高三教案的编写需要紧密结合教材要求和学生的学习进度,合理安排教学内容和教学活动。小编整理了一些高三教案的范文,希望对大家编写教案有所启发。
高三数学教案案例(优质15篇)篇一
(3)掌握复数的模的定义及其几何意义;。
(4)通过学习,培养学生的数形结合的数学思想;。
(5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法.
教学建议。
一、知识结构。
本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式.
二、重点、难点分析。
本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离.
三、教学建议。
1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视.
如图所示,建立复平面以后,复数与复平面内的点形成—一对应关系,而点又与复平面的向量构成—一对应关系.因此,复数集与复平面的以为起点,以为终点的向量集形成—一对应关系.因此,我们常把复数说成点z或说成向量.点、向量是复数的另外两种表示形式,它们都是复数的几何表示.
相等的向量对应的是同一个复数,复平面内与向量相等的向量有无穷多个,所以复数集不能与复平面上所有的向量相成—一对应关系.复数集只能与复平面上以原点为起点的向量集合构成—一对应关系.
2.
这种对应关系的建立,为我们用解析几何方法解决复数问题,或用复数方法解决几何问题创造了条件.
3.向量的模,又叫向量的绝对值,也就是其有向线段的长度.它的计算公式是,当实部为零时,根据上面复数的模的公式与以前关于实数绝对值及算术平方根的规定一致.这些内容必须使学生在理解的基础上牢固地掌握.
4.讲解教材第182页上例2的第(1)小题建议.在讲解教材第182页上例2的第(1)小题时.如果结合提问的图形,可以帮助学生正确理解教材中的“圆”是指曲线而不是指圆面(曲线所包围的平面部分).对于倒2的第(2)小题的图形,画图时周界(两个同心圆)都应画成虚线.
5.讲解复数的模.讲复数的模的定义和计算公式时,要注意与向量的有关知识联系,结合复数与复平面内以原点为起点,以复数所对应的点为终点的向量之间的一一对应关系,使学生在理解的基础上记忆。向量的模,又叫做向量的绝对值,也就是有向线段oz的长度.它也叫做复数的模或绝对值.
高三数学教案案例(优质15篇)篇二
教学目标:
结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学重点:
掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学过程。
一、复习。
二、引入新课。
1.假言推理。
假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。
(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。
(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。
2.三段论。
三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。
3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。
(1)对称性关系推理是根据关系的对称性进行的推理。
(2)反对称性关系推理是根据关系的反对称性进行的推理。
(3)传递性关系推理是根据关系的传递性进行的推理。
(4)反传递性关系推理是根据关系的反传递性进行的推理。
4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。
オネ耆归纳推理可用公式表示如下:
オs1具有(或不具有)性质p。
オs2具有(或不具有)性质p……。
オsn具有(或不具有)性质p。
オ(s1s2……sn是s类的所有个别对象)。
オニ以,所有s都具有(或不具有)性质p。
オタ杉,完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。
小结:本节课学习了演绎推理的基本模式.
高三数学教案案例(优质15篇)篇三
教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。
教学难点:遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。
教学过程:
一.复习准备。
1.等差数列的通项公式。
2.等差数列的前n项和公式。
3.等差数列的性质。
二.讲授新课。
引入:1“一尺之棰,日取其半,万世不竭。”
2细胞分裂模型。
3计算机病毒的传播。
由学生通过类比,归纳,猜想,发现等比数列的特点。
进而让学生通过用递推公式描述等比数列。
让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式。
注意:1公比q是任意一个常数,不仅可以是正数也可以是负数。
2当首项等于0时,数列都是0。当公比为0时,数列也都是0。
所以首项和公比都不可以是0。
3当公比q=1时,数列是怎么样的,当公比q大于1,公比q小于1时数列是怎么样的?
