毕业论文是对学生整个学习过程的总结和回顾,它可以帮助学生发现自己的不足和提升空间。小编为大家整理了一些优秀的毕业论文样本,它们运用了先进的研究方法和手段,对学术问题进行了深入思考和研究。
数学毕业论文(通用15篇)篇一
研究意义及内容:
一、(1)研究意义:
蛛网模型引进时间变化的因素,通过对属于不同时期的需求量、供给量和价格之间的相互作用的考察,用动态分析的方法论述诸如农产品、畜牧产品这类生产周期较长的商品的产量和价格在偏离均衡状态以后的时机波动过程及其结果。蛛网模型是动态经济分析中的经典模型。它解释了某些生产周期较长商品的产量和价格的波动情况,是一个具有现实指导意义的模型。蛛网模型考察的是生产周期较长的商品,而且生产规模一旦确定不能中途改变,市场价格的变动只能影响下一周期的产量,而本期的产量则取决于前期的价格。因此,蛛网模型的基本假设是商品本期的产量决定于前期的价格。由于决定本期供给量的前期价格与决定本期需求量(销售量)的本期价格有可能不一致,会导致产量和价格偏离均衡状态,出现产量和价格的波动。农产品由于生产周期长,完全符合蛛网模型考察的商品的必备条件。由于生产周期长,农户本期的生产决策依据往往是前期的市场价格,这就形成产品价格波动的蛛网模型现象。本文的研究的就是通过对传统蛛网模型进行数学解析。
(2)应用价值:蛛网模型在解释农产品波动、劳动力市场工资水平的波动等现象时具有一定的价值。蛛网模型是在现实生活中应用较多、较广的动态经济模型。从蛛网模型的经济学定义出发,对其定义、分类进行数学解析。
二、(1)研究现状:
目前关于蛛网模型的研究多数集中于对传统蛛网模型的实际应用。例如,[4]王楠等从蛛网模型的经济学定义出发,对其定义、分类进行数学解析,用一阶差分方程建模,讨论均衡点趋于稳定的条件,运用该模型分析农产品市场和大学生就业市场。[5]吴光宇通过差分方程建模,讨论蛛网模型稳定的条件,揭示了产量和价格波动性的数学机理。[7]么海涛构建了二阶线性非齐次差分方程的蛛网数学模型,在理论上对蛛网模型做了进一步的延伸,在实践中有助于生产者更加理性的生产,最终达到利润最大化,实现社会资源的最优配置。
(2)我的见解:蛛网模型理论是在现实生活中应用较多、较广的动态经济模型,它在一定范围内揭示了市场经济的`规律,对实践具有一定的指导作用根据产品需求弹性与供给弹性的不同关系,将波动情况分成三种类型:收敛型蛛网(供给弹性小于需求弹性)、发散型蛛网(供给弹性大于需求弹性)和封闭型蛛网(供给弹性等于需求弹性)。
研究的主要内容:
一、蛛网模型(cobwebmodel)的产生极其背景。
1、产生及背景。
1930年美国的舒尔茨、荷兰的丁伯根和意大利的里奇各自独立提出,由于价格和产量的连续变动用图形表示犹如蛛网,1934年英国的尼古拉斯•卡尔多将这种理论命名为蛛网理论蛛网模型理论是在现实生活中应用较多、较广的动态经济模型,它在一定范围内揭示了市场经济的规律,对实践具有一定的指导作用.
2、定义。
蛛网理论(cobwebtheorem),又称蛛网模型,是利用弹性理论来考察价格波动对下一个周期产量影响的动态分析,它是用于市场均衡状态分析的一种理论模型.
二、蛛网模型的数学解析。
1、蛛网模型的三种情况。
(1)收敛型蛛网。
第一种情况:相对于价格轴,需求曲线斜率的绝对值大于供给曲线斜率的绝对值。当市场由于受到干扰偏离原有的均衡状态以后,实际价格和实际产量会围绕均衡水平上下波动,但波动的幅度越来越小,最后会恢复到原来的均衡点。相应的蛛网称为“收敛型蛛网”。
(2)发散性蛛网。
第二种情况:相对于价格轴,需求曲线斜率的绝对值小于供给曲线斜率的绝对值。当市场受到外力干扰偏离原有的均衡状态以后,实际价格和实际产量会围绕均衡水平上下波动,但波动的幅度越来越大,最后会偏离原来的均衡点,相应的蛛网称为“发散型蛛网”。
(3)封闭型蛛网。
第三种情况:相对于价格轴,当需求曲线斜率的绝对值等于供给曲线斜率的绝对值时,市场受到外力干扰偏离原有的均衡状态以后,实际价格和实际产量会按照同一幅度围绕均衡水平上下波动,既不偏离,也不趋向均衡点,相应的蛛网称为“封闭型蛛网”。
三、总结。
(2)发散型蛛网的条件:供给弹性需求弹性,或,供给曲线斜率需求曲线斜率。
(3)稳定型蛛网的条件:供给弹性=需求弹性,或,供给曲线斜率=需求曲线斜率。
主要研究方法:文献法研究、模拟法、数学建模法。
研究进度计划:
2、20xx月11月----12月:撰写开题报告并进行答辩;。
3、20xx年12月----20xx年01月:完成论文初稿;。
4、20xx年01月----02月:完成论文第二稿;。
5、20xx年02月----03月:完成论文第三稿;。
6、20xx年03月----04月:完成论文第四稿;。
7、20xx年04月----05月:论文定稿,准备论文答辩。
主要参考资料:
数学毕业论文(通用15篇)篇二
摘要:结合数学学科的特点教师对学生进行道德教育,数学教师要善于在学科中渗透德育教育,培养学生尊重事实的科学态度,正确的学习目的,理性思考的精神和科学的态度,培养学生辩证唯物主义世界观,增强学生喜爱数学的兴趣,培养学生高尚的人格特征和思想道德修养。
关键词:数学学科;渗透;德育教育。
我国教育部印发《中等职业学校德育大纲》指出,学校要充分发挥主导作用,与家庭、社会密切配合,拓宽德育途径,实现全员、全程、全方位育人。上至教育部下至学校都越来越意识到在学生中进行德育教育的重要性,那么在学校怎么能更好地开展德育教育呢?学科德育就是进行德育教育的重要阵地之一。现今各个国家都把德育教育作为一项非常重要的工作,并且都在积极探讨在学科教学中如何渗透德育教育。因此,我们职业学校的每个教师都应该努力探索德育教育的本质和特点,充分发挥德育的主渠道作用。数学学科作为学校学科教育的重要组成部分,有其独特的风格和特点,也应承担着德育教育的任务。第一,数学是一门研究客观物质世界的数量关系及空间形式科学,具有严密的符号体系、独特的公式结构和图像语言,其显著的特点有:高度的抽象性、严密的逻辑性、应用的广泛性和内涵的辩证性。第二,数学学科学习的目的是掌握一定的数学基础知识,形成一定的数学素养,是对学生一生受用的方法和能力。这些数学能力包括:空间想象能力、逻辑思维能力、基础运算能力和数学建模能力等。第三,数学课作为职业学校文化基础课之一,所用资源少,易开展教学活动。结合数学学科的特点,笔者认为可以从以下几点进行德育教育。
1根据中职学校数学学科的特点和数学课的现状,教师的人格。
品行和良好的师生关系是进行德育教育的关键数学学科的特点给人的感觉是枯燥、无味,对于职业学校的学生更是如此。德育要讲究艺术性,要充分发挥情感的感染作用。作为一名数学教师在数学课上每位教师尊重和顺应人性、同学的个性,保护同学的尊严,发掘和表扬学生的内在情感,调动他们积极的心理因素。教师动之以情,才能激发学子之情,使之乐其所学。学生感受到教师对他们的关心,从心底上认可这个教师,从而真正建立起新型的科学的师生关系。
2结合数学教材内容,向学生进行爱祖国和爱科学的教育。
在用到正负数及运算法则时,教师给学生说明或是让学生自己上网查找相关内容,可以知道在世界闻名的数学典籍《九章算术》中,就已经提出了相关概念,使得代数学早于西方于公元前就已经产生了;著名的勾股定理、“杨辉三角”、圆周率的计算以及著名数学家陈景润的“陈氏定理”、华罗庚发起和推广的优选法等,我国科学的成就令世界各地的每个炎黄子孙自豪,可以激发起学生强烈的爱科学、爱国情和民族自豪感,同时激励学生学习的进取向上精神。
3培养正确的学习动机和目的,提高学生学习数学兴趣,增强社会责任感。
我们学习数学的最终目的是能用数学,因而不管是教师还是学生都应该知道数学在我们生活中或是我们所学专业课上的应用。例如我们在学习圆柱时,就可以和汽车专业所学的发动机上的气缸联系起来讲解表面积和体积相关知识;我们在学习分段函数时,就可以和与我们生活相关的水费、电费、出租车收费联系起来等。
4结合数学学科的特点,培养学生理智的思考、按客观规律办事的良好的人格特征。
数学是一门自然科学,科学的问题来不得半点虚假,数学语言的精确性使得数学中的结论不会模棱两可。伽利略:世界的奥秘是本巨大的书,而这本书是用数学语言写成的。越来越多的人认为数学语言是各种科学的通用语言,可见数学语言的精确性。在数学的观点下,一加一只能等于2不可能是其他结果,但在其他的学科就不一定了。不管是数学语言还是通过数学推理得到的结果都不允许有任何弄虚作假的行为存在。我们在日常教学中,应该结合数学的思考方式与学习方法,培养学生事实求是,有根有据,勇于改正错误的科学态度和自觉按客观规律办事习惯。
5结合数学学科的特点,对学生进行辩证唯物主义世界观的教育。
数学本身的发生和发展过程中就充满着唯物辩证法。恩格斯曾把数学作为“辩证的辅助工具和表现方式”。数学从实践中发现了问题,然后分析已知存在的问题,找出它们间的关系,利用数学知识,出来的规律,然后回到实践中检验和运用,这正是体现了辩证唯物主义中从感性―理性―实践的认识论观点。
6挖掘数学教材中的美育素材,通过美学教育,培养学生高尚情操和思想道德修养。
我国著名数学家华罗庚说:“数学本身也有无穷的美妙。”数学中的符号、图形、数字排列等都蕴藏着丰富的美育因素。可以告诉学生,圆就代表我们的班集体或者是我们的国家,每个同学就像圆上一个个离散的点,集体的形象与荣誉与我们每个人都是息息相关的。在学习集合的交、并、补的运算时,除了说明符号的简洁、和谐美的同时也可灌输团体意识。在学习直角坐标系时,就可以给学生灌输我们做人也应该方方正正坚持自己的原则。学习点的时候,每个点都是由一对有序的实数组成的,可以把坐标看成是在社会中影响我们自身发展的先天因素和后天因素,而后天因素主要决定了我们未来的发展,从而鼓励每个学生从现在开始努力学习、认真做人、锻炼各种能力,一定会有美好的将来。在教学过程中引导学生发现美、欣赏美、讨论美,逐步培养学生的审美意识审美情趣,培养学生高尚情操和思想道德修养,有助于学生全面发展。
综上所述,结合数学学科的特点对学生进行德育教育是可行的。在数学学科教学中,虽然不能像语文、政治那样直接、系统地对学生进行德育教育,但只要我们善于挖掘教材中的德育因素,在教学过程中实事求是,联系实际,善于引导,就能行之有效地进行德育渗透,使学生学习知识的同时各方面的素质不断提高。
参考文献:
[1]中等数学教学中的德育新论,网络.
[2]高等数学教学中的德育渗透[j].吉林省经济管理干部学院学报.
