。

函数的单调性教案一(热门18篇)篇十四

1.教材的地位和作用。

其次,从函数角度来讲。函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念。函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程。因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据。

最后,从学科角度来讲。函数的单调性是学习不等式、极限、导数等其它数学知识的重要基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材。

2.教学的重点和难点。

对于函数的单调性,学生的认知困难主要在两个方面:

首先,要求用准确的数学符号语言去刻画图象的上升与下降,把对单调性直观感性的认识上升到理性的高度,这种由形到数的翻译,从直观到抽象的转变对高一的.学生来说比较困难。

其次,单调性的证明是学生在函数学习中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的。

根据以上的分析和教学大纲对单调性的教学要求,本节课的教学重点是函数单调性的概念,判断、证明函数的单调性;难点是引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性。

二、教学目标的确定。

根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:

三、教学方法的选择。

1.教学方法。

本节课是函数单调性的起始课,根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲授,学生探究学习的教学方法。教学过程中,根据教材提供的线索,安排适当的教学情境,让学生展示相应的数学思维过程,使学生有机会经历数学概念抽象的各个阶段,引导学生独立自主地开展思维活动,深入探究,从而创造性地解决问题,最终形成概念,获得方法,培养能力。

2.教学手段。

四、教学过程的设计。

为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为四个阶段:创设情境,引入课题;归纳探索,形成概念;掌握证法,适当延展;归纳小结,提高认识。具体过程如下:

(一)创设情境,引入课题。

在课前,我给学生布置了两个任务:

(1)由于某种原因,20xx年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因。

课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事。

(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况。

课上我引导学生观察20xx年8月8日的气温变化曲线图,引导学生体会在某些时段温度升高,某些时段温度降低。

(二)归纳探索,形成概念。

在本阶段的教学中,为使学生充分感受数学概念的发生与发展过程和数形结合的数学思想,经历观察、归纳、抽象的探究过程,加深对函数单调性的本质的认识,我设计了三个环节,引导学生分别完成对单调性定义的三次认识。

1.借助图象,直观感知。

本环节的教学主要是从学生的已有认知出发,即从学生熟悉的常见函数的图象出发,直观感知函数的单调性,完成对函数单调性定义的第一次认识。

在本环节的教学中,我主要设计了两个问题:

问题1:分别作出函数,所以上为增函数.。

(2)仿(1),取很多组验证均满足,所以,然后求差比较函数值的大小,从而得到正确的回答:

各位专家、评委,本节课我在概念教学上进行了一些尝试。在教学过程中,我努力创设一个探索数学的学习环境,通过设计一系列问题,使学生在探究问题的过程中,亲身经历数学概念的发生与发展过程,从而逐步把握概念的实质内涵,深入理解概念。

不足之处,恳请各位专家批评指正.谢谢!

函数的单调性教案一(热门18篇)篇十五

(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.

(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.

2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的思想.

3.通过对函数单调性和奇偶性的理论研究,增学生对美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.

教学建议。

一、知识结构。

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.

二、重点难点分析。

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性,奇偶性的本质,掌握单调性的证明.

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.

三、教法建议。

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.

(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.

函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.

1.使学生了解奇偶性的概念,回会利用定义判断简单函数的奇偶性.

2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的思想方法.

3.在学生感受美的同时,激发的兴趣,培养学生乐于求索的精神.

难点。

重点是奇偶性概念的形成与函数奇偶性的判断。

难点是对概念的认识。

教学用具。

投影仪,计算机。

教学方法。

引导发现法。

一.引入新课。

前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质.从什么角度呢?将从对称的角度来研究函数的性质.

(学生可能会举出一些数值上的对称问题,等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如和等.)。

学生经过思考,能找出原因,由于函数是映射,一个只能对一个,而不能有两个不同的,故函数的图象不可能关于轴对称.最终提出我们今天将重点研究图象关于轴对称和关于原点对称的问题,从形的特征中找出它们在数值上的规律.