4以及等比数列和指数函数的关系。
5是后一项比前一项。
列:1,2,(略)。
小结:等比数列的通项公式。
三.巩固练习:
1.教材p59练习1,2,3,题。
2.作业:p60习题1,4。
第二课时5.2.4等比数列(二)。
教学重点:等比数列的性质。
教学难点:等比数列的通项公式的应用。
一.复习准备:
提问:等差数列的通项公式。
等比数列的通项公式。
等差数列的性质。
二.讲授新课:
1.讨论:如果是等差列的三项满足。
那么如果是等比数列又会有什么性质呢?
由学生给出如果是等比数列满足。
2练习:如果等比数列=4,=16,=?(学生口答)。
如果等比数列=4,=16,=?(学生口答)。
3等比中项:如果等比数列.那么,
则叫做等比数列的等比中项(教师给出)。
4思考:是否成立呢?成立吗?
成立吗?
又学生找到其间的规律,并对比记忆如果等差列,
5思考:如果是两个等比数列,那么是等比数列吗?
如果是为什么?是等比数列吗?引导学生证明。
6思考:在等比数列里,如果成立吗?
如果是为什么?由学生给出证明过程。
三.巩固练习:
列3:一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项。
解(略)。
列4:略:
练习:1在等比数列,已知那么。
2p61a组8。
高三数学教案案例(优质15篇)篇四
1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标。
1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标。
1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:
1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体。
【学前准备】对照指数函数试研究对数函数的定义、图象和性质。
高三数学教案案例(优质15篇)篇五
教学目标:
结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学重点:
掌握演绎推理的基本模式,并能运用它们进行一些简单推理。
教学过程。
一、复习。
二、引入新课。
1.假言推理。
假言推理是以假言判断为前提的演绎推理。假言推理分为充分条件假言推理和必要条件假言推理两种。
(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。
(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。
2.三段论。
三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。
3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。可分为纯关系推理和混合关系推理。纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。
(1)对称性关系推理是根据关系的对称性进行的推理。
(2)反对称性关系推理是根据关系的反对称性进行的推理。
(3)传递性关系推理是根据关系的传递性进行的推理。
(4)反传递性关系推理是根据关系的反传递性进行的推理。
4.完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。
完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。否则,只要其中有一个个别对象没有考察,这样的归纳推理就不能称做完全归纳推理。完全归纳推理的结论所断定的范围,并未超出前提所断定的范围。所以,结论是由前提必然得出的。应用完全归纳推理,只要遵循以下两点,那末结论就必然是真实的:(1)对于个别对象的断定都是真实的;(2)被断定的个别对象是该类的全部个别对象。
高三数学教案案例(优质15篇)篇六
数学教学是数学活动的教学,是师生交往、互动、共同发展的过程。有效的数学教学应当从学生的生活经验和已有的知识水平出发,向他们提供充分地从事数学活动的机会,在活动中激发学生的学习潜能,促使学生在自主探索与合作交流的过程中真正理解和掌握基本的数学知识、技能和思想方法。提高解决问题的能力,并进一步使学生在意志力、自信心、理性精神等情感、态度方面都得到良好的发展。
二.对教学内容的认识。
1.教材的地位和作用。
