教案中应包含教学目标、教学内容、教学方法、教学过程等。以下是一些经过研究和实践检验的六年级教案样本,供您参考教学。
用比例知识解答应用题人教版六年级教案设计(模板15篇)篇一
2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.。
3.通过复习,培养学生的`分析能力、综合能力以及判断推理能力.。
教学重点。
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.。
教学难点。
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.。
教学过程。
一、复习准备.。
下面每题中的两种量成什么比例关系?
(1)速度一定,路程和时间.。
(2)总价一定,每件物品的价格和所买的数量.。
(3)小朋友的年龄与身高.。
(4)正方体每一个面的面积和正方体的表面积.。
(5)被减数一定,减数和差.。
谈话引入:我们今天运用正反比例的知识来解决实际问题.。
用比例知识解答应用题人教版六年级教案设计(模板15篇)篇二
2.通过复习,能够使学生利用正反比例的意义正确、熟练的解答应用题.。
3.通过复习,培养学生的分析能力、综合能力以及判断推理能力.。
教学重点。
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.。
教学难点。
通过复习,使学生能够利用正反比例的意义正确、熟练的解答应用题.。
教学过程。
一、复习准备.。
下面每题中的两种量成什么比例关系?
(1)速度一定,路程和时间.。
(2)总价一定,每件物品的价格和所买的数量.。
(3)小朋友的年龄与身高.。
(4)正方体每一个面的面积和正方体的表面积.。
(5)被减数一定,减数和差.。
谈话引入:我们今天运用正反比例的知识来解决实际问题.。
二、探讨新知.。
(一)教学例5(用比例解答下题)。
1.学生读题,独立解答.。
2.学生反馈:
3.分析:
(1)为什么需要用正比例解答?
(2)12和要求的天数之间有什么关系?
(二)反馈.。
2.大齿轮与小齿轮的齿数比为4∶3.大齿轮有36个齿,小齿轮有多少个齿?
三、巩固反馈.。
四、课堂总结.。
通过这堂课的学习,你有什么收获?
五、课后作业.。
六、板书设计。
用比例知识解答应用题人教版六年级教案设计(模板15篇)篇三
教学目的。
一、计算练习。
做练习二十三的第5、6、11题。
1、第6题,让学生独立口算,共同核对得数。
2、第6题,让学生独立笔算,填出得数,集体订正。
3、第6题,第一行指名板演,并要求学生说说怎样估算,第二行全班学生在练习本上估算,指名口答得数,共同订正。
二、应用题解题练习。
练习二十三的第7-10题及第12、14、15题。
1、第七题,全班学生独立在练习本上解答,教师巡视,分别指名将两种不同的解法的综合算式抄在黑板上:
7200÷12÷67200÷(12÷6)。
让学生比较两种解法的不同。
2、第8题,先引导学生回顾除法应用题中常见的数量关系,然后再求。
3、第9、10题,先让学生读题,审题,比较两题的不同,第9题是连除应用题,第10题不是连除应用题。
4、第12题,两道小题也要让学生对比着练,先让学生独立解答,然后指名说解法。
5、第14、15题,让学生独立列出综合算式解答,集体订正。
三、应用题补充条件、问题练习。
做练习二十三的'第13、16题。
1、第13题,读题,明确条件,然后给予适当的启发。
3、整理和复习。
复习混合运算式题、文字题和连乘、连除应用题。
教学内容。
课本第116页的第1-3题;练习二十六的第1-4题。
教学目的。
1、通过整理和复习,使学生进一步掌握含有两级运算的三步式题的运算顺序,能比较熟练地进行计算,并会列综合算式解答两步计算的文字题。