二.讲解新课。

学生开始可能只会用语言去描述:自变量互为相反数,函数值相等.教师可引导学生先把它们具体化,再用符号表示.(借助课件演示令比较得出等式,再令,得到,详见课件的使用)进而再提出会不会在定义域内存在,使与不等呢?(可用课件帮助演示让动起来观察,发现结论,这样的是不存在的)。

从这个结论中就可以发现对定义域内任意一个,都有成立.最后让学生用完整的语言给出定义,不准确的地方教师予以提示或调整.

(1)偶函数的定义:如果对于函数的定义域内任意一个,都有,那么就叫做偶函数.(板书)。

(给出定义后可让学生举几个例子,如等以检验一下对概念的初步认识)。

提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出或的图象让学生观察研究)。

学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义.

(2)奇函数的定义:如果对于函数的定义域内任意一个,都有,那么就叫做奇函数.(板书)。

(由于在定义形成时已经有了一定的认识,故可以先作判断,在判断中再加深认识)。

(1);             (2);。

(3);;。

(5); (6).

(要求学生口答,选出1-2个题说过程)。

解:(1)是奇函数.(2)是偶函数. 。

(3),是偶函数.

学生经过思考可以解决问题,指出只要举出一个反例说明与不等.如即可说明它不是偶函数.(从这个问题的解决中让学生再次认识到定义中任意性的重要)。

从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述.即第(4)题中表面成立的=不能经受任意性的考验,当时,由于,故不存在,更谈不上与相等了,由于任意性被破坏,所以它不能是奇偶性.

可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论.

(3)定义域关于原点对称是函数具有奇偶性的必要但不充分条件.(板书)。

由学生小结判断奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.

例2. 已知函数既是奇函数也是偶函数,求证:.(板书)  (试由学生来完成)。

证明:既是奇函数也是偶函数,。

=,且,。

=.

即.

(4)函数按其是否具有奇偶性可分为四类:(板书)。

(1);      (2);  (3).

由学生回答,不完整之处教师补充.

解:(1)当时,为奇函数,当时,既不是奇函数也不是偶函数.

(2)当时,既是奇函数也是偶函数,当时,是偶函数.

(3)当时,于是,。

当时,,于是=,。

综上是奇函数.

教师小结(1)(2)注意分类讨论的使用,(3)是分段函数,当检验,并不能说明具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须均有成立,二者缺一不可.

三.小结。

1.奇偶性的概念。

2.判断中注意的问题。

四.作业 略。

五.

2.函数的奇偶性例1.                例3.

(1)偶函数定义。

(2)奇函数定义。

具备奇偶性的必要条件。

在此基础上试利用这个函数的单调性解决下面的问题:。

设为三角形的三条边,求证:.

函数的单调性教案一(热门18篇)篇十六

(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.

(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.

2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.

3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.

教学建议。

一、知识结构。

(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.

二、重点难点分析。

(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性,奇偶性的本质,掌握单调性的证明.

(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.

三、教法建议。

(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.

(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.

函数的奇偶性概念引入时,可设计一个课件,以。

的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值。

开始,逐渐让。

)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.

函数的单调性教案一(热门18篇)篇十七

根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:

知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;

二、教法学法。

为了实现本节课的教学目标,在教法上我采取了:

在学法上我重视了:

三、教学过程。

(一)创设情境,提出问题。

(问题情境)(播放中央电视台天气预报的音乐).如图为某地区元旦这一天24小时内的气温变化图,观察这张气温变化图:

[教师活动]引导学生观察图象,提出问题:

问题1:说出气温在哪些时段内是逐步升高的或下降的?

问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?

(二)探究发现建构概念。

[学生活动]对于问题1,学生容易给出答案.问题2对学生来说较为抽象,不易回答.。

在学生对于单调增函数的特征有一定直观认识时,进一步提出:

[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当时,都有”,告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:

问题4:类比单调增函数概念,你能给出单调减函数的概念吗?

最后完成单调性和单调区间概念的整体表述.。

(三)自我尝试运用概念。

1.为了理解函数单调性的概念,及时地进行运用是十分必要的.。

[教师活动]问题6:证明在区间(0,+∞)上是单调减函数.。

(四)回顾反思深化概念。

[教师活动]给出一组题:

[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法.