数学毕业论文(通用15篇)篇三
文章摘要:在农村的中学初中生源普遍较差,数学学习成绩落后的学生比例较大。从本人实习期间和前期的观察感到,后进生学习成绩的转化,是提高整体教学水平的一大困难。更是学校和老师义不容辞的责任和挑战,如何去转化他们,引导其迷途知返,从差转优,在重视提高教育质量、推行素质教育的今天,是我们工作的重点,也是一个永久的课题和难题。
关键词:数学教学、农村中学、基础差、转化、后进生。
一、前言。
在推进素质教育的今天,教师必须转变教育观念,把教育教学提高到培养学生的身体素质、培养学生的心理素质和文化素质、培养学生的社会素质上来,农村的中学生数学具有基础差、知识面不广、反应能力较低、上课好动性等特点。
二、初中数学后进生形成的原因。
初中数学后进生的成因是多方面的,有家庭的、有社会的、有智力方面的,也有非智力方面的、有先天的、也有后天的,但大部分差生都是后天形成的。
三、初中数学后进生的形成主要表现在以下几个方面:
1、基本概念、定理模糊不清:不能用数学语言表述概念、公式、定理,不看课。
本,不能说出概念,概念与概念之间联系不起来。例如:轴对称与轴对称图形,他们分不清哪个概念是探讨两个图形之间的位置、形状关系,哪个图形是探讨图形本身的特殊形状;同时他们也不懂图形的对称方式。
2、学生自学能力差:许多的学生都没有课前预习的习惯,当一堂课讲完下来,很多的学生都还在阅读课文内容,根本无法知道这节课所应掌握的重点和难点,造成对于每一个知识点都是一知半解。
3、课堂缺少解题的积极性:课堂上对教师提出的问题漠不关心,不懂装懂。解题过程没有步骤,或只知其然而不知其所以然。他们缺乏积极思考的动力,不肯动脑筋,总是漫不经心,避而不答。
4、教师布置的练习、作业,不复习,不愿弄清所学的内容,马虎应付,遇难不。
究,抄袭了事,不能说明解题的依据,不能说出这些作业是哪些知识点的运用,不想寻根问底。解题时不遵循一定的步骤,解题过程没有逻辑性。不能正确灵活地运用定理、公式,或死搬硬套,不能正确对待自己的作业或试卷。
5、不重视考试,缺乏竞争意识。抱着我反正不会做,可有可无的态度参加考试不愿认真复习、马虎应付,考场上“临时发挥”。
总之,在他们的身上缺乏独立性,自信心、目标性,久而久之,先是厌恶这门课和所教学的老师,而后放弃,为了要应付考试,只得硬着头皮去学,死记硬背,或干脆放弃不学,考试时直接抄袭他人试卷。
四、解决数学后进生的转化措施。
1、使学生树立正确的学习观。
农村中学的学生,从小生活在农村,见识少、所学知识均为书本知识,对于生活中常见的一些现象等一无所知,因此,他们认为所学知识对自己的将来没有什么作用。另外,家长多数都是文盲,不懂得知识的重要性,也不懂怎样教育儿女,甚至还有家长教给儿女的是“学那么多干什么,会写字就行了”,针对这一系列阻碍学生学习的客观条件,教师有责任、有义务帮学生树立正确的学习观。
在这一点上,教师应多与学生进行交流,了解他们的内心世界,告诉他们知识的重要性,也可以带他们去做一些有利于学习的活动。给他们讲和他们生活有关的应用问题,或是农村中知识的应用问题。让学生发现知识存在于社会,存在于生活,和我们的生产、生活等密切相关,并不是自己和家长所想的一无是处。从而使学生产生求知欲,把“要我学”改变为“我要学”的正确学习观。
2、激发学生学习的兴趣。
爱因斯坦说:
点很重要,若是教师对他们不闻不问,或是经常批评他们,打击他们,这会使他们对老师抱有很大的成见,很怕这位老师,也正是这样,学生就没有上这位老师的课的好心态。久而久之,学习兴趣全无,成绩大幅度下降。
(2)、前苏联著名教育家斯维特洛天认为:“教育家最主要的,也是第一位的助手是幽默。”教师在教学过程中应该多运用幽默话语,不要为了教学而去教学,那样反而会使学生产生厌烦情绪,更不利于教学的实施;所以,在教学过程中教师要与学生融为一体,采用幽默教学的方式,既使学生收获知识,又使学生通过老师而爱上这门学科,增加了教学的成效。
(3)、赞可夫曾说过“对所学知识内容的兴趣,可能成为学生学习的动机”,利用中学生心理特点“好奇”,激发他们的学习兴趣。中学生正处在对任何事物都倍感好奇的年龄阶段,教师可抓住这一心理特征,大胆创设能让他们好奇的实际问题。
(4)民族进步的关键在于提升技术创新能力和管理创新能力。
我们通常所说的知识,要么是commonlyacceptedrules,要么是对世界的一种认知方式,要么是解决问题的方法。而数学学科,是generalrule最少(只有公理化体系的要求),解决问题方式最灵活多变的学科。
我国数学教育的主要问题在于:
2过分强调general的理论,忽视了对具体数学模型的讨论。而数学中最实用,也最难的地方,还是探讨每个具体数学模型的性质。解决这种问题没有general的'方法,需要相当强的创造力。
虽然数学在形式上是generalrules+deductiontoobtainspecificresults,但是真正解决数学问题的关键,是bringinnewelements,例如辅助线,辅助函数,等等。
2积累并不适当的“经验教训”,很多经验本来没有普遍性,但我们认为它们有普遍性,导致形成思维定势,滥用“经验教训”。
基于以上的分析,我认为,通过数学学习提升思维水平的具体方法是:
1教师应该先提出问题,让学生思考,学生在思考中可能不得其解,那么教师再引入解决这个问题所需的概念和方法,重点强调解决问题过程中的创新点;2对于学有余力的同学,鼓励其独立解决困难问题,解决没有现成方法的非常具体的问题。
我认为改造社会必须通过教育手段走渐进式的改良道路。孩子们继承现有文明中的光明面,摒弃阴暗面。
社会需要英语的听说读写能力,那么教育就应该培养这个能力;(如果说过去是英语人才不够被迫死背单词,现在已经有了条件)。
社会需要创造力,那么就应该通过数学教育培养这个能力;。
社会需要动手操作能力,那么化学课生物课就应该做实验以提高这个能力;(如果说过去是没有钱做不了实验,现在已经有了条件)。
等等。
社会目光短浅,那么孩子们不目光短浅,有远大的人生目标,就可以少走弯路;。
社会急功近利,那么孩子们不急功近利,就可以循序渐进逐步提高能力;。
社会虚荣嫉妒,那么孩子们不虚荣嫉妒,就可以多交一些有能力的朋友以为外力;等等。
在教育机构内部建立一个“乌托邦”,在这个“乌托邦”里面只保留社会的光明面,摒弃全部阴暗面;同时让孩子们略微了解阴暗面的存在性,能够见之不惊。聪明、善良、敬业、积极主动向前看、勇于探索和创新的孩子越多,这个社会也自然会缓慢却又坚定的的向美好的方向前进。
中华民族的有识之士为了拉动这个民族进步而做出的努力,特别是海归派在更多的发现问题之后为挽救民族危亡的理论探索和实践努力,日后必将通过一代又一代综合素质的提高而结出成果。这缕民族复兴的曙光虽然不可能在二三十年之后上升为太阳,但在二三百年后成为太阳,则绝非空想。
言及本年度开始,“数学教育”将归类于一级学科“数学”下面的二级学科。我感受到,在方老师眼里,这是“数学教育”发展的一个里程碑式的事件。我的同事李克正老师参与了其事,他曾促成首师大数学系,去年成为中国第一家授予数学教育博士的数学系(我不知记错否),今年学科建设展开到全国,应该是有好几位数学院士参加了这个申请过程。
可能对于非数学教育方面的人士,会非常讶异,哦,今年才开始啊,那以前呢。
文章中谈到的学科分类问题,确实很重要,几个小小的字词位置,如方运加老师的观点,确实就能影响到一个学科的发展前途。
记得以前读过一位博主的文章,言及自己所从事的新兴学科建立分类的事项,和他自己因此而生的反思。搜索了一阵,没找到,记得大意是,学科分类应该宽口径,否则将会大大影响科学的发展。
在我观点,数学教育,属于交叉科学,对于交叉科学,如何分类,感觉是一个问题。现有的插入式,不管是把“数学教育”插入到数学中,还是以前那种,将“数学教育”插入到教育类中,似乎都有缺陷。
那么能否在现有的科学分类中,分成两大体系,将交叉科学单另提出,原有的更偏于基础科学,仍然使用“根谱”结构(或曰分层结构),对于交叉科学,则使用矩阵结构,比如数学教育,可站在多个交叉线上,数学、教育学、心理学、计算机仿真科学,研究者必须在某条线上站稳脚跟,同时兼及其他。
学科问题,确实是当今大学发展的一个世界性问题,记得复旦大学校长杨玉良的演讲中有此重点。
《杨玉良:关于学科和学科建设有关问题的认识》搜索即可得。
附言:其实,不管“数学教育”归于数学还是教育,前途都不乐观。让我们看一下现实,在持续多年的“妖魔化奥数”的过程中,中国数学会或中国教育学会,都未能站出来说话,既不能拿出数据,又不能拿出策略,抵消掉奥数培训中的商业化色彩。
倒是我的数论同事,两届奥数金牌得主王崧,在访问时站出来说了句话,很简单,那些真正拿奥数金牌的,其实反而未接受过奥数商业化培训。中国数学会实在应该拿出数据,按王崧的线索摸一摸。
这么不作为的数学界,将“数学教育”归于他们,又有何用。
另一个现实是,在北京搞奥数很有名气的“学而思”,已经开始申请在美国上市了,大概是1亿多美元,美国市场很是看好它。
3、注意培养学生学习数学的方法。
这一内容不懂,就在这一地方打上自己的记号,以便于在上课时,认真听教师讲,从而真正理解这一内容。
(2)、教会学生听课。听课是教学中最为重要的一个环节,多数学生在“听”时不懂方法,学习效果也就不明显。怎样听好课呢?首先,在听课过程中必须专心,不要“身在教室心在外”。第二,抓重点,做笔记。
在上课时,教师都会强调某些问题(或多次提到的问题)即为本节重点,学生在听时,只是暂时的记住和理解,因此,要将知识点记下来,以便于复习巩固。第三,预习中打记号的知识点,应“认真听,多提问”,保证做到听懂自己打记号的知识点。第四,积极回答教师上课的提问,做到先思考后回答,不要不经思考乱回答。第五,认真完成课堂练习,将所学知识当堂巩固,发现自己在这一节中不足之处,多想多问。
4、了解学生实际,创设适合他们的实际背景。
板的套用课本,应了解学生的实际情况,针对学生的实际情况来创设教学背景。
5、立足基础降低起点帮助提高。
由于农村学生基础较差,缺乏良好的学习习惯和正确的数学学习方法,仅仅是简单的模仿、识记;上课时,学习思维迟延,跟不上教师的思路,造成不再思维,不再学习的倾向;平时学习中对基础知识掌握欠佳(定理、定义、公式等),从而导致在解题时,缺乏条理和依据;心理压力较大,不敢去请教,怕被人认为“笨”,日积月累,造成对学习数学存在一定的困难性,更谈不上对知识的运用。
因此要想打破这个局面,教学的起点必须低,以所教学内容的最基本、最本质的东西作为教学的重点。从学生已学过所掌握、所了解的知识、例子作为起点,以所教的新内容的基本作为教学的重点,通过新旧知识的对比进行教学。创造条件使学习困难的学生学习和掌握大纲教材所要求的数学知识,使他们感到自己是学好了数学,帮助学生树立起学习数学的自信心,培养、发展学生的学习能力。
6、降低要求,减轻作业负担。
对于数学作业,应以课本为主,不搞偏题、怪题,不搞题海战术。题量要适中,可以结合学生能力,分层次地布置作业。注意引导学生发现解题规律,数学题目千变万化,但其规律和类型都是有限的。所以要培养学生寻找规律的能力,而不是一味地实行“多做”。
古人云:“不积跬步无以至千里,不积小河无以成大江”。学习也是一样的,差生之所以学习不好就是没有脚踏实地,一步一个脚印地学。他们这边失一点数学概念,那边丢一个定理、公式,从而越来越跟不上,越来越厌烦学习,也就越来越差。但只要我们教师在实际教学中认真、细心地引导培养,那么我们的汗水定会得到回报的。
参考文献:
【1】赵振威:《中学数学教材教法》修订本第三分册华东师范大学出版社。
【2】朱慕菊:《走进新课程》北京师范大学出版社6月第1版。
3邓小荣。高中数学的体验教学法〔j〕。广西师范学院学报,(8)。
4黄红。浅谈高中数学概念的教学方法〔j〕。广西右江民族师专学报,2003(6)5胡中双。浅谈高中数学教学中创造性思维能力的培养〔j〕。湖南教育学院学报,(7)。
6竺仕芳。激发兴趣,走出误区———综合高中数学教学探索〔j〕。宁波教育学院学报,2003(4)。
7杨培谊,于鸿。高中数学解题方法与技巧〔m〕。北京:北京学院出版社,1993。
9、《教育中的计算机》全国中小学计算机教育研究中心(北京部)。
10、林建详编:《cai的理论与实践——迎接21世纪的挑战》全国cbe学会第六次学术会议论文集1993北京北京大学出版社。
数学毕业论文(通用15篇)篇四
1.封面:
论文题目是文章总体内容的体现,应简洁明确、有概括性,字数不宜超过20个字,可分为两行。且论文选题应大小适中,并与所学专业相符。
2.摘要(中文在前,英文在后)及关键词。
关键词一般为3—5个。
3.目录一般按二级标题编写,要求层次清晰,且要与正文标题一致。
4.论文正文序号:
第一级:一、二、三、……;第二级:(一)(二)(三)……;。
第三级:l.2.3.……;第四级:(l)(2)(3)……;。
第五级:1)2)3)……。
常用格式如下:
1.专著、论文集、研究报告:[序号]主要责任者(注:两个责任者之间用逗号隔开).文献题名[文献类型标识].出版地:出版者,出版年.起止页码.