2、使学生进一步理解连乘、连除应用题的数量关系,能比较熟练地解答这两种应用题,提高理解能力。
教学过程。
一、复习混合运算。
1、混合运算式题。
(1)做课本第116页第1题及补充题。
(2)做练习二十六的第1题。
学生独立做,教师巡视,发现问题,集体订正。
(3)做练习二十六的第3题。
左图是变化了形式的三步混合运算式题,右图是以框图形式出现的混合运算。让学生独立计算,指名说出亿时结果。
2、两步计算文字题。
做第116页的第2题。
让学生说说每道题求什么,必须知道哪两个数,再引导学生列综合算式。
做练习二十六的第2题。
让学生独立列出综合算式计算,指名答出,共同订正。
二、复习连乘、连除应用题。
1、做课本第116页的第3题。
让学生根据题意画线段图,教师巡视指导。
解答后,引导学生把它改编成用除法计算的两步应用题。
2、练习二十六的第4题。
让学生列综合算式解答,订正时,指名说说两小题的相同点和不同点以及综合算式的每一步求什么。教师归纳,指出解答连乘、连除应用题应注意的问题。
用比例知识解答应用题人教版六年级教案设计(模板15篇)篇四
教学目标:
使学生进一步理解和掌握用比例知识解答应用题的方法。
抓住解题关键进行熟练准确的判断,从而找准题中的等量关系。
通过与算术方法解答相比较,加强知识之间的联系,使学生进一步理解能用比例知识解答应用题的数量关系。
教学过程:
师:谁能够说说用比例知识解应用题的关键是什么?
判断下题中各量成什么比例?并说明理由?
指导学习题例。
让学生独立解答例7。
在弄清题意后,把例5未完成的部分写完整然后比较这两种解答方法的异同点。
相同点:都是抓住商一定来建立等量关系列出方程或比例式解答的。
不同点:第一种解法是直接设所求问题为x。
第二种解法是间接设,即解出x后,还要用x减3才是所求问题。
师:除了这两种方法解答外,还能用其它方法吗?请用算术方法解答例7。
学习例6。
师:请同学们在教材上完成例6后,再用算术方法解答。说说用比例解例6的关键。
对比小结。
比较例5例6有什么不同?分别是根据什么关系来解答的?
(强调用比例知识解应用题,关键是判断题中的数量成什么比例,再根据题中比例关系找准等量关系,把其中未知数量用x代替,列出方程解答)。
算术解法和比例解法的比较和联系。
观察算式(例5)。
练习巩固。
笔答题:教材117页1~3题。
全课总结(略)。
用比例知识解答应用题人教版六年级教案设计(模板15篇)篇五
教学要求:1、使学生能正确判应用题中涉及的量成什么比例关系。
2、使学生能利用正反比例的意义正确解答应用题。
培养学生的判断分析推理能力。
教学难点:学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。
教学过程:
(一)复习。
1.说说正、反比例的意义。
(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从a地到b地,行驶的速度和时间。
(3)每块砖的面积一定,砖的块数和总面积。
(4)海水的出盐率一定,晒出的盐和海水重量。
3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。
(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。
(二)新课。
(1)用以前方法解答。
(2)研究用比例的方法解答。
题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?
能不能利用这个关系式列比例解答?
解比例,同学自已完成,及时纠正。检验。
改变例1中的条件和问题。
1、以前的发法解答。
2、怎样用比例知识解答?