[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化.

[教师活动]作业布置:

(1)阅读课本p34-35例2。

(2)书面作业:

必做:教材p431、7、11。

四、教学评价。

函数的单调性教案一(热门18篇)篇十八

通过函数的单调性教学,我从以下方面对自己的教学作一个完整的反思,以便更好的发现不足之处,及时调整,让学生更好学习。

从学生来说,这部分需要学生有严谨的论证思维,和锻炼相应的论述能力,鉴于以前没有接触过类似的知识形式,学生上课很有激情,但课堂回答问题的整体状态不佳。从作业上看,总体是很满意的,但也出现了全班的通病,那就是在证明函数单调性上出现了问题,这需要在以后的习题训练课中进行相关的加强和强调。

再从课本上来说的话,课本降低了对定义域、值域的要求,尤其是人为的过于技巧性的,过于繁难的运算。函数概念的教学可以从学生在义务教育阶段已掌握的具体函数和函数的描述性定义入手,引导学生联系自己的生活经历和实际问题(课本p17三个实际问题),尝试列举各种各样的函数,构建函数的一般概念.掌握函数的三种表示方法:列表法、图象法和解析法。

教材中更注重通过图形求函数的定义域、值域如第28页第3题等。削弱了映射的概念,第26页映射的概念是在学习函数概念之后给出的,重点是通过例7的讲解让学生理解映射的概念。而是加强了函数的表示法的教学:函数的表示方法(列表法、图象法、解析法)在老教材中是与函数的概念在一起,而新教材却将它单独设为一节的内容,强调了它的重要性与实用性。即让学生从现实世界认识函数,又明确了函数表示的多种形式,更为后面函数性质的直观认识,打下了基础,在教学中教师应对这个变化给与加强。

函数的单调性的教学加强了对数形结合等数学思想方法学习的要求,让学生尽量从图形上直观的认识函数的性质,然后再从理论上进行研究,这种发现问题、提出问题、研究问题的探究方式,也是新课程提出的新的教学理念的一个体现。为了给学生补充相关的知识,与考试大纲进行衔接,必须增加函数的最大值、最小值的概念。这是老教材中所没有的,对于函数的最大、最小值老教材只是通过图形直观认识,而新教材结合函数的单调性给出最大、最小值的概念,学生接受非常自然。利用函数的单调性求最值也成为研究函数性质的一个必要的问题。最后,对于复合函数的单调性:对于复合函数,课本只有在选修教材中才出现,但是函数的学习中却有很多复合函数的问题,对于复合函数的单调性,编者的意图是不作要求的,但是在学习幂、指、对函数及三角函数时,都出现了复合函数的单调性问题,在教学中,我们是在学习了指数函数后,结合指数函数与一次函数、二次函数的复合形式进行的讲解,而且是从函数单调性的定义入手,不涉及过于复杂的、技巧性较高的问题,这样的教学对于高一学生来说,接受的还是比较好的。