本节课是在学生学习过“一百万有多大”之后,继续研究日常生活中所存在的较小的数,进一步发展学生的数感,并在学完负整数指数幂的运算性质的基础上,尝试用科学记数法来表示百万分之一等较小的数。学生具备良好的数感,不仅对于其正确理解数据所要表达的信息具有重要意义,而且对于发展学生的统计观念也具有重要的价值。
2.教材处理。
基于设计理念,我在尊重教材的基础上,适时添加了“银河系的直径”这一问题,以向学生渗透辩证的研究问题的思想方法,帮助学生正确认识百万分之一。
通过本节课的教学,我力争达到以下教学目标:
3.教学目标。
(1)知识技能:
借助自身熟悉的事物,从不同角度来感受百万分之一,发展学生的数感。能运用科学记数法来表示百万分之一等较小的数。
(2)数学思考:
通过对较小的数的问题的学习,寻求科学的记数方法。
(3)解决问题:
能解决与科学记数有关的实际问题。
(4)情感、态度、价值观:
使学生体会科学记数法的科学性和辩证的研究问题的思想方法。培养学生的合作交流意识与探究精神。
4.教学重点与难点。
根据教学目标,我确定本节课的重点、难点如下:
重点:对较小数据的信息做合理的解释和推断,会用科学记数法来表示绝对值较小的数。
难点:感受较小的数,发展数感。
三.教法、学法与教学手段。
1.教法、学法:
本节课的教学对象是七年级的学生,这一年级的学生对于周围世界和社会环境中的实际问题具有越来越强烈的兴趣。他们对于日常生活中一些常见的数据都想尝试着来加以分析和说明,但又缺乏必要的感知较大数据或较小数据的方法及感知这些数据的活动经验。
因此根据本节课的教学目标、教学内容,及学生的认知特点,教学上以“问题情境——设疑诱导——引导发现——合作交流——形成结论和认识”为主线,采用“引导探究式”的教学方法。学生将主要采用“动手实践——自主探索——合作交流”的学习方法,使学生在直观情境的观察和自主的实践活动中获取知识,并通过合作交流来深化对知识的理解和认识。
2.教学手段:
1.采用现代化的教学手段——多媒体教学,能直观、生动地反映问题情境,充分调动学生学习的积极性。
2.以常见的生活物品为直观教具,丰富了学生感知认识对象的途径,使学生对百万分之一的认识更贴近生活。
四.教学过程。
(一).复习旧知,铺垫新知。
问题1:光的速度为300000km/s。
问题2:地球的半径约为6400km。
问题3:中国的人口约为1300000000人。
(十).教学设计说明。
本节课我以贴近学生生活的数据及问题背景为依托,使学生学会用数学的方法来认识百万分之一,丰富了学生对数学的认识,提高了学生应用数学的能力,并为培养学生的终身学习奠定了基础。在授课时相信会有一些预见不到的情况,我将在课堂上根据学生的实际情况做相应的处理。
高三数学教案案例(优质15篇)篇七
一、概述。
九年制义务教育九年级数学(北师大版)下册第三章第五节“直线和圆的位置关系”。本节是探索直线与圆的位置关系,课本通过操作、观察直线与圆的相对运动,提示直线与圆的三种位置关系,探索直线与的位置关系,和圆心到直线的距离与半径之间的大小关系的联系,并突出研究了圆的切线的性质和判定。在本节的设计中,充分体现了学生已有经验的作用,用运动的观点研究直线与圆的位置关系,使学生明确图形在运动变化中的特点和规律。
二、设计理念。
鼓励学生从事观察、测量、折叠、平移、旋转、推理证明等活动,帮助学生有意识地积累活动经验,获得成功的体验。教学中应鼓励学生动手、动口、动脑和交流,充分展示“观察、操作——猜想、探索——说理(有条理地表达)”的过程,使学生能在直观的基础上学习说理,体现合情推理和演绎推理的融合,促进学生形成科学地、能动地认识世界的良好品质。
(1)激发学生亲自探索直线和圆的位置关系。
(2)通过实践让学生理解直线与圆的三种位置关系——相交、相切、相离的含义。
(3)探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。
四、教学重点。
直线与圆的三种位置关系——相交、相切、相离。
从设置情景提出问题,到动手操作、交流,直至归纳得出结论,整个过程学生不仅得到了直线与圆的位置关系,更重要的是经历了知识过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学、应用数学。
五、教学难点。
探索圆心到直线的距离与半径之间的数量关系和直线与圆的位置关系之间的内在联系。
高三数学教案案例(优质15篇)篇八
积极进行数学知识的学习,强化学生的学习能力,培养创新思维,从而让学生整体素质得到提升。作为科任教师,更要帮助学生们了解学习技巧、方法,做一个合格的中学生。
二、学情分析。
经过七年级第一学期的教学,发现班内部分学生数学基础较差,两极分化现象严重,尤其是后进生的数学成绩普遍偏差。部分学生在解题时比较粗心,不能很好的发挥出自己应有的水平。但通过上学期的学习,不少学生掌握了一定的数学学习方法和解题技巧,对于所学知识能较好地应用到解题和日常生活中去。
三、教学内容。
本学期教学章节的内容:
第六章:一元一次方程。本章主要学习一元一次方程及其解的概念和解法与应用。
本章重点:一元一次方程的解法及实际应用。
本章难点:列一元一次方程解决实际问题。
第七章:二元一次方程。本章主要学习二元一次方程(组)及其解的概念和解法与应用。
本章重点:二元一次方程组的解法及实际应用。
本章难点:列二元一次方程组解决实际问题。
第八章:不等式与不等式组。本章主要内容是一元一次不等式(组)的解法及简单应用。
本章重点:不等式的基本性质与一元一次不等式(组)的解法与简单应用。
本章难点:不等式基本性质的理解与应用、列一元一次不等式(组)解决简单的实际问题。
第九章:多边形。本章主要学习与三角形有关的线段、角及多边形的内角和等内容。
本章重点:三角形有关线段、角及多边形的内角和的性质与应用。
本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,三角形内角和的证明与多边形内角和的探究。
第十章:轴对称、平移与旋转。
四、教学目标。
通过本期教学,学生应掌握必要的基本知识和基本技能,形成相应的数学思想,积累丰富的数学活动经验,能运用数学知识解决生活中的实际问题,形成一定的数学素养,为今后继续学习数学打下良好的基础。继续做好培优工作,并做好配套工作。能掌握科学的学习方法,形成良好学风,养成良好的数学学习习惯,构建融洽的师生关系,使学生在德、智、体各方面全面发展。
五、教学措施。
1、认真研读新课程标准,钻研教材,精选习题,精心备课,做好教案,上好新课。
同时仔细批改作业,作好辅导,发现问题及时解决作认真总结成功与失败的经验和原因。
2、充分利用先进教学媒体进行教学,设置教学情境,结合日常生活,由浅入深,循序渐进。
引导学生主动加入课堂学习和讨论,积极参与知识的探究与规律的总结。
3、营造和谐、自主的学习氛围,引导学生进行合作探究、交流和分享发现的快乐。
让学生体会到学习的乐趣,激发学生的学习热情。
4、精心设计探究主题,引导学生学会发散思维,培养学生创造性思维能力,实现一题多解,举一反三,触类旁通。
5、继续坚持课改,开展分层教学,成立互助学习小组,以优带良,以优促后。
同时狠抓中等生,辅导后进生,实现共同进步。
六、教学进度。
高三数学教案案例(优质15篇)篇九
学习目标:
1、了解本章的学习的内容以及学习思想方法2、能叙述随机变量的定义。
3、能说出随机变量与函数的关系,4、能够把一个随机试验结果用随机变量表示。
重点:能够把一个随机试验结果用随机变量表示。
难点:随机事件概念的透彻理解及对随机变量引入目的的认识:
环节一:随机变量的定义。
1.通过生活中的一些随机现象,能够概括出随机变量的定义。
2能叙述随机变量的定义。
3能说出随机变量与函数的区别与联系。
一、阅读课本33页问题提出和分析理解,回答下列问题?
1、了解一个随机现象的规律具体指的是什么?
2、分析理解中的两个随机现象的随机试验结果有什么不同?建立了什么样的对应关系?
总结:
3、随机变量。
(1)定义:
这种对应称为一个随机变量。即随机变量是从随机试验每一个可能的结果所组成的。
到的映射。
(2)表示:随机变量常用大写字母.等表示.
(3)随机变量与函数的区别与联系。
函数随机变量。
自变量。
因变量。
因变量的范围。
相同点都是映射都是映射。
环节二随机变量的应用。
1、能正确写出随机现象所有可能出现的结果2、能用随机变量的描述随机事件。
例1:已知在10件产品中有2件不合格品。现从这10件产品中任取3件,其中含有的次品数为随机变量的学案.这是一个随机现象。(1)写成该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。
例2连续投掷一枚均匀的硬币两次,用x表示这两次正面朝上的次数,则x是一个随机变。
量,分别说明下列集合所代表的随机事件:
(1){x=0}(2){x=1}。
(3){x2}(4){x0}。
变式:连续投掷一枚均匀的硬币三次,用x表示这三次正面朝上的次数,则x是一个随机变量,x的可能取值是?并说明这些值所表示的随机试验的结果.
练习:写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机变量的结果。
(1)从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;。
小结(对标)。
高三数学教案案例(优质15篇)篇十
§3.1.1数列、数列的通项公式目的:要求学生理解数列的概念及其几何表示,理解什么叫数列的通项公式,给出一些数列能够写出其通项公式,已知通项公式能够求数列的项。
重点:1数列的概念。按一定次序排列的一列数叫做数列。数列中的每一个数叫做数列的项,数列的第n项an叫做数列的通项(或一般项)。由数列定义知:数列中的数是有序的,数列中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。
3.4.-1的正整数次幂:-1,1,-1,1,…。
5.无穷多个数排成一列数:1,1,1,1,…。
二、提出课题:数列。
1.数列的定义:按一定次序排列的一列数(数列的有序性)。
2.名称:项,序号,一般公式,表示法。
3.通项公式:与之间的函数关系式如数列1:数列2:数列4:
4.分类:递增数列、递减数列;常数列;摆动数列;有穷数列、无穷数列。
5.实质:从映射、函数的观点看,数列可以看作是一个定义域为正整数集n-(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。
6.用图象表示:—是一群孤立的点例一(p111例一略)。
三、关于数列的通项公式1.不是每一个数列都能写出其通项公式(如数列3)。
2.数列的通项公式不唯一如:数列4可写成和。
3.已知通项公式可写出数列的任一项,因此通项公式十分重要例二(p111例二)略。
五、小结:1.数列的有关概念2.观察法求数列的通项公式。
六、作业:练习p112习题3.1(p114)1、2。
2.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1、、、;(2)、、、;(3)、、、;(4)、、、。
3.求数列1,2,2,4,3,8,4,16,5,…的一个通项公式。
6.在数列{an}中a1=2,a17=66,通项公式或序号n的一次函数,求通项公式。
7.设函数(),数列{an}满足(1)求数列{an}的通项公式;(2)判断数列{an}的单调性。
7.(1)an=(2)。
高三数学教案案例(优质15篇)篇十一
(3)使学生初步了解有限集、无限集、空集的意义。
重点难点】。
教学重点:集合的基本概念及表示方法。
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。
授课类型:新授课。
课时安排:1课时。
教具:多媒体、实物投影仪。
内容分析】。
高三数学教案案例(优质15篇)篇十二
一考纲要求。
1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。
2.搜集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。
二.高考趋势。
函数知识应用十分广泛,利用函数知识解应用问题是数学应用题的主要类型之一,也是高考考查的重点内容。
三.要点回顾。
解应用题,首先应通过审题,分析原型结构,深刻认识问题的实际背景,确定主要矛盾,提出必要的假设,将应用问题转化为数学问题求解;然后,经过检验,求出应用问题的解。其解题步骤如下:1.审题2.建模(列数学关系式)3.合理求解纯数学问题。4.解释并回答实际问题。
四.基础训练。
2.根据市场调查,某商品在最近10天内的价格与时间满足关系销售量与时间满足关系则这种商品的日销售额的值为.
3.某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向公司交元的管理费,预计当每件产品的售价为元(9时,一年的销售量为万件。则分公司一年的利润l(元)与每件产品的售价的函数关系式为.
4.有一批材料可以建成200的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成矩形场地面积为(围墙厚度不计)。
5.某建筑商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按右表折扣分别累计计算。
可以享受折扣优惠金额折扣率不超过500元的部分5%超过500元的部分10%某人在此商场购物总金额为元,可以获得的折扣金额为元,则关于的解析式为;若元,则此人购物总金额为元。
五.例题精讲。
例2.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出当每辆车的月租金每增加50元时,未租出车将增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,两者都由租赁公司支付。
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,公司的月收益?月收益是多少?
例3.某城市现有人口100万人,如果每年自然增长率为1.2﹪,试解答下面问题。
(1)写出城市人口总数(万人)与年份(年)的函数关系式。
(2)计算10年以后该城市人口总数(精确到0.1万人)。
(3)计算大约多少年以后该城市人口将达到120万人(精确到1年)。
六.巩固练习:.
高三数学教案案例(优质15篇)篇十三
1.板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;同时不完全按课本上的呈现方式来编排板书。即体现系统性、程序性、概括性、指导性、启发性、创造性的原则;(原则性)。
2.使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。(灵活性)。
高三数学教案案例(优质15篇)篇十四
本节课的主要内容是比例的意义和性质。在教学比例意义时,在课前的预设下,学生很容易就发现了:表示两个比相等的式子叫比例。比例的意义解决了,接下来比例的性质也应该没有什么问题。通过例题的学习学生又知道了比例的外项和内项,接下来就是引导学生看比例中的外项和内项,有什么发现?学生的回答出现了与课前预设不相符的一幕,课前我是这样设计的:
2.我是想学生讲:一3×40=120二5×20=100三8×6=48。
5×24=1204×25=1003×16=48。
3.然后教师板书:
外项积:3×40=1205×20=1008×6=48。
内项积:5×24=1204×25=1003×16=48。
4.师:刚才同学们的发现其实就是比例的基本性质,那什么是比例的基本性质呢?(然后师出示:在比例里,两个外项的积等于两个内项的积。)。
2.(过了一会儿)生说:我知道,比例的基本性质是:在比例里,两个外项的积等于两个内项的积。
3.我还带开玩笑的口气说:我没有教你,你怎么就会了?
生:我自己预习了。
师:预习是我们学习中一个很好的习惯。(心里想:他怎么没有按照我的设计来,就一下子就把性质讲出来了。怎么办?这时我灵机一动。)。
师:好,在比例里,两个外项的积是不是等于两个内项的积呢?我们来验证一下。(学生分别讲出三组比例的外项积和内项积)。
4.师板书:
外项积:3×40=1205×20=1008×6=48。
内项积:5×24=1204×25=1003×16=48。
这个时候水到渠成的学生就知道了什么叫比例的基本性质。
设计一,我是想学生按照之前的设计意图,一环套一环教学下去。而不愿意让学生有自主的,创造性的分析和思考,甚至害怕学生“思维出轨”。这是一种机械的模式化的教学,这种教学方法从掌握知识的角度进行分析,确实简单高效,但它的弊端也是显而易见的,那就是造成学生思维的僵化,学生不会独立分析、思考。
设计二,更多关注的是学生获取知识的过程,引导学生借助三个比例式来验证,设计二可以说是一种生动的充分发挥学生自主学习的过程。在这种教学过程中,学生有独立思考的时间,有自主探索的机会,有展示自己创造性思维成果的舞台。
通过两种教学片断的比较,我深深得体会到,向课堂要效率不仅仅要着眼于课堂上的教学用时和学生在课堂上是否学会了解题,而更注重学生思维能力的发展,让学生真正成为学习的主人。《数学课程标准》中指出:数学教学要“让学生亲身经历竟实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获取对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展”。
通过上述案例分析只有动态生成的课堂才能很好地培养学生的思维能力和解决实际问题能力,提高学生的数学素质。
高三数学教案案例(优质15篇)篇十五
我发现,许多学生的学习方法是:直接记住函数性质,在解题中套用结论,对结论的来源不理解,知其然不知其所以然,应用中不能变通和迁移。
本节的学习方法对后续内容的学习具有指导意义。为了培养学法,充分关注学生的可持续发展,教师要转换角色,站在初学者的位置上,和学生共同探索新知,共同体验数形结合的研究方法,体验周期函数的研究思路;帮助学生实现知识的意义建构,帮助学生发现和总结学习方法,使教师成为学生学习的高级合作伙伴。
教师要做到:
授之以渔,与之合作而渔,使学生享受渔之乐趣。因此。
1.本节要教给学生看图象、找规律、思考提问、交流协作、探索归纳的学习方法。
2.通过本课的探索过程,培养学生观察、分析、交流、合作、类比、归纳的学习能力及数形结合(看图说话)的意识和能力。