3讨论结果填书上。
4小结:用比例知识来解答应用题,就是根据正反比例的意义列出方程来解答。
用比例知识解答应用题人教版六年级教案设计(模板15篇)篇六
一﹑扎实抓好应用题基础训练的教学,提高学生解答应用题的能力。
应用题基础训练是学习应用题的基础,只有认真扎实抓好应用题的基础训练的教学,才能培养学生良好的解答应用题的能力。王老师的这节课就非常注重这方面的教学,从复习题的“求一个数的几分之几的数是多少”的训练,再到例2让学生动手画线段图,说数量关系式,列式解答,再到巩固练习时第一题找标准题,比较量,并说出求比较题的数量关系式,第二题的看图列式题,都是应用题的基础训练,教师整一节课都在围绕着应用题的基础训练进行。从这节课的教学效果可以看到,只有像王老师那样,扎实抓好应用题基础训练的教学,才能提高学生解答应用题的能力。
二、强化学生对应用题说的能力的训练,促其内化,收到良好的效果。
多种形式训练学生说解题思路,使学生充分内化为自己的思想,达到以说促学的良好效果。从这节课学生说解题思路说得非常好,我们也可以看出王老师平时的课堂教学非常注重学生口头表达能力的培养。如果王老师能把数量关系用文字的形式写出来就最好了。
用比例知识解答应用题人教版六年级教案设计(模板15篇)篇七
2.能够使学生利用正反比例的意义正确、熟练的解答应用题.。
3.培养学生的分析能力、综合能力以及判断推理能力.。
教学重点。
使学生能够利用正反比例的意义正确、熟练的解答应用题.。
教学过程。
一、复习准备.。
下面每题中的两种量成什么比例关系?
(1)速度一定,路程和时间.。
(2)总价一定,每件物品的价格和所买的数量.。
(3)小朋友的年龄与身高.。
(4)正方体每一个面的面积和正方体的表面积.。
(5)被减数一定,减数和差.。
谈话引入:我们今天运用正反比例的知识来解决实际问题.。
用比例知识解答应用题人教版六年级教案设计(模板15篇)篇八
1、进一步理解分数应用题的数量关系,加深解答分数应用题的一般规律。
2、进一步掌握已知一个数的几分之几是多少求这个数的应用题的解题思路。
3、进一步培养学生解决问题和分析、推理等思维能力,提高解题能力。
教学重难点。
进一步理解分数应用题的数量关系,加深解答分数应用题的一般规律。
教学准备。
教学过程设计。
教学内容。
师生活动。
备注。
一、复习铺垫。
二、教学新课。
三、巩固练习。
四、课堂小结。
五、作业。
1、复习。
出示复习题(见幻灯)。
问:解答这道题是怎样想的?为什么列方程解?
2、揭示课题。
解答分数应用题,要先确定单位“1”,再找出题目中的数量关系式,然后列式。这节课就继续按照这样的思路来学习分数应用题。
1、教学例2。
(1)学生读题,找条件和问题。
(2)找关键句,说数量关系。
(3)学生画线段图。
(4)学生独立列式、计算。
(5)小结:这道题的解题思路是怎样的?
2、教学试一试。
(1)学生读题,找条件和问题。
(2)找关键句,说数量关系。
(3)学生画线段图。
(4)学生独立列式、计算。
3、小结。
问:通过上面的学习,你认为解答分数应用题该怎么去思考?
1、做练习十第6题。
2、做“练一练”
3、做练习十第9题。
问:列方程解是怎样想的?
练习使7、8、10。
课后感受。
例2比较简单,从学生的掌握情况来看,“试一试”稍有一些难度。所以本节课的重点放在了“试一试”的分析上。的确通过画线段图的分析,学生对此类题目有了一定的解题思路。
文档为doc格式。
用比例知识解答应用题人教版六年级教案设计(模板15篇)篇九
吴兴区学校(幼儿园)具体课时备课表(成熟型教师用)。
单元(章)主题百分数任课教师与班级。
本课(节)课题利息第9课时/共9课时。
教学目标(含重点、难点)。
及设置依据1.通过教学使学生知道储蓄的意义;明确本金、利息、税后利息和利率的含义;掌握计算利息的方法,会进行简单计算。
2.对学生进行勤俭节约,积极参加储蓄;支援国家、灾区、贫困地区建设的思想品德教育。
重点:掌握利息的计算方法。
难点:正确地计算利息,解决利息计算的实际问题。
教学准备多媒体课件。
教学过程。
内容与环节预设个人二度备课课后反思。
一、导入。
随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。
内容与环节预设个人二度备课课后反思。
二、新课。
1.介绍存款的种类、形式。
存款分为活期、整存整取和零存整取等方式。
2.阅读p99页的内容,自学讨论例题,理解本金、利息、税后利息和利率和含义。
本金:存入银行的钱叫做本金.小丽存入的100元就是本金。
利息:取款时银行多支付的钱叫做利息。
税后利息:国家规定,存款的利息要按20%的税率纳税。小丽实际得到的1.8元是税后利息。国债的利息不纳税。
利率:利息和本金的比值叫做利率。
(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。
(2)阅读p99页表格,了解同一时期各银行的利率是一定的。
4.利息的计算。
(1)出示利息的计算公式:利息=本金×利率×时间。
(2)计算方法:
按照书上的利率,如果李奶奶的1000元钱存整取两年,到期的利息是多少?学生计算后交流。
内容与环节预设个人二度备课课后反思。
(3)两年后取款,李奶奶能得到93.6元利息吗?为什么?