猜你喜欢 网友关注 本周热点 精品推荐
通过幼儿园教案的记录和整理,可以方便教师进行教学反思和经验分享,推动教育教学的不断改进。下面是一些幼儿园教案的经典案例,值得大家借鉴和学习。学历:大专。工作年限
优秀作文是通过丰富的语言表达和生动的描写,能够给读者带来美的享受和思绪的激荡。接下来是一些来自优秀学生的作文佳作,通过阅读它们,我们可以学到很多写作的技巧和方法
“优秀作文是分享我们的思考和观点的重要方式,它展示了我们的语言表达能力和逻辑思维能力。”小编为大家搜集了一些优秀作文,希望能够给大家提供一些写作的参考和思路。
范文范本不仅可以作为学习的工具,也可以作为写作的参考和借鉴,帮助我们提升文章的质量和水平。以下是小编为大家收集的优秀范文范本,希望可以为大家提供一些写作上的灵感
活动方案是活动成功的基础,也是评估活动效果的重要依据。阅读以下精选的活动方案范文,了解如何制定一个成功的活动方案。1、通过,初步了解防溺水安全的有关内容。2、知
在做决定之前,我们需要收集足够的信息和了解各种情况。以下是一些成功人士做出的明智决策的案例,希望能够给大家一些灵感和启发。成大业若烹小鲜,做大事必重细节。本文是
范文范本的作用是指示和指导,可以帮助我们更好地理解和掌握写作技巧和规范。范文范本可以是各种各样的文体和题材,适用于不同的写作任务和需求。范文范本可以启发我们的思
幼儿园小班的教育方式强调以儿童为中心,关注每个孩子的个体差异。这些幼儿园小班总结范文涵盖了不同孩子的特点和学习情况,可以给我们带来一些启发。在全党进行“保持党员
实习报告是对自己实习期间的成长和发展进行记录和总结的一种方式,可以让我们更清晰地认识自己的实习经验。小编整理了一些优秀的实习报告范文,希望可以为大家提供一些写作
无论是政府官员、企业领导还是学校代表,都需要通过讲话稿来向听众传递重要信息和思想。以下是小编为大家收集的一些精彩讲话稿范文,希望能够为大家提供一些启示和参考。
优秀作文是一种艺术表达方式,通过独特的写作手法和深入的主题探讨,给读者留下深刻印象。接下来,小编为大家推荐了一些被广大学子认可的优秀作文范文,希望能够给大家带来
班主任工作总结是对学生的教育管理和班级建设进行评估和改进的重要工具。以下是小编为大家收集的班主任工作总结范文,供大家参考。时间如流水,不知不觉在和孩子们共同生活
通过年度总结,我们可以发现自己的优势和劣势,进而为自己未来的发展制定合理的规划和目标。以下是小编为大家收集的年度总结范文,供大家参考和借鉴。时间过的真快,转眼间
当需要面对大量听众时,发言稿的内容要有层次感和适当的铺垫,以便保持听众的注意力和思维。以下的发言稿范文包含了一些经典的应用场景,如政府会议、毕业典礼、企业发布会
演讲稿范文是一种在特定场合下,用于演讲的书面材料,可以帮助演讲者更好地组织思路和表达观点。下面是一些优秀的演讲稿范文,希望能给大家提供一些写作的灵感和参考。
心得体会是我们在各种经历中获得的宝贵财富,值得我们珍惜和分享。【示例文本二】通过实践和总结,我发现自身在团队合作中存在的问题,并提出了一些改进的措施。
写心得体会是一种对于自己成长和进步的记录和证明,可以激励自己不断前行。以下是一些关于心得体会的范文,供大家参考和学习,希望能帮助到大家写出更优秀的文章。
工作计划书可以帮助我们分解大任务,将其分解为小任务,提高我们的工作效率和执行力。下面是一些有关工作计划书的优秀范文,供大家参考和学习。不知不觉,时间已经过了一个
通过月工作总结,我们可以发现并分析出自己在工作中的不足之处,从而找到改进的方向。小编在网上搜索并整理了一些优秀的月工作总结案例,供大家参考和学习。我于20xx年
自我介绍可以帮助人们传达自己想要表达的信息,让他人更好地认识和了解自己。以下是小编为大家整理的优秀自我介绍范文,供大家参考学习。面试中一段短短的自我介绍,其实
通过对过去学期班主任工作的总结,我可以更好地发现自身的优点和改进的方向。附上了一篇班主任工作总结范文,希望对正在写总结的班主任有所帮助。过去的一学期里,我班在学
很多大学毕业生在刚踏入工作岗位时,选择租房是经济上的一种合理选择。以往的租房经验告诉我们,细心和谨慎是选择满意租房的必备品质。出租方:xxx(以下简称甲方)承租
活动总结是对一次特定活动的回顾和总结,它能够帮助我们发现问题并提供改进方案。以下是一些精心挑选的活动总结范文,希望能给大家带来一些启示和思考。为加强公司精神文明
发言稿是一种正式场合下用于向听众介绍、阐述或表达观点的一种书面材料。亲爱的同学们,作为大家的班主任老师,我今天要和大家一起分享如何培养学习兴趣和学习方法。
领导讲话稿的撰写要注重情感的表达和语言的艺术性,能够引起听众共鸣。接下来,我们一起来欣赏几篇精彩的领导讲话稿,激励我们继续前行。自公司开展党的群众路线教育实践活
通过分析范文范本,我们可以了解不同写作风格的运用,拓宽自己的写作思路。下面是一些优秀的范文范本,无论是在结构、语言还是思路上,都是我们学习的榜样。党员,即政党成
师德师风不仅要在言传身教中注重,更要在日常教育实践中体现。现在我们请几位优秀的教师代表分享一下他们的师德师风体验和感悟。当花朵在阳光下绽放时,是绿叶最幸福的一天
婚前协议可以规定夫妻间财产的归属、财产增减的分配原则等。以下是小编为大家整理的一些婚前协议的写作技巧和注意事项,供大家参考。甲乙双方于____年__月__日履行
述职报告是对一段时间内的工作表现进行总结和概括的一种正式的书面材料。在这里,小编为大家整理了一些优秀的述职报告范文,希望能给大家一个参考和借鉴的方向。
三分钟快速决策的能力,是我们在竞争激烈的社会中立于不败之地的关键。小编为大家整理了一些关于三分钟有效沟通的案例和技巧,希望对大家有所启发。各位大家现在好!(好)
演讲稿是一种需要经过精心准备和组织的文学作品,它可以帮助我们提高口头表达的能力。以下是一些著名人士的激励演讲稿,相信能够给大家带来积极的能量和思考。
感谢大家的支持,我将担任主持人的角色,希望能够为大家带来一次有意义的活动。别急,在节目还未结束之前,接下来将有更多精彩的表演等待大家。尊敬的各位领导,亲爱的同学
最后,活动方案还需要进行评估和总结,我们可以通过收集反馈和经验教训来改进和完善未来的活动。这里有一些常见的活动方案问题和解决方案,可以防止我们在策划过程中遇到一
幼儿园小班的总结是为了帮助孩子们建立自信和自尊心,让他们在学习和生活中更加积极主动。小编为大家整理了一些优秀的幼儿园小班总结范文,供大家参考学习。随着夏季的到来
通过实习鉴定,可以对实习生在工作中的表现进行客观评价,并提出改进和发展的建议。以下是小编为大家整理的一些实习鉴定范文,供大家参考和借鉴。本人作为__攻读计算机专
做好应急预案的制定和演练是保障人员生命安全和财产安全的重要措施。应急预案总结范文中,我们可以看到不同行业和领域对应急工作的具体思路和方法。应急预案是指在自然灾害
活动总结应该具备前瞻性,通过总结过去的活动,为将来的工作和学习提供参考和启示。以下是小编为大家收集的活动总结范文,仅供参考,希望能够帮助大家更好地进行活动总结。
竞选是一种通过候选人与选民之间相互竞争的方式来争取某个职位或地位的活动。竞选中的宣传和推广手段有哪些?下面是一些常用的方法和实践。尊敬的各位领导、老师、学生代表
每个人都需要不断总结自己的经验和教训,才能更好地前进。以下是小编为大家收集的个人总结范文,希望能给大家提供一些参考和启发。来在我们全体员工积极努力和紧密配合下,
感恩是一种表达感激之情的方式,它可以让我们更加珍惜所拥有的。接下来,小编为大家整理了一些感恩的散文,希望能够让你们从中感受到感恩的力量与美好。人生如昙花朝霞,岁
代理可以为委托人提供一种安全保障,确保其权益得到充分的保护和维护。这是一份代理调查报告,总结了代理机构的优点和不足之处。甲方:地址:电话:传真:乙方:律师事务所
购销是商品流通的一种重要方式,对于商家来说至关重要。以下是小编为大家收集的购销范文,仅供参考,希望能给大家带来一些启示和灵感。需方:(以下简称甲方)。供方:(以
转专业申请书需要通过具体的例子和经历来说明转专业的必要性和合理性。以下是一份精选的转专业申请书范文,希望对正在撰写申请书的同学有所启发。日月如梭,转眼间以经来维
优秀作文能够准确地表达作者的情感和意图,让读者能够感受到作者的真实与独特。对于写作优秀作文来说,阅读一些优秀的范文是非常有帮助的,下面是一些值得一读的例子。
优秀作文需要有深入的思考和独特的见解,不拘泥于表面的陈述和浅薄的观点。以下是小编为大家精心挑选的优秀作文范文,希望能给大家提供一些写作的参考和借鉴。
实习心得可以让自己反思经验,查漏补缺,改正错误,提升自身实践能力和专业水平。这是一篇关于我的实习心得的分享,我希望通过这篇文章能够给其他同学提供一些有益的启示和
自查报告是一种对自己负责的表现,通过书面形式来梳理和总结自身的情况。自查报告不仅仅是一种记录和汇报的形式,更是我们对自己的一种负责和成长机会。根据凤财发{20x
我通过反思和总结,提炼出了一些宝贵的经验,值得分享。随后,我们将浏览一些关于心得体会的范文,希望能够从中找到一些写作上的启发和借鉴。随着生活节奏的加快和工作压力
学习英语可以帮助我们与世界沟通,开阔眼界,了解不同的文化。小编为大家整理了一些关于英语学习的资料和书籍推荐,供大家选用。敬爱的老师,亲爱的同学们:大家好!我爱中
心得体会是对自己成长和努力的一种记录和回顾,帮助我们更好地规划自己的未来发展方向。以下是小编为大家收集的心得体会范文,希望能够为大家提供一些参考和借鉴。
爱国是对先烈的敬意和纪念,我们要继承和弘扬革命先烈的崇高精神。接下来是小编为大家推荐的爱国电影,让我们一起感受国家荣光的瞬间。敬爱的教师、亲爱的同学们:早上好!
教学工作总结是教师职业道路中的里程碑,每一次总结都是一个新的起点。小编为大家整理了一些优秀的教学工作总结范文,供大家参考,希望可以帮助大家写出一篇完美的教学工作
读后感是一个人对作品的主观感受,是个性的、独特的,对于不同的读者会有不同的理解和感受。接下来,让我们一起来阅读这些读后感范文,看看不同作者是如何通过文字来表达他
心得体会是对自己成长轨迹的记录,可以帮助我们回顾过去,更好地规划未来的学习和发展方向。小编整理了一些经典的心得体会范文,希望能够给大家提供一些写作方面的参考。
在这个美好的时刻,我感到非常荣幸能够主持今天的活动。欢迎各位观众和嘉宾,我们今天聚集在这里共同见证一个特殊的时刻。如何在短时间内熟悉活动内容,是每位主持人必备的
我对党的领导和社会主义事业的认同感越来越强,加入党是我实现个人价值的重要方式。下面是一些优秀的入党动机范文分享,希望能给大家带来一些写作灵感。我们要求每一位争取
我们将会见证一场思想碰撞的盛宴/一次意义非凡的交流。在下面,我为大家准备了一些主持词范文,希望能够为大家提供一些借鉴和参考。男:各位观众,女士们先生们。女:现场
规划计划还可以帮助我们提前预见和避免可能出现的风险和问题。以下是小编为大家整理的一些规划计划范例,供大家参考。这些范例涵盖了个人发展、团队管理、项目实施等不同领
银行的发展与人们的生活息息相关,不论是存款、取款、理财还是投资,都离不开银行的支持。以下是小编为大家整理的银行办理业务的流程和注意事项,希望对大家有所帮助。
在活动总结中,我们可以对活动过程中的优点和不足进行客观评价。活动总结是对活动的回顾和总结,以下是一些范文可以给大家提供一些写作的思路和方法。今年我园针对园幼儿年
优秀作文的写作过程不仅需要有丰富的词汇和句型运用,还需要我们有较强的逻辑思维和条理性。以下是一些优秀作文的写作示范,帮助你更好地理解作文的写作要求和技巧。
公司的运营涉及到人力资源、财务、市场营销等多个领域,需要协调各个部门的合作。通过研究这些公司总结范文,我们可以提炼出一些通用的总结写作技巧和方法。各位老板:20
通过总结自己的心得体会,我们可以更好地反思和改进自己的行为和决策。请大家阅读以下的心得体会范文,欢迎大家分享和交流自己的写作心得。读《居里夫人传》,让我认识了一
公司是一个经营组织,它通过生产和销售商品或提供服务来获取利润。以下是小编为大家整理的产品质量管理经验,希望对大家有所帮助。1、证明格式。2、必有信息:单位名称(
通过写心得体会,我们可以更深入地理解自己的学习和工作过程,发现其中的问题和不足。如果你正在写心得体会但遇到困难,不妨看看以下推荐的范文,或许能给你一些启发。
感恩能够让我们的人际关系更加融洽,让我们与他人建立更加深厚的情感纽带。下面是一些感恩的小故事,或许能够给我们一些启示和思考。一会儿,妈妈吃饱饭就去电脑前写文章去
通过学习优秀作文,我们可以开拓思维,提升写作水平,让作文成为我们思考和表达的重要工具。根据您给出的分类名称"优秀作文",可以随机选择一条:我有一个小伙伴,它是一
运动会是学生培养勇气和坚持不懈品质的舞台,让他们学会面对困难并超越自我。以下是小编为大家整理的运动会总结范文,希望能够给大家提供一些参考和启示,帮助大家更好地撰
教师工作总结是一种有效的自我激励和提升方式,可以帮助教师不断反思、自我调整,不断提高教育教学质量。通过阅读这些教师工作总结范文,可以了解不同教师在教学中的思考和
培训心得是一种反思和回顾的过程,通过写下自己的感受和思考,可以更好地巩固所学,提高学习效果。这是一些优秀的培训心得范文,可以帮助大家更好地理解和掌握培训心得的写
通过个人总结,我们可以更好地发现问题、解决问题,提高自己的学习和工作效率。小编为大家整理了一些个人总结的案例,希望能够给大家在写作时提供一些参考和启示。
通过月工作总结,我们可以不断总结经验和教训,不断提升自己的工作能力和职业素养。下面是一些经过精选的月工作总结范文,希望能够为大家提供一些写作上的灵感和参考。
优秀作文具有独特的观点和深入的思考,能够引起读者的共鸣和反思。通过阅读这些优秀作文,我们可以提升自己的审美能力和语文素养,进一步提高写作水平。每个人都有妈妈,每
欢迎各位嘉宾、观众们,今天很荣幸能够担任这次活动的主持人。在这里,我将与大家分享一些活动策划的心得和经验,希望对大家有所帮助。吕:尊敬的各位老师,亲爱的'同学们
优秀作文在表达上恰如其分,用词精准且富有想象力,给人以美的享受。以下是小编为大家准备的一些优秀作文实例,希望能够给大家提供一些写作的思路和方法。回想起小时候的事
青春是犯错误和犯错的时期,我们要从失败中吸取教训,不断成长。青春是我们创造未来的时刻,以下是一些青春励志的演讲稿,希望能给大家带来一些思考和启迪。尊敬的各位领导
实习心得体会是对实习过程的一种思考和总结,也是对自己成长与进步的一种认可和肯定。以下是一些来自不同行业的实习生的实习心得体会,让我们一起来看看吧。还记得是去年的
实习总结是一个总结实习经验、总结实习感悟并体现自我价值的重要机会。下面是几篇实习总结范文,希望能给大家提供一些实际操作的指导。大学的第一个暑假我过的很充实。其实
通过写述职报告,我们可以及时发现自己工作中的不足之处,并进行改进和提升。此处提供了一些精选的述职报告范文,希望对大家的写作有所帮助。您们好!转眼一学期即将结束,
活动方案的编写可以提前预见到可能出现的问题,并制定相应的解决措施,以确保活动的成功完成。通过学习这些范例,你可以了解到制定活动方案的一些常见模式和方法。
幼儿园大班注重培养孩子们的观察力、思考力和解决问题的能力,为他们的未来学习奠定了基础。请大家看看下面这些幼儿园大班的成长记录,分享孩子们的点滴进步。
贫困申请书的撰写是一个反思和思考的过程,它让我们更加清楚地认识到自己的困难和需要。在此,小编搜集了一些贫困申请书的范文,希望能够给大家提供一些写作上的参考和借鉴
这本书里的人物形象栩栩如生,他们的遭遇和成长经历给了我很大的启发,也让我思考了很多人生的问题。以下是小编为大家收集的读后感范文,仅供参考,希望能给大家带来启发和
社会实践报告是对我们在社会实践中遇到的问题和挑战进行思考和分析的重要步骤。以下是一些优秀的社会实践报告案例,供大家参考和学习,希望能够为大家在写作中提供一些思路
月工作总结是一个反思和总结的过程,可以帮助我们更好地提高工作效率。在这里,小编为大家整理了一些优秀的月工作总结案例,以供参考。本学期全体教研组教师在全校的统一布
通过年度总结,我们可以更清楚地认识到自己的优势和不足,为自己的成长找到更好的方向。以下是一些经验丰富的人士撰写的年度总结范文,希望能给大家一些启示和借鉴。
读书心得可以是对书中人物形象的评析,对故事情节发展的思考,也可以是思想感悟和心灵触动的表达。以下是小编为大家收集的读书心得范文,仅供参考。通过阅读这些范文,可以
新闻报道的目的是为公众提供信息,启发思考,引发讨论,促进社会进步。小编为大家整理了一些新闻报道的写作要点,希望对大家有所帮助。播音民生新闻稿件就是为大家提供的关
优秀作文是作者对人生、爱情、友谊、家庭等主题进行深入思考和独特诠释的一种创作形式。以下是小编为大家整理的优秀作文范文,希望对大家在写作中有所启发和帮助。
年终总结是一个反思和思考的过程,可以帮助我们更好地成长和提高自己。通过阅读下面这些年终总结范文,我们可以获取一些写作年终总结的经验和技巧。自从本人20xx年加入
工作总结是一种及时总结和反思工作中的得失,促使我们在工作中不断成长和进步。以下是小编为大家收集的述职报告范文,仅供参考,希望能给大家一些启示和帮助。
应急预案的执行人员应该接受专业培训和演练,提高应对突发事件的能力和素质。虽然每个组织和单位的应急预案都有差异,但以下范文可以为您提供一些启示和思考。
在幼儿园小班,孩子们经历了许多有趣的学习和游戏活动,现在是时候给他们写一份总结了。以下是一些优秀的幼儿园小班总结范文,值得分享和借鉴。。1.初步学习双脚并拢、自
讲话稿的撰写需要在掌握主题核心的基础上,进行合理的组织和编排,以便让听众更好地理解和接受演讲内容。想要写好一篇讲话稿,不妨先来看看这些优秀范文,从中汲取一些写作
幼儿园工作总结是对过去一段时间自己在幼儿园工作中的收获和成长进行总结和概括的一种方式。请大家细心阅读下方的幼儿园工作总结范文,对于提高写作水平很有帮助。
毕业论文是学生在本科或研究生阶段完成的一项独立科研任务,它对学生的能力和素质有着重要的评价作用。为了帮助大家更好地完成毕业论文,以下是一些范文供参考。
述廉报告是廉政建设的重要内容之一,能够凝聚党风廉政建设的共识和力量。探索廉政文化建设之路,推动廉洁公务员队伍建设:述廉报告范文探讨。一年来,本人在市综治委的领导
在春节期间,人们会进行一系列的传统习俗和庆祝活动,如贴春联、放鞭炮、吃团圆饭等。以下是小编为大家整理的一些春节总结文章,希望对大家有所帮助。同学们:时间的列车已
策划方案可以帮助我们明确目标、规划步骤,以及预测可能出现的挑战和解决方法。下面是一些关于策划方案的常见问题及解决方法,希望能够为大家提供一些帮助。今阳广告公司是
月工作总结可以督促我们在下一个月中更好地规划和安排工作。小编为大家整理了一些典型的月工作总结范文,其中包括了不同行业和岗位的工作总结,供大家参考。近期,渭南经开