举例:
[1]刘小龙.电视艺术美学[m].北京:中国广播电视出版社,.22.37.
[3]吴海霞,沈剑平.电视论坛[c].北京:人民教育出版社,.(2):56.
[4]中国教育与人力资源问题报告课题组.从人口大国迈向人力资源强国[r].北京:高等教育出版社,2003.
2.学位论文:[序号]主要责任者.文献题名[d].保管地:保管单位,完成年.起止页码.
举例:
[1]邓友.论电视艺术的美学性[d].北京:北京广播学院,.
3.析出文献:[序号]析出文献主要责任者(注:两个责任者之间用逗号隔开).析出文献题名[a].原文献主要责任者.原文献题名[c].出版地:出版者,出版年.析出文献起止页码(如文内已列明,则省略).
举例:
[1][英]穆尔.电影理论的结构[a].瞿涛.电影学文集[c].北京:人民出版社,1993.34.
4.期刊文章:[序号]主要责任者.文献题名[j].刊名,出版年,卷(期).
举例:
[9]李海.音乐传播的文化思考[j].当代传播,2004,(10):26.
5.报纸文章:[序号]主要责任者.文献题名[n].报纸名,出版日期(版次).
举例:
[1]周济.情系教育办好教育[n].中国教育报,2004-1-29(1).
6.网络文献:[序号]主要责任者.网络文献题名[文献类型标识].网络文献的出处或可获得地址.
举例:
[1]吴霓·育科学大家谈[j/ol].
[14]方锦柔.中国人民大学学报论文文摘(1983—1993).英文版(db/cd).北京:中国百科全书出版社,.
7.外文期刊文献编排格式及示例。
[10]amit,gicassetsandorganizationalrent[j].strategicmanagementjournal,,(2):16~18.
8.外文专著文献编排格式及示例。
[3]andrews,k.r..theconceptofcorporatestrategy[m].il:irwin,1971.22.
9.各种未定类型文献:[序号]主要责任者.文献题名[z].出版地:出版者,出版年.
举例:
[1]何东昌.中华人民共和国重要教育文献(1991-)[z].海口:海南出版社,.
5.参考文献常见的文献类型标识表:
专著。
期刊。
报纸文章。
论文集。
报告。
网络期刊。
网络电子公告。
未定类型。
m
j
n
c
d
r
db/ol。
j/ol。
eb/ol。
z
[1][荷兰]弗兰斯.f.范富格特主编.国际高等教育政策比较研究.王承续译.浙江教育出版社,.
[2]温铁军.分三个层次解决农村留守儿童问题[j].河南教育,,(5).
[3]石中英.基于知识论的职业教育实践课程观[m].北京:教育科学出版社,2001.
[4]andrews,k.r..theconceptofcorporatestrategy[m].il:irwin,1971.
[5]吴霓·育科学大家谈[j/ol]./zt/jykx/.
正确的参考文献格式如下:
专著、论文集:主要责任者(注:两个责任者之间用逗号隔开).文献题名[文献类型标识].出版地:出版者,出版年.
如:刘小龙.电视艺术美学[m].北京:中国广播电视出版社,1999.
期刊文章:主要责任者.文献题名[j].刊名,出版年,卷(期).
如:李海.音乐传播的文化思考[j].当代传播,2004,(10).
报纸文章:报纸文章:主要责任者.文献题名[n].报纸名,出版日期(版次).
如:周济.情系教育办好教育[n].中国教育报,2004-1-29(1).
网络文献:主要责任者.网络文献题名[文献类型标识].网络文献的出处或可获得地址.
如:吴霓·育科学大家谈[j/ol].
毕业论文的几个写作技巧【2】。
1.毕业论文材料的收集整理方法与技巧。
1.1广泛地搜集、阅读。
论文提出的问题要集中,材料的收集却要尽可能地广泛。
一般说来,至少要做好以下三方面的知识、材料准备。
1)能够反映研究对象本身各种具体特征的专题材料。
充分熟悉对象,是正确认识对象的必不可少的前提。
除了直接了解对象本身的各种具体特征(通过有关作家的全部作品,有关问题的各种知识,……),还要把握一切能够影响研究对象的生成和发展变化的社会、历史条件或精神、物质因素。
只有尽可能全面地掌握这些材料。
进行研究时才能充分体现马克思主义的“活的灵魂”———对于具体情况作具体分析。
2)作为明确方向和思想指导的理论准备。
所谓科学研究,就是通过正确、严密的分析、概括和抽象工作,从具体的事物和现象中找出本质性和规律性的东西来。
这项工作,本身就要有正确的理论(专业理论和作为世界观和方法论起作用的哲学思想)所指导。
科学实践和发展的历史还告诉我们,进行一项研究工作,不仅需求充分的专业理论、知识,最好还能力求广泛通晓其它有关学科的理论和知识。
通过不同学科的理论和方法的相互渗透,相互启发(例如,用系统的方法分析艺术形象的美学特征和社会功能;把模糊数学的方法引入修辞学研究中去),往往可以更好地带来新的发现;新的突破。
3)别人对于这一问题已经发表过的意见。
这方面的材料要尽量搜集。
别人已经解决的问题,自然不必再花力气去作重复劳动;充分吸收别人已有的经验,或是了解别人所遇疑难的焦点所在,对不同观点仔细进行比较研究,既可以少走弯路,也便于发现问题,就象兵法上所说的那样,只有“知己知彼”,才能“百战不殆”。
1.2认真地整理、辨析。
要使材料发挥作用,还需运用科学的观点和方法,下一番辨析、整理的工夫,去粗取精,去伪存真,使材料系统化,条理化,真能有助于分析、解决问题。
整理材料的形式大致有以下几种:
1)制成文献、资料的目录索引。
可以利用有关的现成材料(图书馆、资料室的目录卡片和报刊索引等),根据自己的选题加以编写。
2)剪报、札记、文摘卡。
这一类资料的搜集整理工作,必须力求眉目清楚。
一要详细注明每则资料的`作者、篇名、出处、发表日期,二要有细致合理的分类。
3)大事记、年谱或著译年表。
通过这一类材料的编写,可以加强对于研究对象的总体印象,有助于在胸有全局的基础上深化对于某一专题、某一侧面的研究。
2毕业论文内容写作的方法与技巧。
2.1论文的结构。
论文的结构,并没有一成不变的模式,从一般的情况来看,大体上可以分作“引言”“正文”和“结论”三个部分。
数学毕业论文(通用15篇)篇五
当代教育和新课程改革,引发了全社会对教师角色期望的大幅度提升,这使得人们密切关注着我国师范生素质的现状及存在的问题。笔者于今年3月分别以白城师范学院数学系loo名实习学生和50名现任中学数学教师的毕业生作为样本,进行了教师素质现状的调查,结果发现问题如下:
1、敬业精神不强。
很多人没有把教师当作一种促进社会与个体和谐发展的神圣职业,而是把教师职业当作一种谋生手段。主要表现在:
(1)敬业和奉献精神不强,如对“是因为热爱教育事业而选择教师职业”的人仅占19%。
(2)对教师的地位与作用认识不明确,如对“教师地位很高”这一问题回答持否定态度和模糊态度的分别占42.9%和42.7%。
(3)专业思想不牢固,如对“有其他机会,是否改行”问题,持肯定的人占30%。
(4)教学思想不端正,只注重学习好的学生的教师占现任教师的50.3%。这反映了我国教师教育在学生培养过程中过度强调知识而忽视人格塑造的状况,即重智育轻德育。
2、知识结构不合理。
大量的师范生在知识结构上存在严重的不合理现象,主要表现在:
(1)学科课程过深、过多、过专。
(2)基础学科方面的知识过窄、过旧,缺乏人文科学基础,也就是重专业轻基础、重科学轻人文,如对“科技文化基础知识基本能适应中学教学”这个问题39.3%的人表示“模糊”。
(3)重学科课程而轻教育理论课程。教师普遍缺乏现代教育理念,很多人对教育的本质和价值“不理解”或“模糊,”,有45%的人对我国的教育目的表示“模糊”,有38.3%的人不懂教育的历史.这说明了教师的教育基础理论知识缺乏,既反映了师范院校教育专业训练薄弱,教育课不受重视的程度,也反映了教师对教育理论的学习和教育实践的研究不够重视等倾向。
3、教育实践能力差。
从调查结果发现,师范生实践能力普遍比较低下。38%的教师不经常与学生谈话和与学生接触,70%以上的人不大使用信息交流技术。对毕业生跟踪调查显示,他们刚参加工作时,教学工作能力和研究操作能力均差,如班主任工作、现代化教学手段应用和教育科研合格率均低于60%。产生这些问题的原因是我国的高师教育在课程上侧重理论知识传授,缺乏对学生教育实践能力的培养,脱离基础教育实际需要。
4、创新意识不强,科研能力较差。
由于我国高师教育长期忽视师范学生的科研能力培养,没有让他们接受特定的创造性思维训练,致使他们在教育、教学活动中创新意识薄弱,科研能力缺乏。调查表明,师范毕业生由于缺乏创造能力和个性,照本宜科现象普遍存在,在教育教学上引发了一系列令人担忧的问题:教育教学思想观念陈旧,害怕变革,用统一的“模型化”目标要求学生,局限于单一模式,排斥多元化教学模式,否定学生的独立性与批判性,实行满堂灌教学,让学生处于被动地位,以分数作为评价的唯一标准,忽视对学生综合素质的评价等。
进入21世纪以后,不少国家在进行教育和课程改革时,都不约而同地把提高教师素质和能力作为突破口,因为未来学校的发展和教育质量、人才质量的提高,在很大程度上取决于教师的素质和能力。随着社会的发展,我国的数学教师正处在从非专业化向专业化的历史性转变之中,这必然要求数学教师建构起新的优化的素质结构。
那么,在新课程下,作为未来数学教师的高师数学系学生应该具备什么样的素质呢?
1.应具有过硬的思想政治素质和职业道德素质。
数学教师要有过硬的思想政治素质和高尚的职业道德。教书育人是教师的天职,教师的师德言行、敬业精神,必将潜移默化地影响到学生。数学是一门抽象而又枯燥的学科,数学教师要耐得住寂寞,有无私奉献的精神。当一个教师把自己的生命和激情倾注到其职业中时,便会在其举手投足、一颦一蹙之间充满深厚真诚的“师爱”。这样的教师就会让学生对其产生超乎寻常的向心力和信赖感,就会让学生在其灵魂深处生发一种高度自觉的内驱力和自策力,就会赢得学生的心理认同和由衷敬佩。
2.应具备精湛的专业素质。
笔者认为,教师至少应当具备三方面的专业素质:专业知识、专业技能、专业情意。在新课程改革中,无论教师的角色如何变换,数学教师的专业素质都应摆在突出的位置。数学是一门逻辑性很强、专业性突出的学科,数学教师需要具有深厚的专业知识和广博的知识背景,同时更要具备数学能力。瑞典心理学家韦尔德林将数学能力定义为符号、方法、证明的本质,并在记忆中保持和再现它们,把它们与其它问题;符号、方法和证明联系起来以及运用它们解决数学(和类似的)课题的能力。由此可见,数学教师需要空间的、计算和数的、归纳演绎和推理的专业能力。同时,在新课程改革中,由于课堂教学变得更加开放、自由,教学过程充满了变数或不确定性,为此教师必须具有驾驭动态的课堂教学的能力和智慧,具有深厚的专业知识以及创新精神和实践能力,具有师生共同发展的和谐能力。只有这样,才能使课堂真正成为“适合学生学”而不是“适合教师教”的场所。
3.应成为学习者、研究者和反思实践者。
在“知识爆炸”的时代背景下,知识随时间呈几何级数增长的现象,已经使得百科全书式的教师成为历史;而信息时代的到来,则摧毁了“教师是知识垄断者”的基石。这样,教师作为一种职业得以维持的基础,就从“已有的知识经验”转化成了“持续的学习”。普通高中数学课程标准(实验)中,有“信息安全与密码”、“球面上几何”、“欧拉公式与闭曲面分类”、“统筹法与图论初步”、“风险与决策”、“开关电路与布尔代数”、“数学建模”等新内容,新课程这些改革的内容要求数学教师必须是一个学习者。同时数学教师也应该是研究者。这是因为在新课程观下,数学教师要在实践中研究学生的学习特点,在沟通中研究学生的思考模式;要研究当代数学潮流,研究新的数学课题;要研究如何使由执行课程计划和依据教学大纲(新课程改革中称“课程标准”)讲授教材的被动执行者转变为主动参与的课程研制者。数学教师更应是反思实践者,因为这里的“反思”不仅仅是一般地回想教学情况,而是深究处于课程处置、教学决策和技术以及伦理等层面的教学主体、教学目的、教学工具等方面存在的问题。要在新课程改革的实践中进行自我反思,从教学前、教学中、教学后等环节获得体验,以便为新课程改革提供有益的经验。
4.应具有创新精神与合作精神。
教育创新是社会和时代的要求。新课程观强调数学教师应具有创新精神和合作精神至少有以下理由:
一是基础教育新课程改革培养目标的要求。基础教育新课程改革的培养目标明确规定:“课程的培养目标应体现时代要求。要使学生具有初步的创新精神、实践能力、科学和人文素养以及环境意识。”数学教师应多方面、多角度、多起点、多原则、多结果地去思考问题,保护和引导学生求异思维,努力培养学生的敏锐性。
二是基础教育新课程改革强调数学学科内外综合的结果。基础教育课程改革中一方面强调要改革和建立分科课程,另一方面强调要加强课程内容的综合性,淡化学科界限,加强课程内容与现实生活和学生经验的联系,增进学科之间知识和方法上的联系。数学教师不仅要教好自己的学科,还要主动关心和积极配合其他学科教师的教学,合力育人,这既有利于学生知识的学习,也有利于增强学生数学的应用意识,提高学生的数学应用能力。
三是基础教育改革设立实践与综合运用专题的需要。《数学课程标准》中提到的“学习内容应当是现实的、有意义的、富有挑战性的,这些内容有利于学生主动地进行观察、试验、猜测、严整、推理与交流等数学活动”等;不仅要使学生获得数学知识,更重要的是要使学生认识到数学原来就来自我们身边的现实世界,是认识和解决我们生活和工作中问题的有力武器;这些数学活动,同时也会使学生获得进行数学探究的切身体验和能力。
国运兴衰在于教育,教育成败在于教师。高师数学系学生必须不断学习,与时俱进,严格要求自己,提高自身素质,以不负时代所赋予的使命。
数学毕业论文(通用15篇)篇六
大学数学课程是高等院校各专业培养计划中重要的公共基础理论课,其目的在于培养高校学生所必备的数学素质,为培养我国现代化建设需要的高素质人才服务。在高等院校中,大学数学的学习,不仅使学生的知识结构扩充,更重要的是对培养学生的创造性思维能力、抽象概括能力、逻辑推理能力、自学能力、分析问题和解决问题能力、对开阔学生思路,提高学生综合素质等都有很大帮助。因此,大学数学公共课程的教学一直深受重视并且不断提出高要求。
我校大学数学系列课程主要包括《高等数学》、《线性代数》、《概率论与数理统计》和《微积分》等,其核心部分是《高等数学》。作为以应用型人才培养为目标的院校,我校的培养目标是培养具有较强社会适应能力和竞争能力的高素质应用型人才,其数学教学也应该以“适度、够用”为原则,应适当降低理论难度,割舍一些教学内容,重视数学思想与方法的传授。在课程设置上也应该紧密结合各专业需求,优化课程教学内容,注重学生的实践能力培养,力求做到“理论与实践相结合”。
针对我校特点,借鉴国内外应用技术大学的先进经验,我认为我校可以进行分专业模块化教学。模块化教学是以专业能力培养为目标,注重教学内容的实践性和应用性,要求变传统的以知识输入为导向的课程体系为以知识输出为导向的模块体系,各专业在制定模块化人才培养方案、对专业能力进行分解时,把大学数学课程作为专业能力分解的基础模块。根据各专业人才培养目标,按照“以实际应用为目的,以专业需求为导向,以案例教学为主线,以数学软件为工具,以自主学习为特色”的思路,对大学数学系列课程实施模块化教学改革。
针对我校不同专业的人才培养方案的能力结构和知识结构对于大学数学课程的深度和广度的要求,依据“适度、够用”的原则,确定大学数学课程模块化体系的改革的基本原则为:“横向分类,纵向分级”。
横向分类是指:大学数学教学为专业教学服务,要满足专业课程教学内容的需要。首先根据我校实际,按照理工科、文科经管类专业的需求,我们将大学数学分为两大类:工程应用数学、和经管应用数学;然后对于不同的专业,在制定数学模块内容时,根据该专业人才培养能力要素的分解,归纳出该专业课程中所需的数学知识点,并切实地与专业教师进行沟通,对数学知识点进行优化整理,使指定的数学模块涵盖该专业所需的数学知识点。
纵向分级是指:我们根据数学自身的特点和内在联系,将大学数学课程分为若干次级模块,这些模块之间是层层递进的,不同的专业可以根据自身的需要来选择,为专业需求提供了选择和发展的空间。
1、工程应用数学。
适用专业:化工类、机械类、电气类、生物类等。
具体课程设置。
2、经管应用数学。
适用专业:会计类、工商管理类、经济类等。
在具体课程教学实施过程中,比如我们以经管应用数学中《线性代数和线性规划》为例,可以这样做课程设计:
1、理论学习。
能力培养要求:
(1)计算能力:掌握行列式、矩阵代数、线性方程组、线性变换、二次型及线性规划等基本知识及相关基本运算。
(2)逻辑推理能力:能用所学的知识分析推理相关的问题;
(3)初步的数学建模能力:能利用矩阵代数对一些简单实际问题建立数学模型,并求解,在此基础上,进一步分析结果。
具体教学内容:行列式、矩阵、线性方程组、矩阵的特征值、二次型和线性规划。
2、实践教学。
能力培养要求:
(1)能将专业问题转化为数学问题,并给予解决:
(2)学会查阅资料,阅读文献:
(4)学会使用相关的数学软件,如matlab、mathematica。
具体实践内容:
(1)案例分析:矩阵在专业上的应用;
(2)操作应用:安排两次数学实验:投入产出模型、交通调流模型;
(3)模块深化:利用mathematica命令求方阵的特征值和特征向量;
(4)专题研究报告:根据交通调流模型的思想方法,为所熟悉的城镇建立一个区域的交通流量模型,并提供一个具体的解决方案。
3、自主学习。
能力培养要求:
(3)口头表达能力:能用数学的语言简明扼要地汇报学习任务和学习成果;
具体学习任务:
(1)查阅资料,阅读文献,完成关于线性代数历史发展的综述报告一份。
(2)自主地运用所学知识、相关数学软件解决一、二个实际问题。
这三个环节的教学可以加深学生对数学理论的理解,提高学生分析问题和解决问题的能力,加强数学跟专业的交叉与渗透,突出“用数学”能力的培养。从而实现了由知识传授为主向能力培养为主的转变,由教师为主导向以学生为主体的转变,由以授为主向以导为主的转变,学生由被动依赖向研究型学习的转变的“四个转变”。
1、采用讨论法。
改变传统的以教师单一讲授为主的教学方法,采用以学生为主体、教师为主导的讨论法。其优点是通过教师引导学生自学,提出问题,启迪学生积极思维,经过质疑和答疑来解决问题,使学生的主体作用充分发挥,在此基础上还可以结合讲授法,将重点、难点讲清、讲透,从而调动学生学习的积极性给学生提供更多的自由发挥、自主学习的机会。
2、重视实践教学环节。
大学数学课程在实践性教学内容的探索与设计上应具有一定特色,具体做法是在数学建模各个层次的教学过程中,尝试通过一些数学实验启发同学们探索数学现象,发现数学规律。比如,我们可以利用mathematica软件,让学生动手实践计算方阵的特征值和特征向量及求二次型的标准型,加深对所学知识的直观了解,从而提高学生的学习兴趣和积极性。这样的教学设计,可以使学生对课程知识和数学软件的掌握与应用能力大大提高,对培养勇于创新的应用型人才无疑是非常有用的。
3、改革考核方式。
考虑到重需求、重个性的应用型人才培养要求,我们可以果断的将过去的“平时+期末”的考核方式,转变为“n+2”的过程考核方式。具体操作办法是:一是增加模块导论课,明确学习任务。把专业人才培养方案对数学模块的要求细化为具体的知识点,各模块的理论学习、实践学习和自主学习的学习任务,在第一节课就告知学生;二是针对学习内容,在学习过程中设置n次过程考核,过程考核的形式灵活多样,结合每个模块安排的综合性作业和实践作业,制定不同的考核方式。对每一次综合性作业和实践任务,可以要求学生以小组为单位来完成,每次作业要进行汇报、答辩,根据作业提交的质量、汇报答辩的情况,综合给出成绩,作为n中的一项。以经管应用数学模块中《线性代数和线性规划》为例:其考核方案(n=4)是:
(1)线性代数发展史综述报告一份;
(2)案例分析报告一份;
(3)专题研究报告(交通调流模型报告)一份;
(4)实验报告一份(利用mathematica计算方阵的特征值和特征向量);
(5)平时出勤;
(6)期末考试。
通过模块化教学改革,一方面可以使学生在抽象思维能力、逻辑推理能力、空间想象能力、分析解决问题能力、建立基本数学模型能力以及应用数学软件进行数值计算和基本数学实验能力等数学基本能力方面获得提升;另一方面使数学更好地服务于不同的专业,培养和提高学生应用数学知识解决专业问题的能力,将专业问题转化为数学模型的能力,应用数学软件解决与专业相关的数学问题的专业能力,加强学生的动手能力和实际操作能力,在此基础上提高分析问题,独立处理问题,创新解决问题,适应社会快速发展和就业市场不断变化的学习能力和创新能力。
诚然,大学数学课程改革是一个复杂而艰巨的任务,要求我们更进一步深入研究课程目标,与各专业老师通力合作,发挥大家的集体协作精神,各模块具体的内容更还需要细化和精雕细琢,拿出一个完整而具体的方案仍需要我们不断地努力。
数学毕业论文(通用15篇)篇七
摘要:
在数学课堂教学中,实现自主学习,让学生主动参与学习,是素质教育中一项长期而艰辛的任务。只有让作为主体的学生通过自己的双手亲自实践,运用自己的大脑主动地思考,去发现和创新,使学生体会到自己就是学习活动中的发现者、研究者和探索者,才能主动调动起学生学习的主动性和积极性,才能真正发挥学生的主体作用,使他们真正成为学习的主人。
关键词:
小学数学教学;自主学习。
“自主学习”是一种创造性的学习活动。在小学数学教学中,培养学生的自主学习能力,具有很重要的意义和作用。自主学习的重要特征是学生学习的主动性。“主动性”是学生对学习的一种由衷的喜爱,是一种发自内心的自动、自觉的学习行为和良好的学习习惯。由原来的“要我学”转变成“我要学”。学生有了学习兴趣,学习活动对他来说就不是一种负担,而是一种享受、一种愉快的体验,学生会越学越想学、越学越爱学,有兴趣的学习事半功倍。新课标倡导在教学过程中教师要着力培养学生自主学习能力,使学生在学习过程中逐步能够独立获取数学知识、技能。就数学学科而言,数学教师要结合学科特点,通过培养学生的自信心、激发学习兴趣、发挥学生的主体作用等做法,让学生在获取知识的同时,培养他们的自主学习能力。下面,谈谈我在数学教学中培养学生自主学习能力的几点做法。
一、引导激励,培养学生的自信心。
自信是人们做好一切事情的基础。学生没有自信,学习上就不可能真正做到“自主”,“自信”是学生学好数学最基本的心理条件。因此,做教师要尽量鼓励学生,告诉学生“一勤天下无难事”,只要勤奋刻苦地学习,就会有好的效果。学生的自信心是通过教育、影响和学生亲自实践,逐步培养起来的。作为教师应充分重视培养学生的自信心。在教学过程中,教师要做细心人,做学生的知心人,保护他们的童趣、童真,理解他们的情感,使他们树立自信心,体验成功感。看到自己的长处,从而在学习上鼓起发奋图强的信心和毅力。尤其是对于学困生,更要给予特别的关注,教师要及时给予辅导,帮助他们解决做题过程中遇到的困难,使他们一节课下来有所收获,长此以往,他们也就树立起了学好数学的自信心。实践证明:鼓励、信任和期待是激励学生自信心和上进心的有力手段。
二、关注课堂中的核心问题,统领学生开展自主学习。
核心问题就是指起着统领的问题。要与数学知识本质密切相关、能真正使学生产生认知冲突的问题。例如,教学人教课标版三年级上册86页例5。例5:用16张边长是1分米的正方形纸拼长方形和正方形,问题是怎样拼,才能使拼成的图形周长最短?探究环节是我这样安排的':1.阅读理解。提出问题:题中的条件和要解决的问题是什么?关键词语是什么?生:条件是用16张边长是1分米的正方形纸拼长方形和正方形,问题是怎样拼,才能使拼成的图形周长最短?生:关键词语:16张长方形和正方形周长最短。2.分析问题,制定措施。提出问题:思考一下,你打算用什么方式来尝试解决这个问题?生:拼摆、画(板书)。提出核心问题:动手操作是非常好的方式,在动手之前先想一想,如何才能找到周长最短的图形?生:把16张纸所拼成的长方形和正方形全部找出来。可见,教学中的核心问题是来自于研读教材时的那种透过现象看本质;来自于分析学情时的那种认知冲突的把握;来自于能激活、激发创造的情境设计。所以准确把握好核心问题,才能够统领学生自主探究,培养学生自主学习能力。
三、适时启发点拔,引领学生自主探索,让学生体验成功的喜悦。
课堂是学生学习的主要场所,是实施素质教育的主战场。作为课堂教学的指导者,面对千差万别的教育对象,千变万化的教学过程,而应尽可能地鼓励学生去自主探索,并适时予以启发点拨。通过让学生自己独立思考,想办法、找途径。从而达到解决问题的目的。教学中的点拨,一是要“准”,要在学生思维的堵塞处、拐弯处予以指导、疏理;二是要“巧”,在学习有困难学生茫然不知所措时,在“后进生”有强烈求知欲望时,在中等生“跳起来想摘果子”力度不够时,在“优等生”渴求能创造性地发挥其聪明才智时巧以点拨,使其茅塞顿开、豁然开朗。
总之,自始至终教师都要起着一个引路人的作用。尽量让学生自己找到打开知识宝库的金钥匙体验成功的喜悦。在教学中,我总是设法为学生创造机会,让他们自己去发现规律、增长能力、增加信心。例如,在教学“圆的周长和面积”一课时,我安排了一个小小的填表题。学生填完后就会发现,当圆的半径扩大2倍或3倍,则直径、周长也同样扩大相同的倍数而面积扩大22或32倍,接着我再延伸一步即当半径扩大n倍时呢?学生很快说出,当半径扩大n倍,则直径、周长扩大n倍,面积扩大n2倍。通过练习,学生觉得自己竟然也可以发现一些规律,慢慢地他们增长了自信心,学习兴趣得到提高,学习的积极性增强。
在数学课堂教学中,实现自主学习,让学生主动参与学习,是素质教育中一项长期而艰辛的任务。只有让作为主体的学生通过自己的双手亲自实践,运用自己的大脑主动地思考,去发现和创新,使学生体会到自己就是学习活动中的发现者、研究者和探索者,才能主动调动起学生学习的主动性和积极性,才能真正发挥学生的主体作用,使他们真正成为学习的主人。
数学毕业论文(通用15篇)篇八
数学作为理科中最具代表性的学科,是当今社会运转的基础,科学研究的基石。虽然数学专业学生在国内外广泛受到认同与尊敬,但是大部分学生对自己的专业现状和就业前景不了解。本文研究数学专业毕业生适宜从事的职业,并借助spss对这些职业的待遇情况进行了统计和预测。
就业;待遇。
一、金融业。
金融业是指经营金融商品的特殊行业。金融业具有指标性、垄断性、高风险性、效益依赖性和高负债经营性的特点。结合具体数据分析,金融业在平均工资超过了一万元,超过了两万元,在时隔两年之后的便超过了三万元,随后的增长速度更是令人瞩目,达到六万元,达到八万元。
未来中国银行业具有巨大的提升盈利的潜能,这不仅仅是因为国内金融业存在巨大的市场发展空间,还因为国内银行业整体经营的提升潜能较大。这将吸引更多的学生投身金融业,也将创造更多的高新就业岗位。
二、保险业。
保险业是指将通过契约形式集中起来的资金,用以补偿被保险人的经济利益业务的行业。保险市场是买卖保险即双方签订保险合同的场所。它可以是集中的有形市场,也可以是分散的无形市场。结合具体数据分析,保险业平均工资19突破一万元,超过两万元,随后增长速度较为缓慢,直至平均工资为45263元,远低于所统计的其他职业。
保险业作为金融业的一个重要部分,也为国家经济的发展发挥着重要作用。尽管改革开放以来我国保险市场一直处于高速发展阶段,但是,无论与世界其他国家和地区保险业发展的水平相比,还是与我国经济发展和人民生活提高的内在需求相比,我国保险市场的发展仍显滞后,总体上仍处于高速发展过程中的起步阶段,保险市场仍具备高速增长的社会经济条件。
三、计算机服务业。
增长速度极快,且平均工资比所统计的其他职业高出很多。平均工资达三万元,至20,平均工资为85508元。
中国计算机服务业是新技术革命的一支主力,也是推动社会向想带花迈进的活跃因素。计算机科学与技术室第二次世界大战以来发展最快、影响最为深远、影响力最为深远的新兴学科之一。中国计算机服务业已在世界范围内发展成为一种极富生命力的战略产业。
四、教育业。
教育事业是指当人们摆脱进行该活动的无计划、无组织状态,把教育活动从其他的社会活动中分离出来,划分成一个独立的社会部门,并经由专人去进行时,这种活动便成了一种事业,即教育事业。当教育活动成为一种事业以后,便有了完善的组织机构、活动规章、各项制度规则、人员责任等等,从而使其具有组织的严密性,活动的系统性,人员的规范性,评价的制度性,时间的秩序性等等。结合具体数据分析,教育业平均工资在20才超过一万元,其中高等教育业工资稍高,19超过一万元。教育业平均工资超过两万元,至年平均工资为43194元,高等教育业2011年平均工资58178元。
21世纪是一个经济全球化和服务国际化的时代,中国加入世贸组织后教育也作为服务业成为其中重要的组成部分。近年来,教育市场呈现旺盛的增长趋势,成为我国经济领域闪亮的市场热点,成为创业投资最热门的关键词。2011年面对房地产、股票等投资市场的不景气,专家指出,中国的教育市场巨大机会仍然很多,但是教育市场的竞争将更加激烈,行业将进入比拼内功和规模的圈地时代。有关专家表示教育业是未来投资的热点,全国教育市场巨大,市县级城市市场急需开发,新一轮的教育掘金行动即将开启。
五、科学研究业。
一般是指利用科研手段和装备,为了认识客观事物的内在本质和运动规律而进行的调查研究、实验、试制等一系列的活动。为创造发明新产品和新技术提供理论依据。科学研究的基本任务就是探索、认识未知。结合具体数据分析,科学研究业年平均工资超过一万元,20超过两万元,至2011年平均工资为64252元,其中自然科学研究至2011年平均工资为70452元,两者相差不大,平均工资涨速较快。
数学专业属于基础专业,是其他相关专业的“母专业”。无论是进行科研数据分析、软件开发、三维动画制作还是从事金融保险,国际经济与贸易、工商管理、化工制药、通讯工程、建筑设计等,都离不开相关的数学专业知识,所以数学专业学生往往会从事各行各业的工作,这就给数学专业造就了一个较为开阔的就业前景。另一方面,近年来,我国经济持续高速发展,尤其是十八大以来,社会对人才的需求量日益增大,具备完善数学知识、能够解决实际问题的数学专业毕业生日益受到社会、企业的青睐。
数学毕业论文(通用15篇)篇九
摘要:蒙古族的先辈们在生活中有意或无意地应用着数学知识,让数学知识为他们生活服务.数学知识与蒙古族文化生活息息相关,数学知识锻炼着民族思维,民族思维丰富着数学知识.
关键词:数学文化蒙古族文化民族思维。
一、蒙古族文化中的数。
蒙古族是有悠久历史和灿烂文化的勇敢、勤劳、智慧的民族.蒙古族的先辈们在生活中有意或无意地应用着数学知识,让数学知识为他们的生活服务.蒙古族自古对数字有自己的理解和喜好.他们一般比较喜欢奇数,如1、3、5、7、9、13等认为这种数有领先、冒尖之意,是吉利的数字.“3”是蒙古族生活中广泛使用的一个数,如见面问候时要三问“牲畜可好?身体安康?四季可好?”,又如,蒙古族祭奠的“敖包”有1、3、7、13个,祭“敖包”的月份一般在5、7、9月,祭的日子多数在十三或初三等.蒙古族祭天神一般祭13个,认为这13个天神给予恩赐万事有成,由此可见蒙古族对这些数字的喜爱.
蒙古族很早就创造了用自己的语言数数,开始数到7位,后来发展到67位.他们把67位数叫做“斯特格西无规”,意思是不可想象.蒙古族独特的生活方式决定了他们有自己计量物品的方式,如,计量长短有“伊玛哈”,指食指第一个关节到指尖的长度(大约3厘米),“图格”是中指指尖和大拇指指尖之间伸展的长度,一个“图格”大约六“伊玛哈”等.计量远近有“奴德恩巴日因喀几日”就是视力能看到的最远的地方,大约是10里.“朝鲁朝合依么喀几日”就是扔石头到的地方等.计量大小他们用日常生活用品和牲畜的内脏,估计时间用太阳照到蒙古包里的位置和放牧时看太阳的位置等.
二、蒙古族文化中的形。
蒙古族除了有他们喜欢的数以外还有他们喜欢的形,他们对圆形格外喜爱并有自己特殊的理解,他们认为圆形代表圆满、完整和团结,是吉祥的形状.如,蒙古族传统住宅蒙古包是圆形的,有天窗作用的“图格奴”是圆形的.圆形摆放物品,圆形布置狩猎,他们的传统服饰中很多地方用圆形,他们的传统舞蹈喜欢用圆形编排等.蒙古族传统建筑、服饰、图案艺术等文化中有圆形以外,还有等腰三角形、正三角形、矩形、正方形、菱形等有规律的几何图形.
蒙古包的结构里有很多数学知识.据内蒙古师范大学代钦教授调查蒙古包的结构里很多符合“黄金分割”比例.蒙古族传统花纹是数学里的纽结,纽结理论的重要课题之一是纽结的分类,纽结分类的标准之一是“交叉点”的个数.纽结的种类随交叉点数的增加而增多,交叉点数为9的纽结有数十种,而交叉点数为10的纽结多达数百种.
三、蒙古族游戏中的数学文化。
蒙古族先辈们非常重视孩子的教育问题,从孩子出生家长就为开发孩子的思维和想象力做各种努力.如,让孩子听各种响声锻炼听力,移动物品锻炼视力,开始说话时教各种顺口溜等文字游戏锻炼口齿.他们很早就知道活动手指对思维的重要作用,所以为了锻炼孩子思维、增长智力创造了很多游戏.如,数字游戏、分奶游戏、“夏”游戏、拼图等.
蒙古族在长期的游牧生活中逐渐形成了自己独特的思维方式和文化传统,这是蒙古族文化发展的必然结果.
四、启示。
得失去了人类生活和文化的原始性格.”接着他又提到:“数学有其自身发展的规律和特点”,“数学以各种形式存在于文化中,人类活动并不只限数学,但人类诸活动是通过数学来观察的.就数学来说这也是非常重要的,更何况对数学教育来说是不可缺的思考要素.数学教育并不是只扮演只教数学知识和解法技术”.这就是说要重视数学思维和数学文化、历史.数学来自生活,生活丰富着数学,它构成了民族文化的一部分,因此数学文化与民族文化息息相关.数学教育中重视数学的文化、历史和数学的思维就是重视民族数学和民族思维.
在数学教育中如何渗透民族文化,这是我们关心和思考的问题.数学发展到现在已是独立于自然科学与社会科学,有其自身发展的规律和特点的学科.数学教学中要坚持数学的系统性、连贯性,遵循数学学科的规律和特点.在这一点上,我们可以借鉴日本高中数学教科书的编写方式,将数学史、数学文化等内容单独编成教科书,这样又保证了数学学科的系统性、连贯性,同时进行了数学史、数学文化教育.
参考文献:
[1]代钦.数学教育.数学文化(1988~学术论文选集).2008。
[2]乌兰杰.蒙古族音乐史.内蒙古人民出版社,。
[3]散布拉诺日布.蒙古民俗.辽宁民族出版社,1990。
[4]特木尔,阿拉塔.蒙古族传统游戏(下)民族出版社,。
[5]布林特古斯.蒙古族民俗百科全书(智力篇).内蒙古科学技术出版社,。
[6][韩]朴京美.数学思维树.中信出版社,。
数学毕业论文(通用15篇)篇十
文献综述:
不定积分是大学数学中非常重要的知识,但是当今许多大学生学习不定积分的时候,感觉学习和理解的难度很大,所以不定积分有一定的研究价值。不定积分是导数运算的逆运算,要想学好不定积分,必须要理解原函数f(x)的意义,知道原函数的性质,学会求简单的原函数。然后就是理解不定积分的概念,掌握不定积分的线性性质,学会定义求简单函数的不定积分。
本文研究了不定积分的几种解题方法,在前人的研究成果上作进一步的探索与探究。社会在不断的进步,许多高科技的技术,都涉及到不定积分,研究不定积分也是社会发展的需要。人类在17世纪的时候就发现了微积分,当时被誉为人类精神上的重大发现。后来人类创立了微积分学,专门研究微积分,是数学有了重大发展和进步,解决了许多以前人们无法解决的数学问题,可见微积分在数学中的重要地位,而不定积分是微积分中最基础的知识之一,也是最重要的知识之一。
人们常用的不定积分的解题方法有:一.利用不定积分的定义性质和基本积分公式求不定积分;二.利用换元积分法求不定积分;三.利用分部积分的方法求不定积分;有时有一些特殊函数也有一些特殊的解题方法,例如有理函数和无理函数,可以用有理函数的积分法和无理函数的积分法。由此可见前人对不定积分的解题方法和思路有了一定的研究成果,但是后人也不会停下脚步,继续研究下去。
不定积分的解题方法和思路有很多种,这就要求学生有很高的抽象思维和逻辑理解能力,而且学生在学习不定积分的过程中计算和理解的难度比较大,很多老师讲课的时候,学生根本就没听懂,所以对不定积分和不定积分的计算方法的'研究,不管是从客观需求还是客观实际上都有着必然的研究需求。
选题背景和意义:
不定积分不仅是整个积分学和积分变换的基础,而且也是求解微分学方程和积分方程等必不可少的知识工具。不定积分还是微分学和定积分之间的联系纽扣,不定积分的计算方法也是多种多样。不定积分计算的困难首先是由其定义和概念本身带来的,因为不定积分是求导的逆运算,,所以就造成它的计算是非构造性的一类运算,运算起来比较困难,因此正确的运用不定积分的计算方法很重要,要从被积函数的特点出发,从不同角度去思考。计算不定积分的时候,有很多技巧性和灵活性的运用,方法越多,解题的思路就越开阔,慢慢的积累解题经验,研究解题规律,提高我们的逻辑思考能力。这就是选题的意义所在。
研究目标与任务:
一.研究目标。
研究不定积分的计算方法,总结和归纳最基本的不定积分的计算方法,从而发现规律和一些解题技巧,而不定积分的基础就是常见不定积分的解题方法,要根据不同的题型的特点用不同解题方法,遇到题目仔细分析,达到熟练运用不定积分的计算方法,并且能灵活运用那几种巧妙的解题方法,这就是研究的目标。
二.研究任务。
1.利用不定积分的定义概念和基本积分公式求不定积分。
2.利用换元积分法求不定积分。
3.利用分部积分法求不定积分。
4.有理函数积分法。
5.无理函数积分法。
6.特殊不定积分的计算方法--利用倒代换求不定积分。
三.研究方法。
归纳总结法﹑网络搜集法﹑参考文献法﹑独立思考法﹑教师指导法。
四.研究进度工作。
20xx年1月至2月,阅读有关数学方面文献资料,与指导教师拟定题目.
20xx年3月,搜集与论文相关的文献资料,拟定论文设计思路,填写《湖北师范学院文理学院毕业论文(设计)开题报告》,交指导教师和院系指导委员会审核批准.
20xx年4月到5月上旬,撰写论文初稿,及时与指导老师联系,汇报写作进展,遇到难以解决的问题应及时向指导老师请教,完成初稿,交指导教师审阅.
20xx年5月中旬接受指导教师修改意见,反复修改,最后定稿.
20xx年5月下旬至6月上旬准备毕业论文答辩,答辩结束后,把毕业论文正本和各种表格装进档案袋。
五.参考文献。
1.同济大学数学教研室.高等数学[m].高等教育出版社,2008.
2.华东师范大学数学系.数学分析(上册)[m].3版,北京:高等教育出版社,2001.
3.王怡.不定积分计算方法及教法探讨[j].资治文献杂志编辑部(管理版),.
4.曹春芳.不定积分的计算思路和技巧[j].科技创新报,.
5.尚馥娟.关于不定积分的解题方法[j].河北自学考试第二期,2006.
6.候英.微分法在不定积分计算中的应用[j].中国新技术新产品第26期,2008.
7.复旦大学数学系.数学分析[m].高等教育出版社,2002.
数学毕业论文(通用15篇)篇十一
创新是人类发展的永恒主题,而教育是培养创新人才的摇篮。要把最好的教育给我们的孩子,那么,这“最好的教育”就是要培养创新人才,这就要求我们教师应重视学生创新学习的培养。
一、创新学习的特征。
(一)学生的主体性得到充分张扬。
小学数学创新学习教学模式,应体现学生是学习的主人,人人都有创新潜能的教学理念。在具体的教学中,教师应为学生创设主动参与数学学习的条件和机会,向学生提供现实的、有意义的和富有挑战性的学习内容,激发他们主动探索的兴趣和欲望。通过动手实践、自主探索、合作、交流等多样化的学习方式,让学生积极主动地参与知识的发生、发展过程,促进他们在数学上得到主动发展。
(二)问题是引导学生创新学习的主线。
小学数学创新学习教学模式,把问题作为学生学习过程的主线。教师通过创设民主和谐的教学氛围和问题情境去培养学生的问题意识,让学生积极思考、大胆质疑,不断发现问题,努力探索解决问题的办法,形成解决问题的教学模型。
(三)创新学习的课堂是开放性的课堂。
具体体现在:一是教学内容的选择不受教材的局限,根据教学的实际需要,从各种教育资源中选取与学生的生活紧密联系的学习材料,让学生充分感受数学与现实生活的密切联系,体现课内与课外的结合。二是教学方法和手段的.选用有利于调动学生的学习积极性,体现学生的自主探索与合作交流,发挥学生的创新潜能。三是给学生留有足够的自主探索时间和空间,让学生获得充分从事数学活动的机会。四是尊重学生思维的独立性和多样性,鼓励学生用自己喜欢的、切合自身实际的认知方式去探索、去发现,既不强求每个学生都必须掌握所有的思考方法,也不要求所有的学生都统一掌握一种思考方法,体现解决问题策略的多样化。
二、小学数学创新学习教学的操作程序。
(一)创设情境,提出问题。
在这一教学环节中,一方面教师应创设问题情境,从学生熟悉的现实生活中引出学习主题,并引导学生围绕课题提出想探究的问题,使学生产生迫切需要探索的内在需要。另一方面,教师可以根据教学内容的特点和教学的实际需要,引导学生对与新知识有密切联系的旧知识进行回忆,从而激活学生原有认知结构,使新知识在原有认知结构中能找出生长点。
(二)自主探索。
自主探索一般包括学生自学质疑与小组合作探索两种基本的学习方式。
在自学质疑中,以数学教材提供的学习内容为基本线索,学生带着问题通过独立阅读教材去探索知识的发生发展过程,用适合自己的认知方式去理解教材、获取知识。同时,学生在阅读教材过程中,还应通过积极思考、质疑批判,主动提出新的问题。
小组合作探索可以从三个方面来开展。(1)展开小组讨论。讨论的主要内容有:一是对自学中未弄明白的问题进行讨论,促进思维相互得到启发和对知识的全面理解;二是通过讨论,归纳概括出规律、法则或结论,让学生参与知识的形成过程;三是组织学生对学习的重点、难点和关键问题进行讨论,深化对数学问题的思考;四是提出开放性问题进行讨论,让学生寻求解决问题的各种办法,培养发散思维能力。此外,还应通过变化讨论的节奏、采用多样化的讨论方式、对学生的讨论进行激励性的评价等办法,不断给学生的合作学习注入活力。(2)组织学生开展合作操作活动。在小组操作中,应让学生明确操作的目的,根据实际情况选用操作的方法,并把操作与观察、思考和语言训练结合起来,在操作过程中获取信息、探索规律,促进对数学知识的理解和思维的发展。(3)让学生把小组合作探索的情况概括起来在全班进行交流,提出各组的观点和结论,展示小组探索的成果,让学生在更大范围内开展合作学习。例如,在计量单位的整理复习中,学生先分小组对计量单位的知识进行归类整理,再以小组为单位上讲台展示各组整理的结果,并作出必要说明,最后由其他同学根据该组的展示情况发表意见或提出质疑,进行组际间的辩论。
(三)点拨归纳。
对学生的自主探索活动进行点拨归纳,一是可以通过教师引导性的提问,让学生把当前问题与原有知识经验联系起来,疏通学生的思路,促进问题的转化。二是应抓住重点、关键问题进行强化,使这些知识在学生认知结构中牢固、清晰地储存起来,为今后有效地学习其它知识提供稳定的支撑点。三是对学生探索发现的方法、策略进行总结、归纳,促进学生创新学习能力的发展。
(四)拓展练习。
在创新学习课堂练习活动中,教师应向学生提供具有探索性、开放性和发展性的练习内容。学生在运用知识的过程中,进一步深化对知识的理解,培养解决问题的能力,体验学习成功的欢乐。在练习时,教师既要鼓励学生选择适合自己的思维方式,从不同的角度去思考问题,体现解决问题的多样化。同时,也要引导学生善于交流,敞开自己的思想,学习别人好的解题策略,优化思维过程。
(五)归纳反思。
三、创新学习教学实施策略。
(一)强化合作学习。
运用小组合作学习策略,具体应抓好以下两个方面。第一,合理组建合作学习小组。第二,让学生主动参与到合作学习中去。三是要创设合作学习的氛围,激发学生积极主动地参与合作学习的热情。
(二)创设宽松的教学环境。
具体应抓好以下三个方面。第一,建立新型的师生关系。要以真诚的师爱为基础,教师应尊重学生的人格,把学生视为平等的人、自主的人、有发展潜力的人。第二,让每个学生都能体验成功的快乐。应让学生树立自己能学好数学的信心,激发学习热情。同时,还应针对学生的认知水平,给每个学生创设获得成功的机会,让他们具有成功的体验,在成功的愉悦中增强学习动力。第三,建立情感多向交流机制。一方面应及时把教师对学生的关怀和教师分享学生成功的欢乐传递给学生,用教师的情感去激发学生的学习热情;另一方面应变一言堂为群言堂,让学生具有向教师或同学交流自己的思想、发表不同见解、表达学习体验的机会。
(三)采用探究性的数学学习方式。
第一,抓好问题情境的创设。教师可以通过从生活中引入学习内容、设置悬念、制造认知冲突、让学生质疑或运用现代信息技术手段等方式创设问题情境,让学生在情境熏陶下产生主动探究的内在需要。第二,加强对学生探究学习的指导。教师针对学生在探究过程中出现的问题进行点拨、启发、引导,可以减少探究学习的盲目性和无效性。
(四)强化思维训练。
在数学教学中,既要培养学生的逻辑思维能力,又要促进学生形象思维、直觉思维能力的发展,让学生形成多维型的思维方式。发散思维是创新思维的主要表现形式,在教学中应让学生从多起点、多角度、多方向展开思维过程,有意识地培养学生的发散思维。主要办法有:根据问题提出解决问题的各种条件;根据条件提出可能产生的各种结果;通过对复杂数量关系的分析寻找解决问题的多种思路和方法。
综上所述,数学教学是以培养数学素质为目的,而数学素质中又以创新能力和应用能力最为重要。我们要在课堂教学中处处以培养学生的创新和应用能力为基本出发点,特别是在新的课程标准下,注重教学方式,从多方面培养学生学习数学的兴趣,提高学生在数学方面的创新能力与应用能力。
数学毕业论文(通用15篇)篇十二
阐述独立学院数学与应用数学专业的人才培养目标和培养规格,最后对独立学院数学与应用数学专业人才培养策略进行探讨。
数学与应用数学专业金融证券人才培养
目前,我国高等教育实现从精英教育到大众教育的历史性跨越,高等学校的办学体制,组织形态发生了重大变化,其中,独立学院是近10年来我国高等教育办学体制改革创新的重要成果,为发展民办高等教育事业、促进高等教育大众化做出了积极贡献。
基于独立学院的服务面向、发展目标、办学实际的类型,人才培养规格的总体定位应做到,在基础理论、学术最求上可以降低标准,但在实践能力基本技能上应加强,更注重应用型人才培养,使毕业生走向社会后具有竞争力。数学类专业发展战略研究报告认为:随着市场经济的发展以及数学与各种科学技术的紧密结合,人才市场上各个行业都需要许多具有良好的数学基础、较强的动手能力、较宽的知识面、综合素质好的数学人才。因此,多元化的培养规格正在成为各校的共识。
随着我国经济体制由计划经济向市场经济过渡,证券业和保险业迅速发展,金融业逐步实现与国际接轨并参与国际竞争。特别是我国进入wto后,金融业面临新的机遇和挑战,金融风险正成为我们面临的大问题,对各种创新金融工具的需求越来越迫切,建立在数学基础上的金融证券专业在金融市场开发具有巨大的潜力,在中国有着广阔的发展前景。
独立学院数学与应用数学专业人才的培养目标是:以社会需求为导向,以培养应用型人才为主体,兼顾教学、科研人才的造就为定位,同时遵循以人为本、因材施教和多种类型培育人才的原则,在使学生具有一定的应用数学基础知识、基本方法的同时,掌握金融证券学的基本理论、基本技能与实务。注重学生能力和素质的全面培养,塑造学生健全独立的人格,力求使学生德、智、体、美全面发展。
(一)基本素质与能力规格
1、良好的品德修养和批判思维能力,具有良好的人文素质;
2、畅达的英语交流能力;
3、较强的信息技术应用能力;
4、得体的口语表达能力和较强的写作能力;
5、持续学习能力和一定的创新能力;
6、良好的身心素质、社会交际能力和较强的社会适应能力。
(二)专业素质与能力规格
本专业学生应具有一定的数学专业基础知识,扎实的数学基本理论,熟练地掌握数学专业的基本技能;熟练掌握证券投资理论与技术分析技巧、外汇交易与避险的理论与技巧、期货交易与分析技巧、税收筹划理论与应用技巧,具有金融证券专业扎实的基础理论,熟练地应用理财学原理解决企业、金融机构理财需求的相关技能;具有准确的双语(汉语、英语)数学语言表达能力以及较强的双语(日常)口头与书面表达能力;具有运用计算机网络获取信息、整理和分析信息的能力,具有用汉语初步撰写证券或理财方面论文的能力;具有独立获取知识,提出问题,分析问题和解决问题的基本能力。
(一)优化课程设置。独立学院数学与应用数学专业课程设置与传统的商学,金融学等专业不同,以提高学生数学素质为指导思想,扎实基础,注重应用,提高能力,在突出知识体系、优化知识结构,更新教学内容等方面要有所突破。如我系开设的数学分析、线性代数、概率论与数理统计等数学专业主要核心课程,使学生具有良好的数学思维素质:空间想象力,逻辑推理能力,抽象思维能力,以及思维的敏感性和发散性等。进而,开设了货币银行学、国际金融学、投资银行学、保险学、证券投资技术分析、税收筹划、金融期货与期权、公司理财学、财务管理等,使学生能够利用相关理财技巧为客户量身定做相关理财和避险方案,并具有解决相关的实际问题的能力。
独立学院培养应用型数学人才,要注重以人为本,教学内容应强调实用性与针对性,注重培养学生用数学的思维和方法来解决问题,另外,教学内容应突出应用性,启发性与综合性,立足实践,面向应用,将数学专业知识的讲解与现实生活联系紧密,使学生加深对数学理论知识的理解和掌握,培养学生应用数学的意识,提高学生的实践能力和创新能力,让学生进一步意识到数学在生活中的作用,使学生学习到符合社会需要的适应新发展的数学应用知识。
(二)转变教学模式。数学教学模式应从传统封闭传授性的教学向现代开放性、创造性的教学观转变,打破“满堂灌”的封闭式、注入式的教育方式,采用启发式教学,增强互动,激发学生学习兴趣,培养学生的想象力、抽象力、逻辑推理能力。以发展学生探索能力为主线来组织教学,以培养探究性思维的方法为目标,以基本的教材为内容,使学生通过再发现的步骤进行主动学习,以提高学生的综合素质,让学生不仅能够在开放的、广阔的环境中去体验数学,而且能够自觉纳入到发现的乐趣中,在教学中紧密联系学科发展及经济社会发展走向,向学生渗透创新意识,重视创造性个性品质的培养,促进学生的素质发展和形成创新能力。
结合“请进来、走出去”的开放式教学方法,即聘请银行和证券公司等各金融机构或企业的领导及业务人员为兼职教师,为学生举办学术讲座或承担实践教学任务,同时加强校外实训基地建设,强化金融实训教学环节,定期组织学生进行观摩与学习,使学生能够身临其境地感受岗位职责及要求,提高学生实际动手操作能力,并根据实际做好职业规划。
(三)加强数学建模。以金融数学模型为主,将数学建模思想融入课堂教学,使得学生充分理解金融证券方面的抽象概念背后的应用背景,意识到经济活动需要大量的数学知识作为重要的工具和手段,并逐步具有应用数学的意识和能力,从而增强学生创造性地应用知识,拓宽学生的知识面,激发他们创造性的思维,使得学生思维的广度、深度、创造性、发散性得到锻炼。
21世纪,需要的是专业口径宽、研究素质高、实践能力强,进入行业后能应付各种情况的复合型人才。作为适应我国高等教育大众化需要应运而生的独立学院的办学定位应该是为地方经济和社会发展服务的。随着高等教育逐步市场化,社会对人才需求的多样化,独立学院应主动适应社会和市场的这种多元需要,结合自己的办学定位和学生的个性发展,培养具有自身结构特点的应用型人才,从而让学生在就业市场上占有一席之地。
[1]马爱军、黄义武、宋述刚,应用数学专业创新型人才培养探讨,长江大学学报(自然科学版),2008,9,5(3).
[2]姚海祥、李丽君,金融数学与金融工程专业介绍及其发展前景,中国科教创新导刊,2008.
[3]龚国勇、潘俭、梁燕来等,高师数学与应用数学专业多元化人才培养研究,玉林师范学院学报(高教研究专辑)(增刊),2006(27).
数学毕业论文(通用15篇)篇十三
函数项级数的一致收敛性的判定是数学分析中的一个重要知识点,函数项级数既可以被看作是对数项级数的推广,同时数项级数也可以看作是函数项级数的一个特例。它们在研究内容上有许多相似之处,如研究其收敛性及和等问题,并且它们很多问题都是借助数列和函数极限来解决,同时它们敛散性的判别方法也具有相似之处,如cauchy判别法,阿贝尔判别法,狄利克雷判别法等。教材中给出了对于nux一致收敛性的判别法,如cauchy判别法,阿贝尔判别法,狄利克雷判别法等,但在具体进行一致收敛的判别时,往往会有一定的困难,这就需要我们有效地运用函数项级数一致收敛的判别法。而次课题除了叙述以上判别法外,还对这些判别方法进行了一些推广,从而进一步丰富了判别函数项级数一致收敛的方法。
选题研究现状。
目前通用的数学分析教材(如华东师范大学,复旦大学,吉林大学,北京师范大学等)其介绍的主要内容如下:m判别法,狄利克雷判别法,阿贝尔判别法,柯西收敛准则等,用来判别一些级数的一致收敛性问题,其他一些数学方面的工作者对某些特殊级数的收敛性进行了讨论。当前对级数的收敛性的讨论研究已经到达比较高级阶段,分枝也比较细,发展也相对较完善。但在许多实际解题过程中,往往不是特定的级数,用特殊的方法不能解决。故需对特殊级数情况要总结和发展。
研究内容(包括基本思路、框架、主要研究方式、方法等)。
基本思路:首先从定义出发,让读者了解函数项级数及一致收敛的定义,对函数项级数一致收敛有一个大致的认识,并对其进行一定的说明,且将收敛与一致收敛做一个比较,使读者对其有一个更深刻的认识。随后给出一些常见的一致收敛的判别法,并附上例题加以说明。当熟悉了一般的判别法后,我将其加以推广,得到一些特殊的判别法,如比式判别法,根式判别法,对数判别法等。框架:主要由论文题目“函数项级数一致收敛的判别”、摘要、关键词、引言、函数项级数及一致收敛的定义、函数项级数一致收敛的一般判别法及推广、小结、参考文献等组成。
主要研究的方式、方法:首先介绍函数项级数及一致收敛的定义,然后给出一些常见的判别法,并用一系列的例题加以说明,在将判别法加以推广。
研究内容:
第一部分简单介绍函数项级数及一致收敛的定义,
第二部分主要介绍函数项级数一致收敛的一般判别方法,如柯西一致收敛准则、余项判别法、魏尔斯特拉斯判别法、狄利克雷判别法、阿贝尔判别法等,再进行推广。
第三部分是总结其研究的必要性。
论文提纲(含论文选题、论文主体框架)。
论文题目:函数项级数一致收敛的判别论文主体框架:
1、引言。
2、定义。
函数项级数定义。
函数项级数一致收敛的定义。
3、函数项级数一致收敛的判别方法柯西一致收敛准则余项判别法。
魏尔斯特拉斯判别法狄利克雷判别法阿贝尔判别法。
5、结束语。
阐明总结函数项级数一致收敛判别方法的重要性及必要性。
主要参阅文献。
[1]华东师范大学数学系.数学分析(下册)[m].高等教育出版社.1991。
[2]王振乾,彭建奎,王立萍.关于函数项级数一致收敛性判定的讨论[j].甘肃联合大学学报.
[3]吴良森,毛羽辉,宋国栋,魏栍等.数学分析习题精解[m].北京:理科教育出版社,.
[4]谢惠民,恽自求,易发槐,钱定边等.数学分析习题课讲义[m].北京:高等教育出版社,.1:
[5]赵显曾,黄安才等.数学分析的方法与解题[m].陕西:师范大学出版社,.8。
[7]裴礼文.数学分析中的典型问题与方法[m].北京:高等教育出版社.1993.
数学毕业论文(通用15篇)篇十四
阐述独立学院数学与应用数学专业的人才培养目标和培养规格,最后对独立学院数学与应用数学专业人才培养策略进行探讨。
[关键词]。
目前,我国高等教育实现从精英教育到大众教育的历史性跨越,高等学校的办学体制,组织形态发生了重大变化,其中,独立学院是近来我国高等教育办学体制改革创新的重要成果,为发展民办高等教育事业、促进高等教育大众化做出了积极贡献。
基于独立学院的服务面向、发展目标、办学实际的类型,人才培养规格的总体定位应做到,在基础理论、学术最求上可以降低标准,但在实践能力基本技能上应加强,更注重应用型人才培养,使毕业生走向社会后具有竞争力。数学类专业发展战略研究报告认为:随着市场经济的发展以及数学与各种科学技术的紧密结合,人才市场上各个行业都需要许多具有良好的数学基础、较强的动手能力、较宽的知识面、综合素质好的数学人才。因此,多元化的培养规格正在成为各校的共识。
随着我国经济体制由计划经济向市场经济过渡,证券业和保险业迅速发展,金融业逐步实现与国际接轨并参与国际竞争。特别是我国进入wto后,金融业面临新的机遇和挑战,金融风险正成为我们面临的大问题,对各种创新金融工具的需求越来越迫切,建立在数学基础上的金融证券专业在金融市场开发具有巨大的潜力,在中国有着广阔的发展前景。
一、独立学院数学专业人才培养目标。
独立学院数学与应用数学专业人才的培养目标是:以社会需求为导向,以培养应用型人才为主体,兼顾教学、科研人才的造就为定位,同时遵循以人为本、因材施教和多种类型培育人才的原则,在使学生具有一定的应用数学基础知识、基本方法的同时,掌握金融证券学的基本理论、基本技能与实务。注重学生能力和素质的全面培养,塑造学生健全独立的人格,力求使学生德、智、体、美全面发展。
二、独立学院数学与应用数学专业人才培养规格。
(一)基本素质与能力规格。
1、良好的品德修养和批判思维能力,具有良好的人文素质;
2、畅达的英语交流能力;
3、较强的信息技术应用能力;
4、得体的口语表达能力和较强的写作能力;
5、持续学习能力和一定的创新能力;
6、良好的身心素质、社会交际能力和较强的社会适应能力。
(二)专业素质与能力规格。
本专业学生应具有一定的数学专业基础知识,扎实的数学基本理论,熟练地掌握数学专业的基本技能;熟练掌握证券投资理论与技术分析技巧、外汇交易与避险的理论与技巧、期货交易与分析技巧、税收筹划理论与应用技巧,具有金融证券专业扎实的基础理论,熟练地应用理财学原理解决企业、金融机构理财需求的相关技能;具有准确的双语(汉语、英语)数学语言表达能力以及较强的双语(日常)口头与书面表达能力;具有运用计算机网络获取信息、整理和分析信息的能力,具有用汉语初步撰写证券或理财方面论文的能力;具有独立获取知识,提出问题,分析问题和解决问题的基本能力。
三、独立学院数学与应用数学专业人才培养策略。
(一)优化课程设置。独立学院数学与应用数学专业课程设置与传统的商学,金融学等专业不同,以提高学生数学素质为指导思想,扎实基础,注重应用,提高能力,在突出知识体系、优化知识结构,更新教学内容等方面要有所突破。如我系开设的数学分析、线性代数、概率论与数理统计等数学专业主要核心课程,使学生具有良好的数学思维素质:空间想象力,逻辑推理能力,抽象思维能力,以及思维的敏感性和发散性等。进而,开设了货币银行学、国际金融学、投资银行学、保险学、证券投资技术分析、税收筹划、金融期货与期权、公司理财学、财务管理等,使学生能够利用相关理财技巧为客户量身定做相关理财和避险方案,并具有解决相关的实际问题的能力。
独立学院培养应用型数学人才,要注重以人为本,教学内容应强调实用性与针对性,注重培养学生用数学的思维和方法来解决问题,另外,教学内容应突出应用性,启发性与综合性,立足实践,面向应用,将数学专业知识的讲解与现实生活联系紧密,使学生加深对数学理论知识的理解和掌握,培养学生应用数学的意识,提高学生的实践能力和创新能力,让学生进一步意识到数学在生活中的作用,使学生学习到符合社会需要的适应新发展的数学应用知识。
(二)转变教学模式。数学教学模式应从传统封闭传授性的教学向现代开放性、创造性的教学观转变,打破“满堂灌”的封闭式、注入式的教育方式,采用启发式教学,增强互动,激发学生学习兴趣,培养学生的想象力、抽象力、逻辑推理能力。以发展学生探索能力为主线来组织教学,以培养探究性思维的方法为目标,以基本的教材为内容,使学生通过再发现的步骤进行主动学习,以提高学生的综合素质,让学生不仅能够在开放的、广阔的环境中去体验数学,而且能够自觉纳入到发现的乐趣中,在教学中紧密联系学科发展及经济社会发展走向,向学生渗透创新意识,重视创造性个性品质的培养,促进学生的素质发展和形成创新能力。
结合“请进来、走出去”的开放式教学方法,即聘请银行和证券公司等各金融机构或企业的领导及业务人员为兼职教师,为学生举办学术讲座或承担实践教学任务,同时加强校外实训基地建设,强化金融实训教学环节,定期组织学生进行观摩与学习,使学生能够身临其境地感受岗位职责及要求,提高学生实际动手操作能力,并根据实际做好职业规划。
(三)加强数学建模。以金融数学模型为主,将数学建模思想融入课堂教学,使得学生充分理解金融证券方面的抽象概念背后的应用背景,意识到经济活动需要大量的数学知识作为重要的工具和手段,并逐步具有应用数学的意识和能力,从而增强学生创造性地应用知识,拓宽学生的知识面,激发他们创造性的思维,使得学生思维的广度、深度、创造性、发散性得到锻炼。
21世纪,需要的是专业口径宽、研究素质高、实践能力强,进入行业后能应付各种情况的复合型人才。作为适应我国高等教育大众化需要应运而生的独立学院的办学定位应该是为地方经济和社会发展服务的。随着高等教育逐步市场化,社会对人才需求的多样化,独立学院应主动适应社会和市场的这种多元需要,结合自己的办学定位和学生的个性发展,培养具有自身结构特点的应用型人才,从而让学生在就业市场上占有一席之地。
参考文献:
[1]马爱军、黄义武、宋述刚,应用数学专业创新型人才培养探讨,长江大学学报(自然科学版),,9,5(3).
[2]姚海祥、李丽君,金融数学与金融工程专业介绍及其发展前景,中国科教创新导刊,2008.
[3]龚国勇、潘俭、梁燕来等,高师数学与应用数学专业多元化人才培养研究,玉林师范学院学报(高教研究专辑)(增刊),(27).
数学毕业论文(通用15篇)篇十五
不定积分是大学数学中非常重要的知识,但是当今许多大学生学习不定积分的时候,感觉学习和理解的难度很大,所以不定积分有一定的研究价值。
不定积分是导数运算的逆运算,要想学好不定积分,必须要理解原函数f(x)的意义,知道原函数的性质,学会求简单的原函数。
然后就是理解不定积分的概念,掌握不定积分的线性性质,学会定义求简单函数的不定积分。
本文研究了不定积分的几种解题方法,在前人的研究成果上作进一步的探索与探究。
社会在不断的进步,许多高科技的技术,都涉及到不定积分,研究不定积分也是社会发展的需要。
人类在17世纪的时候就发现了微积分,当时被誉为人类精神上的重大发现。
后来人类创立了微积分学,专门研究微积分,是数学有了重大发展和进步,解决了许多以前人们无法解决的数学问题,可见微积分在数学中的重要地位,而不定积分是微积分中最基础的知识之一,也是最重要的知识之一。
人们常用的不定积分的解题方法有:一、利用不定积分的定义性质和基本积分公式求不定积分;二、利用换元积分法求不定积分;三、利用分部积分的方法求不定积分;有时有一些特殊函数也有一些特殊的解题方法,例如有理函数和无理函数,可以用有理函数的积分法和无理函数的积分法。
由此可见前人对不定积分的解题方法和思路有了一定的研究成果,但是后人也不会停下脚步,继续研究下去。
不定积分的解题方法和思路有很多种,这就要求学生有很高的抽象思维和逻辑理解能力,而且学生在学习不定积分的过程中计算和理解的难度比较大,很多老师讲课的时候,学生根本就没听懂,所以对不定积分和不定积分的计算方法的研究,不管是从客观需求还是客观实际上都有着必然的研究需求。
选题背景和意义:
不定积分不仅是整个积分学和积分变换的基础,而且也是求解微分学方程和积分方程等必不可少的知识工具。
不定积分还是微分学和定积分之间的联系纽扣,不定积分的计算方法也是多种多样。
不定积分计算的困难首先是由其定义和概念本身带来的,因为不定积分是求导的逆运算,,所以就造成它的计算是非构造性的一类运算,运算起来比较困难,因此正确的运用不定积分的计算方法很重要,要从被积函数的特点出发,从不同角度去思考。
计算不定积分的时候,有很多技巧性和灵活性的运用,方法越多,解题的思路就越开阔,慢慢的积累解题经验,研究解题规律,提高我们的逻辑思考能力。
这就是选题的意义所在。
研究目标与任务:
一、研究目标。
研究不定积分的计算方法,总结和归纳最基本的不定积分的计算方法,从而发现规律和一些解题技巧,而不定积分的基础就是常见不定积分的解题方法,要根据不同的题型的特点用不同解题方法,遇到题目仔细分析,达到熟练运用不定积分的计算方法,并且能灵活运用那几种巧妙的解题方法,这就是研究的目标。
二、研究任务。
1、利用不定积分的定义概念和基本积分公式求不定积分。
2、利用换元积分法求不定积分。
3、利用分部积分法求不定积分。
4、有理函数积分法。
5、无理函数积分法。
6、特殊不定积分的计算方法——利用倒代换求不定积分。
三、研究方法。
归纳总结法﹑网络搜集法﹑参考文献法﹑独立思考法﹑教师指导法。
四、研究进度工作。
20xx年1月至2月,阅读有关数学方面文献资料,与指导教师拟定题目、
20xx年5月中旬接受指导教师修改意见,反复修改,最后定稿、
20xx年5月下旬至6月上旬准备毕业论文答辩,答辩结束后,把毕业论文正本和各种表格装进档案袋。
五、参考文献。
1.同济大学数学教研室.高等数学[m].高等教育出版社,.
2.华东师范大学数学系.数学分析(上册)[m].3版,北京:高等教育出版社,.
3.王怡.不定积分计算方法及教法探讨[j].资治文献杂志编辑部(管理版),.
4.曹春芳.不定积分的计算思路和技巧[j].科技创新报,.
5.尚馥娟.关于不定积分的解题方法[j].河北自学考试第二期,.
6.候英.微分法在不定积分计算中的应用[j].中国新技术新产品第26期,2008.
7.复旦大学数学系.数学分析[m].高等教育出版社,.