(4)学生计算后回答,教师板书:。
1000×4.68%×2=93.6(元)1000×4.68%×2=93.6(元)。
93.6-93.6×5%=88.92(元)93.6×(1-5%)=88.92(元)。
比较两种方法?
加上她存入本金1000元,到期时她可以实际取回多少元?
5.练习。
1、完成二十三的第6题,学生读题后,提问:贝贝存入的本金是多少?利率是多少?存期是多少?然后由学生解答,集体订正。
2、完成100页做一做。
3、完成练习二十三的第9题。
三、小结:这节课你懂得了什么?
板书。
设计利息。
利息=本金×利率×时间。
1000×4.68%×2=93.6(元)1000×4.68%×2=93.6(元)。
93.6-93.6×5%=88.92(元)93.6×(1-5%)=88.92(元)。
个人二度备课:课后反思:
作业布置或设计自学103页什么是成数?说说自己对成数的了解。课后反思:
教后整体反思。
用比例知识解答应用题人教版六年级教案设计(模板15篇)篇十
教学目标:
使学生进一步明确列方程解应用题的关键。
沟通与算术方法解的联系与区别,排除知识间的干拢,进一步提高学生解决简单实际问题的能力。
教学过程:
想一想:列方程解应用题的关键是什么?(找准题中的等量关系,或者说找出数量间相等的关系。)。
根据例子找出数量间相等的关系。
例:“篮球比足球多5个”。数量是相等的关系是:足球的个数+5=篮球的个数。
练习:
基本练习..
学生独立解答例3。然后说主自己的分析解题思路,最后理清下面问题。
从题目的本身和解答方法进行比较看,两道题基本数量关系是什么?
客车和货车每时共行的距离×时间=甲乙两站间铁路长。
在什么情况下用算术方法解答较简便?在什么情况下列方程解比较简便?
总结:第(1)题是已知两车速度与时间,求路程,直接改用算术方法(乘法)解答很方便。第(2)题是已知两车速度与路程,求时间,可根据第(1)题中的等量关系列出方程式--60x+55x=460或者(60+55)x=460较为方便。如果用算术方法解则需逆向思考。第3题也说明了这个道理。
小段练习:
说说下面各题用什么方法解答较简便?为什么?
巩固练习。
完成教材109页第1题。
学校图书室有文艺书2280本。比科技书本数的3倍还多48本,科技书有多少本?设科技书有x本,选择下面正确的方程。
3x-48=2280。
3x+48=2280。
2280+3x=48。
完成教材109页2题、3题。
全课总结(略)。
用比例知识解答应用题人教版六年级教案设计(模板15篇)篇十一
教学内容:
教科书第59页例5以及相关练习题。
教学目标:
1、使学生能正确判断题中涉及的量是否成正比例关系。
2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。
3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。
4、在成功解决生活中的实际问题中体会数学的价值。
教学重点:
利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。
教学难点:
正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。
教具准备:
小黑板。
教学过程:
一、复习铺垫,激发兴趣。
1、填空并说明理由。
(1)速度一定,路程和时间成()比例。
(2)单价一定,总价与数量成()比例。
(3)每块地砖的大小一定,砖的块数和所铺的总面积成()比例。
用比例知识解答应用题人教版六年级教案设计(模板15篇)篇十二
教学要求:
2、使学生能正确理解正、反比例的意义,能正确进行判断。
3、培养学生的思维能力。
教学过程:
知识整理。
1回顾本单元的学习内容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
复习概念。
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
基础练习。
1填空。
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。
小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。
甲乙两数的比是5:3。乙数是60,甲数是()。
2、解比例。
5/x=10/340/24=5/x。
3、完成26页2、3题。
综合练习。
1、a×1/6=b×1/5a:b=():()。
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例():()、():()。
实践与应用。
1、如果a=c/b那当()一定时,()和()成正比例。当()一定时,()和()成反比例。
板书设计:整理和复习。
比例的意义。
比例比例的性质。
解比例。
正反比例正方比例的意义。
正反比例的判断方法。
比例应用题正比例应用题。
反比例应用体题。
用比例知识解答应用题人教版六年级教案设计(模板15篇)篇十三
吴兴区学校(幼儿园)具体课时备课表(成熟型教师用)。
单元(章)主题任课教师与班级。
本课(节)课题整理和复习(一)第课时/共课时。
教学目标(含重点、难点)。
及设置依据1.通过复习进一步理解百分数的意义,掌握百分数的写法。
2.掌握百分数和小数、百分数和分数互化的方法,熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。
重点:熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。
难点:百分数意义的理解。
教学准备多媒体课件。
教学过程。
内容与环节预设个人二度备课课后反思。
一、基本练习。
1.完成下面表格。
内容与环节预设个人二度备课课后反思。
小数0.16。
分数。
百分数24.5%0.9%。
2.只列式,不计算。
(1)40占50的几分之几?(2)50是40的百分之几?
(3)5比8少百分之几?(4)8比5多百分之几?
二、知识梳理。
1.百分数和分数在意义上有什么不同?百分数写法有什么特点?
2.说一说百分数和小数互化的方法,百分数和分数互化的方法?
3.求一个数是另一个数的百分之几的应用题用什么方法解答?
如:甲数是200,乙数是150。
(1)甲数是乙数的百分之几,算式:_____________,把________看作单位“1”。
(2)乙数是甲数的百分之几,算式:_____________,把________看作单位“1”。
(3)甲数比乙数多百分之几,算式:_____________,把________看作单位“1”。
(4)乙数比甲数少百分之几,算式:_____________,把________看作单位“1”。
三、深化练习:
1.李师傅加工一批零件,其中合格率是95%,这里的95%表示什么?
2.一条水渠已修的比未修的长25%,这里的25%表示什么?未修的比已修的短百。
内容与环节预设个人二度备课课后反思。
分之几?
四、小结:这节课复习了什么?
板书。
设计。
整理和复习(一)个人二度备课:课后反思:
作业布置或设计p104第1、2、3题。
课后反思:
教后整体反思。
用比例知识解答应用题人教版六年级教案设计(模板15篇)篇十四
导学目标:
2、通过引导探究、概括归纳、讨论、合作学习,培养学生抽象概括能力。
3、使学生初步感知事物间是相互联系、变化发展的。
导学重点:比例的意义和基本性质。
导学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。
预习学案。
1、什么是比?
2、口算下面各比的值,哪些比的比值相等?
12:1634:185:310:66:10。
导学案。
探究比例的意义。
例1一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下。
时间(时)25。
路程(千米)80200。
80:2=200:55:3=10:66:10=9:15802=。
像这样由两个相等的比组成的式子我们把它叫做比例。
练习:
应用比例的意义判断下面的比例是否正确。
1、20:5=1:42、12:133、0.6:0.2=34:14。
先独立完成,再在小组内交流。
我们已经知道组成一个比的两个数分别叫做这个比的前项和后项,组成比例的四个数也叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
看课本48页,在图上这四面国旗的尺寸中,能找出哪些比来组面比例?
四人小组讨论,老师巡视,给予指导。
请小组汇报讨论结果,老师根据学生的汇报,将组成的比例分类板书在黑板上。
老师结合板书归纳:根据同学们找的结果,我们看到,这四面国旗的长与宽的比值都相等,所以每两面国旗的长与宽的比都可以组成比例。同样,这四面国旗的宽与长的比值也都相等,所以每两面国旗的宽与长的比也都可以组成比例。另外我们还发现每两面国旗的长与长的比值与宽与宽的值也相等,所以每两面国旗的长与长的比,与宽与宽的比也可以组成比例。根据两个相等的比可以组成比例,从四面国旗的尺寸中,我们可以组成许多个比例。
二、比例的基本性质。
板书:
80:2=200:55:3=10:66:10=9:15。
内项。
外项。
观察黑板上的比例式,你以发现比例的内项与外项之间有什么关系吗?小组讨论。教师在学生讨论的基础上总结并在比例式下板书如下,并说明:通过计算,我们发现两个外项的乘积等于两个内项的乘积。
802=200580×5=2×200。
53=1065×6=3×10。
610=9156×15=10×9。
小组合作,举几个这样的例子验证一下。
从上面的计算我们发现,在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
观察黑板上分数形式表示的比例式,内项乘内项怎样乘?外项乘外项怎样乘?得到分子与分母交叉相乘。
练习。
1、6:3=8:52、0.2:2.5=4:50。
3、2:3=12:134、1.2:0.6=10:5。
课堂检测新课标第一网。
1、应用比例的意义判断下面的比例是否正确:
(1)3:5=9:15。
(2)2.5:5=25:0.5。
(3)1002=。
(4)13:2=16:4。
(1)6:9=9:12。
(2)1.4:2=7:10。
(3)5:2=58:14。
(4)34:110=7.5:1。
3.选择题(把正确答案的序号填入括号内)。
(1)()与3:5能组成比例。a.10:6b.13:15c.30:50。
(2)()与5:8能组成比例。a.15:18b.10:16c.3:5。
(3)4:5与()能组成比例。a.14:15b.8:10c.15:12。
(4)7:9与()能组成比例。a.70:90b.17:19c.3:4。
你能比较一下“比”与“比例”有什么联系与区别吗?
板书设计。
一、比例的意义二、比例的基本性质。
表示两个比相等的式子叫做比例。两个外项的积等于两个内项的积。
用比例知识解答应用题人教版六年级教案设计(模板15篇)篇十五
(2010至2011上学期)。
六年级数学学科教师:高春枝。
学习。
内容分数乘法一步应用题。
学习。
目
标1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。
重难。
点及。
突破。
措施教学重点:理解题中的单位“1”和问题的关系。
教学难点:抓住知识关键,正确、灵活判断单位“1”。
课前。
准备。
导学案设计个性化设计。
预
习
学
案1、先说下列各算式表示的意义,再口算出得数。
12××。
2、列式计算。
(1)20的是多少?(2)6的是多少?
3、由以上练习,你能得出什么结论?
自
主
乐
学
合
作
交
流1、小组合作学习例1。
(1)抓住关键句“我国人均耕地面积仅占世界人均耕地面积的”,结合线段图理解题意,找到解题思路。
(2)在小组内讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的是多少)。
(3)在分析题意的基础上,独立列式、计算。
2500×=1000(平方米)。
2、结合计算结果,说说自己的想法,培养学生分析数据的能力,进行国情教育。
3、(1)巩固练习:“做一做”,独立画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。
(2)练习四第2题:先找出单位“1”--全世界的丹顶鹤数只。
(3)练习四第3题:先找到单位“1”,再独立列式解答。
4、讨论小结:解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?
检
测
反
馈
课
外
拓
展作业:练习四第4、7、8、9题。
教
学
反
思
审核人: