我在这个项目中经历了很多挑战和困难,这些经历给了我很多启示和教训。以下是小编为大家整理的一些心得体会范文,供大家参考和借鉴。
热门圆柱的体积心得体会(模板19篇)篇一
作为一种基本的几何图形,圆柱在生活、工作中随处可见,它不仅被广泛应用于建筑、机械和工程领域,也是其他学科如数学、物理等基础内容。在长时间的学习、使用过程中,我深刻地体会到了圆柱的重要性和价值,下面我将就圆柱的几个方面,谈一下我对它的心得体会。
一、定义及特征。
圆柱是一个正抛物面绕着它的对称轴无限旋转而成的几何体,由顶面、底面以及侧面组成。圆柱的顶面和底面都是圆形,而侧面是一条平行于底面的矩形,圆柱的·侧面积等于两底面积加上面积。
圆柱在几何学中具有非常简单、明显的特点,也是我们较为容易理解和掌握的图形之一。在实际应用中,圆柱的简单性、规整性往往是对于需要加工、设计或其他方面的处理来说最基本、最经典的要求。
二、应用领域。
圆柱作为一种基础图形,其在实际生活和工作中应用非常广泛。特别在建设领域,以圆柱为形状的构件,比如柱子、水管、烟囱、圆柱形的塔等都是必不可少的。此外,圆柱还在机械工业中被用于生产轴、套管等关键零部件,尤其是工业制造中需要涉及旋转、滚动或轴承的产品,圆柱的应用更为广泛。
三、数学运用。
在数学学科中,圆柱通常作为一些概念或公式的具体应用,例如球面角、体积公式等。由于圆柱具有良好的对称性,而且其几何性质比较简单,所以在许多数学问题的解决过程中,它通常都能起到重要的辅助作用。
四、几何方面的启示。
圆柱在形状上为一种规则、对称、简单的几何体,可以引出许多几何问题和理论。例如,在与圆柱有关的几何问题中,我们可以思考有关圆柱的立体角、弧、面积和体积等问题,从而深化对于几何概念的理解和认识。另一方面,圆柱对于我们的观察和感知也有一定的启示作用,我们可以通过观察圆柱与其他几何体之间的关系,对于几何空间的把握和理解有更为深刻的认识。
五、实际操作体会。
在实际操作中,圆柱思维方式的运用也是非常重要的。在工业设计、机械加工、建筑工程等方面,遵从圆柱的几何原理是非常基础的要求。例如,在建筑的柱子、桥梁等重要构件设计中,充分考虑到圆柱的稳固性、美观性是非常必要的;在机械加工过程中,因需要取得高精度的表面,而充分保证了圆柱的线性与对称性,从而得到更好的加工产品。
总之,圆柱在几何学、物理学、数学学科中起到了非常特殊的地位和作用,其作为一种基本、简单、规则的几何体,给我们带来了许多化繁为简、去伪存真的思想启示。在实际应用中,准确、优秀地运用圆柱思维模式,则可以使我们更好地解决各种复杂的问题,并取得优异的效果。
热门圆柱的体积心得体会(模板19篇)篇二
数学无处不在,身边就有许许多多的数学,数学在生活中是不可缺少的,让我们一起来寻找数学,探索数学。
某天的数学课上,学的是圆柱的体积。上课前,有一些人已经知道了圆柱的体积是底面积乘高,但是但老师追问为什么是这样算时,大家都愣住了。经过我们的`探究,我们知道了圆柱体积的推导有以下几种方法。
方法一:你们应该都知道长方体的体积是长乘宽乘高吧,长乘宽就等于底面积,所以长方体的体积是底面积乘高。然后我们把圆柱平均分成若干份,拼成一个近似的长方体,这个长方体的底面积就相当于圆柱的底面积,这个长方体的高就相当于圆柱的高,所以圆柱的的体积是底面积乘高。
方法二:用硬币,我们在脑海里把硬币想象成平面,然后把硬币叠成圆柱,硬币的一个面就相当于是它的底,把底的面积乘硬币的个数就是底面积乘高也就是体积了。
方法三:首先我们回忆以下圆面积的推导过程,就是把一个圆平均分成若干份,然后拼成一个近似的长方形。
根据观察,原来圆柱的底面积与长方体的底面积是相等的,圆柱的高与长方体的高也是相等的。因此得出圆柱的体积与长方体的体积也相等。
生活中处处有数学,只要你认真探索就会发现许多奥秘。只要你认真思考、探索就一定能发现。
热门圆柱的体积心得体会(模板19篇)篇三
圆柱体体积是中学数学学科中的一个重要概念,也是几何体积的基础知识之一。在教学实践中,作为一名数学教师,我深刻体会到了教授圆柱体体积的重要性及其相关的心得体会。
第二段:体验。
在教学中,我发现学生对于圆柱体体积的理解有所局限。他们往往只停留在公式记忆的阶段,缺乏对于具体问题的理解和运用。因此,在教学中,我尝试引导学生从具体实例出发理解和计算圆柱体体积。我通过给学生展示不同尺寸的圆柱体,要求学生先通过测量圆柱的半径和高度,然后在计算器上进行计算,从而让他们真正地体验到了圆柱体体积的计算过程。
第三段:挑战与解决。
在实施体验教学的过程中,我遇到了一些挑战。首先,一些学生由于对计算软件和测量工具的不熟悉,导致了测量结果不准确,进而影响到了圆柱体体积的计算。为了解决这个问题,我有意识地增加了学生对计算工具的使用指导,在实际操作中指导他们正确地使用测量工具和计算器。其次,一些学生对于计算过程中的转换单位较迟钝,容易出现疏漏。为此,我提醒学生在进行计算之前先换算单位,并在过程中再次提醒他们进行单位转换。通过这样的细致指导,学生的计算准确性得到了提高。
第四段:启发。
在教学实践中,我发现了许多学生对于数学的兴趣不高,缺乏对于数学知识的应用意识。因此,我尝试将圆柱体体积与实际生活中的问题相结合,激发学生的兴趣和学习动力。我通过给学生提供一些有趣的问题,如地铁车厢的容积、水桶中的容积等,让学生运用所学知识去解决实际问题。通过这样的启发式教学,我发现学生对于圆柱体体积的学习兴趣得到了提高,课堂氛围也更加活跃。
第五段:总结。
通过对于圆柱体体积的教学实践,我深刻认识到了传统的纸上计算和公式记忆方法的局限性,更加意识到了启发式教学的重要性。体验教学和实际问题结合的方式能够激发学生的学习热情,提高他们对于数学知识的应用能力。作为一名教师,我将坚持不懈地探索和尝试不同的教学方法,以帮助学生更好地理解和应用数学知识。
热门圆柱的体积心得体会(模板19篇)篇四
教学圆柱的体积前,我先和学生一起温习了长方体和正方体的体积公式,重点引导学生认识到长方体和正方体都可以用底面积乘高进行计算。
对于圆柱的体积的计算公式,有很多学生在课前已经看过书本了,很明确的知道了是用底面积去乘高进行计算。对于老师来说,学生已经轻而易举的知道了最终的结论,而且结论也相当的好记,在这样的情况下如何去进行新课的教学。
所以,一开始,我并没有让学生去猜测圆柱的体积计算公式,而且凭空猜测圆柱的体积公式也是无意义的。基于这样理解教材的角度出发,我按照了书上的例题直接展开教学。
出示了三个等低等高的长方体、正方体和圆柱图形,提出问题:长方体与正方体的体积相等吗?为什么?通过第一问进一步让学生认识到长方体和正方体的体积都可以用底面积乘高来计算。
提出问题:猜一猜,圆柱的体积与长方体、正方体的体积相等吗?用什么方法可以验证?
学生通过小组讨论交流,有几种方法:溢水法,还有的是把圆柱体进行分割。
教师提示:圆可以转化成长方形进行计算面积,圆柱可以转化成长方体计算体积吗?
这时,我请学生将准备好的萝卜(近圆柱形)进行分割,拼接。将圆柱转化成了一个近似的长方体。
通过交流指出圆柱体变成了近似的长方体,形状发生了变化,但是体积并没有变化,即拼成的'近似长方体的体积等于圆柱的体积。
引导学生观察:在转化的过程中,拼成的近似长方体与圆柱体的各个量之间的关系。
通过讨论和交流,让学生充分谈谈,在转化中,哪些量发生了变化,哪些没有发生变化。
学生通过实践、探索、发现,完成将未知的知识利用知识经验转化为熟悉的知识。这样得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。
文档为doc格式。
热门圆柱的体积心得体会(模板19篇)篇五
圆柱是一种特殊的几何体,它拥有着特别的美感和设计特点。无论是在建筑设计,还是在机器零部件方面,圆柱都扮演着非常重要的角色。在我的生活和工作中,我也深深地感受到了圆柱的魅力,今天我想分享一些我对圆柱的心得体会。
第二段:圆柱的基本概念和特点。
圆柱是指两个平面相交形成的几何体,其中一面是圆,并且这个圆垂直于另一个平面。圆柱的特点是它的截面形状不变,即便是沿着圆柱轴线割下一部分,剩余的部分仍然保持着原来的形状。这个特点让圆柱在工程设计中具有很大的优势,尤其是在汽车、机械、电子等行业中,圆柱零件广泛应用于机组、轴线、管道、容器,以及电子产品中的螺旋形电线等。
第三段:圆柱在建筑设计中的应用。
在建筑设计中,圆柱也是一个非常常见的形状,它被广泛运用在柱子、顶棚和圆形天窗等方面。圆柱形柱子可以增加建筑结构的承重能力,同时还能起到美化的作用。此外,圆柱形的顶棚也能起到加强美观效果的作用。
第四段:圆柱的美感和设计。
除了在建筑和工程设计中起到重要的作用之外,圆柱还具备着非常独特的美感和设计特点。圆柱形状灵活多变,我们可以通过将不同大小、长度和颜色的圆柱组合在一起,来创造出独特的装饰效果。更重要的是,圆柱不仅带有科技感,还可以融入自然元素,例如在花园景观中植入圆柱形树木,它们会为花园增添独特的美感。
第五段:结语。
总的来说,圆柱是一种非常特别的几何体,它不仅在工程设计中扮演着非常重要的角色,还具备着非常独特的美感和设计特点。从我个人的角度来看,深入了解并应用圆柱的理念对于拓展我在各方面的视野和创造力来说非常重要。
热门圆柱的体积心得体会(模板19篇)篇六
1.教学内容。
本节课是苏教国标教材六年小学数学(下册)第二单元25页的例4教学。内容包括圆柱体的体积计算公式的推导和运用公式解决一些简单的实际问题。
2.本节课在教材中所处的地位和作用。
《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
3.教材的重点和难点。
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,等积转化数学思想的培养以及观察比较新旧图形的联系,做出合请推理,从而推导圆柱体积公式的过程是本节课的难点。
4.教学目标。
(1)让学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题。
(2)使学生进一步体会“转化”方法的价值,培养应用已有知识解决实际问题的能力,发展空间观念和初步的推理能力。
(3)通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
二、说教法。
从学生已有的知识水平和认知规律出发,经过观察、比较、猜想、思考、、验证等方法,自主探究,合情推理。
三、说教学过程。
本节课的教学过程分为六个教学环节,主要包括:
1、复习引导,揭示课题。
明确已有的圆柱的特征、体积概念的认识、平面图形公式的研究方法等知识水平,建立新的学习和探究欲望。
2、观察比较,建立猜想。
在观察长方体、正方体、圆柱体等底等高时,猜想他们的体积是否都想等?猜想后强调“可能“相等,因为是猜想的'。圆柱的体积是不是等于底面积乘高,我们还没有研究出公式来,所以这里只能是一种没有经过验证的猜想,只能用“可能”相等,没有经过验证的观点,不可以用“一定“两个字,让学生体会数学的严谨性。
3、激励思考,提出验证的方法。
有没有一个可以借鉴的好的研究方法,来证实等底等高的圆柱体与长方体、正方的体积有可能相等呢?或者说圆柱的体积也有可能等于底面积乘高呢?学生可以通过回忆平面图形面积计算公式时的推导方法,获取一些思考。
4、自主探究,合情推理。
在学生回忆的基础上,可以提出使用“切割—转化—观察—比较—分析—推理”等方法,四人一组,来讨论下面的问题:
小组讨论纲要:
(1)用方法,把圆柱体转化成了体。
(2)在这个转化的过程中,变了,没有变。
(3)通过观察比较,你发现了什么?
(4)怎么进行合情推理?
(5)怎样用简捷的形式表示你推导出来的公式呢?
把课堂还给学生,教师的角色是组织和引导。
5、学以致用,解决实际问题。
应用所推导出来的圆柱体积计算公式,解决一些生活中的简单实际问题,理解生活中处处有数学,体会数学的应用价值和广泛领域。
6、全课小结,提升认识水平。
在研究圆柱体积公式的时候,我们运用了哪些方法?这里的切割是指切割旧图形,还是切割要研究的新图形?转化是指转化成已学过的旧图形,还是转化成没有学过的新图形?观察比较什么?怎样分析推理?这里蕴藏着什么样的数学思想?最后问大家这样一个问题,发明电灯重要,还是使用电灯重要,哪个更能造福人类,造福子孙万代?科学家、发明家就是这样诞生的,他们善于猜想、善于发现,敢于探究。如果我们将来想成为科学家,我们必须具备这样的品质。通过这节课的学习,你敢不敢大胆去尝试、去探究圆锥体的体积计算公式,或是更广泛的研究上下底面都是相等的三角形、上下底面都是相等的正多边形等一些直棱柱的体积计算方法呢?在研究中,你会发现,数学很美,它是思维的体操,有兴趣的同学,可以把你研究的成果告诉老师一起分享。
四、说教学反思。
在本节课的教学中,我主要让学生自己动手实践、自主探索与合作交流,在实践中体验,在实践中提升,从而获得知识。讲课时,我再利用教具学具和课件双重演示,让学生通过眼看、脑想、讨论等一系列活动后,用自己的语言说出圆柱体体积计算公式的推导过程。我的第一层次是复习。通过复习来导入新课。第二层次,推导圆柱体的计算公式。在学生自学的基础上,亲自动手切拼,把圆柱体转化成近似的长方体,找出近似长方体与原圆柱体各部分相对应部分,从而推出圆柱体积计算公式。用知识迁移法,把旧知识发展重新构建转化为新知识,使学生认识到形变质没变的辩证关系,培养学生自学能力,动手能力,观察分析的和归纳能力。第三层次,针对本节所学知识内容,安排适度练习,由易到难,由浅入深,使学生当堂掌握所学的新知识,并通过练习达到一定技能。
这节课,在设计上充分体现以教师为主导,学生为主体,让学生动手、动脑、参与教学全过程,较好地处理教与学,练与学的关系。寓教于乐中学会新知识,使学生爱学、会学,培养了学生动手操作能力、口头表达能力和逻辑思维能力,让学生充分体验成功的喜悦。
当然,由于经验不足,在教学过程中还有很多环节没有处理好。恳请大家提出宝贵的意见和建议。
热门圆柱的体积心得体会(模板19篇)篇七
作为一名教师,我深知培养学生的数学素质对他们未来的学习和生活至关重要。在数学教学中,圆柱体体积是一个常见的概念,也是学生容易混淆和理解困难的内容之一。在教授圆柱体体积的过程中,我通过不断总结和归纳,积累了不少心得体会。
第二段。
引入圆柱体体积的概念时,我喜欢通过直观的实例来引发学生的兴趣和理解。我会选取一些熟悉的圆柱体,如铅笔盒、水杯等来展示,说明圆柱体的特点和应用场景。让学生通过观察和模拟实际操作,深入理解圆柱体体积的意义和计算方法。这种启发式的教学方法对学生而言是非常直观和易于理解的。
第三段。
在教学过程中,我还注重培养学生的动手能力和思维能力。为了让学生更好地掌握圆柱体体积的计算方法,我经常设计一些小组讨论活动和实践课堂。学生可以分组合作,互相交流和提出问题,共同探讨解决问题的方法。这不仅锻炼了学生的动手操作能力,也培养了他们的思维和合作能力。
第四段。
另外,我还注重激发学生对数学的兴趣和审美情怀。在讲解圆柱体体积的公式时,我会借助一些有趣的数学题目和实例,引导学生发现数学之美。比如,通过一个有关喷泉水柱高度的问题,让学生明白数学不仅仅是一种工具,还是一门高尚的艺术形式。这样的启发方法,能够使学生更加主动地参与到数学学习当中,提高他们的学习积极性。
第五段。
总结起来,教授圆柱体体积的经验使我更加坚信,教育是一门艺术。只有把教学与实际生活结合,重视学生的兴趣和思维能力的培养,才能够帮助学生掌握知识,提高他们的数学素养。因此,在教学中,我会坚持不断创新和总结,不断寻求更好的教学方法,以促进学生的全面发展,为他们的未来打下坚实的数学基础。
热门圆柱的体积心得体会(模板19篇)篇八
1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。
2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。
理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。
掌握圆柱体积公式的推导过程。
圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。
一、情境激趣导入新课
2、提问:“能用一句话说说什么是圆柱的体积吗?” (板书课题)
二、自主探究, 学习新知
(一)设疑
1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?
2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?
3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)
(二)猜想
1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?
2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?
(三)验证
1、为了证实刚才的猜想,我们可以通过实验来验证。怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)
2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)
3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。
4、根据学生操作,师再次课件演示圆柱转化成长方体的过程。并引导学生分析当分的份数越多时,拼成的图形越接近长方体。
5、通过上面的观察小组讨论:
(1) 圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?
(2) 长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?
(3) 长方体的高与原来圆柱体的哪部分有关系?有什么关系?
(4) 你认为圆柱的体积可以怎样计算?
(生汇报交流,师根据学生讲述适时板书。)
小结:把圆柱体转化成长方体后,形状变了,体积不变,长方体的底面积等于圆柱的底面积,高等于圆柱的高,因为长方体的体积等于底面积×高,所以圆柱体积也等于底面积×高,用字母表示是v=sh。
6、同桌相互说说圆柱体积的推导过程。
7、完成“做一做 ”:一根圆形木料,底面积为75cm2,长是90cm。它的体积是多少?(生练习展示并评价)
8、求圆柱体积要具备什么条件?
9、思考:如果只知道圆柱的底面半径和高,你有办法求出圆柱的.体积吗?如果是底面直径和高,或是底面周长和高呢?(学生讨论交流)
小结:可以根据已知条件先求出圆柱的底面积,再求圆柱的体积。
10、出示课前的圆柱,说一说现在你可以用什么办法求出这个圆柱的体积?(测不同数据计算)
11、练一练:列式计算求下列各圆柱体的体积。
(1)底面半径2cm,高5cm。
(2)底面直径6dm,高1m。
(3)底面周长6.28m,高4m。
三、练习巩固拓展提升
1、判断正误:
(1)等底等高的圆柱体和长方体体积相等。………………()
(2)一个圆柱的底面积是10cm2,高是5m,它的体积是10×5=50cm3。.....()
(3)圆柱的底面积越大,它的体积就越大。............( )
(4)一个圆柱的体积是80cm3,底面积是20cm2,它的高是4cm。......( )
四、全课总结自我评价
通过这节课的学习你有什么感受和收获?
圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。
从本节课教学目标的达成来看,较好地体现了以下几方面:
一、创设生活情境,体现数学生活化。
《新课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,创设了一个装水的学具槽放入圆柱学具使水面上升的情境,引导学生观察思考,直观感知圆柱体积的概念,同时意识到过去学的排水法可以用来求圆柱的体积,紧接着当老师再出示橡皮泥捏成的圆柱体模型,并追问大厅内圆柱的体积等问题时,学生意识到前面所说求体积计算方法的局限性,从而产生思维困惑,进一步激发了探究圆柱体积计算方法的欲望。这样的导入不仅为学生创造了一个十分宽松的生活化学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。在练习的设计上,为避免纯数学的计算,我以学生熟悉的学校圆柱形花坛为背景,提出求花坛填土体积这样的问题,让学生学会灵活应用知识解决简单的实际问题,在巩固体积计算方法的同时,进一步感受到数学知识的使用价值。这样的教学安排不仅体现了数学来源于生活,又应用于生活的思想,也使数学的课堂教学充满浓浓的生活味。
二、引导学生经历知识探究的全过程。
动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式。在本课教学中,由于学具的欠缺,没能给学生提供小组动手操作的机会,为了弥补这一不足,最大限度发挥学生自主学习的作用,教学中我努力为学生搭建探究平台,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。在探究圆柱体积的过程中,我从本班学情出发,大胆放手让学生猜想“圆柱体积大小可能与什么有关,可能怎样计算,为什么?”,然后再结合以往学习几何图形的经验,回顾圆的面积推导过程,实现知识迁移,明确“转化”思想在数学研究中的重要意义。为了让学生直观感受到圆柱体转化为长方体的过程,我较好地借助实物模型和多媒体课件演示,把二者有机结合,先让两个学生上台操作演示,然后再课件动态模拟,在学生充分观察的基础上,小组讨论交流:当圆柱体转化成近似的长方体后什么变了,什么没变?长方体的底面积与圆柱的底面积有什么关系?长方体的高与圆柱的高有什么关系?从而得出结论:圆柱的体积等于底面积乘以高。整个探究过程以学生自主学习为主,知识的形成给学生留下深刻的印象。伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。
三、注重学法指导和数学思想方法的渗透。
“学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。
热门圆柱的体积心得体会(模板19篇)篇九
教学目标:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力。
3、渗透转化思想,培养学生的自主探索意识。
教学重点:
教学难点:
教学过程:
一、复习。
1、长方体的体积公式是什么?正方体呢?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)。
2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。(删掉)。
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、新课。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)。
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)。
反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?
长方体和圆柱体的底面积和体积有怎样的关系?
学生说演示过程,总结推倒公式。
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,v=sh)。
热门圆柱的体积心得体会(模板19篇)篇十
掌握圆柱的体积计算公式,能够正确计算圆柱的体积。
通过观察、类比、分析的过程,提高分析问题、解决问题的能力,发展空间观念。
感受数学与生活的联系,激发学习兴趣,提高学习数学的自信心。
提问:长方体和正方体的体积公式是什么?
(正方体)体积=底面积×高。今天我们再来研究另一个熟悉的几何图形,圆柱的体积公式。从而引出本节课题《圆柱的体积》。
在大屏幕出示底面积和高都相等的长方体、正方体和圆柱。
提问:长方体和正方体的体积相等吗?
预设:根据长方体(正方体)体积=底面积×高,所以长方体和正方体体积相等。
预设:圆柱的体积和底面积、高有关,圆柱的体积公式=底面积×高。
预设:可以把圆柱转换成长方体。
预设:学生分一分,拼一拼,组合成近似长方体的图形。此时教师应借助多媒体设备展示把圆柱等份分成32份,64份甚至更多份的.情境,随着等份分割的份数越多,拼成的图形就越接近长方体。
组织学生进行小组讨论:观察拼成的长方体和原来的圆柱具有怎样的关系?5分钟后请小组代表进行回答。
预设:长方体的底面积、高和体积分别等于原来圆柱的底面积、高和体积。
用大写字母v表示圆柱的体积,s表示底面积,h表示圆柱的高,用字母表示圆柱的体积公式。
预设:v=sh。
教师强调字母v、s是大写,h是小写。
追问:回顾探究圆柱体积公式的过程,有哪些心得体会?
预设1:可以用长方体体积公式推导出圆柱体体积公式;。
预设2:把圆柱转化成长方体,与探索圆面积的方法类似;。
预设3:计算长方体、正方体、圆柱的体积都可以用底面积乘高。
一个圆柱形零件,底面半径是5厘米,高是8厘米。这个零件的体积是多少立方厘米?
提问:通过本节课的学习有什么收获?
课后作业:找找生活当中的圆柱物体,量一量底面积和高,算一算物体体积。
热门圆柱的体积心得体会(模板19篇)篇十一
1、结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。
2、让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。
3、通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。
理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。
圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。
一、情境激趣导入新课。
2、提问:“能用一句话说说什么是圆柱的体积吗?”(板书课题)。
二、自主探究,学习新知。
(一)设疑。
1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?
2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?
3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)。
(二)猜想。
1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?
2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?
(三)验证。
1、为了证实刚才的猜想,我们可以通过实验来验证。怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)。
2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)。
3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。
4、根据学生操作,师再次课件演示圆柱转化成长方体的过程。并引导学生分析当分的份数越多时,拼成的图形越接近长方体。
5、通过上面的观察小组讨论:
(1)圆柱体通过切拼后,转化为近似的长方体,什么变了?什么没变?
(2)长方体的底面积与原来圆柱体的哪部分有关系?有什么关系?
(3)长方体的高与原来圆柱体的哪部分有关系?有什么关系?
(生汇报交流,师根据学生讲述适时板书。)。
小结:把圆柱体转化成长方体后,形状变了,体积不变,长方体的底面积等于圆柱的底面积,高等于圆柱的高,因为长方体的体积等于底面积×高,所以圆柱体积也等于底面积×高,用字母表示是v=sh。
7、完成“做一做”:一根圆形木料,底面积为75cm2,长是90cm。它的体积是多少?(生练习展示并评价)。
9、思考:如果只知道圆柱的底面半径和高,你有办法求出圆柱的体积吗?如果是底面直径和高,或是底面周长和高呢?(学生讨论交流)。
小结:可以根据已知条件先求出圆柱的底面积,再求圆柱的体积。
10、出示课前的圆柱,说一说现在你可以用什么办法求出这个圆柱的体积?(测不同数据计算)。
(1)底面半径2cm,高5cm。
(2)底面直径6dm,高1m。
(3)底面周长6.28m,高4m。
三、练习巩固拓展提升。
1、判断正误:
(1)等底等高的圆柱体和长方体体积相等。………………()。
(2)一个圆柱的底面积是10cm2,高是5m,它的.体积是10×5=50cm3。.....()。
(3)圆柱的底面积越大,它的体积就越大。............()。
(4)一个圆柱的体积是80cm3,底面积是20cm2,它的高是4cm。......()。
四、全课总结自我评价。
通过这节课的学习你有什么感受和收获?
圆柱的体积是几何知识的综合运用,它是在学生了解了圆柱的特征、掌握了长方体和正方体体积以及圆的面积计算公式推导过程的基础上进行教学的。由于圆柱是一种含有曲面的几何体,这给体积的认识和计算增加了难度。为了降低学习难度,让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。
从本节课教学目标的达成来看,较好地体现了以下几方面:
一、创设生活情境,体现数学生活化。
《新课程标准》指出:要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我从生活情境入手,创设了一个装水的学具槽放入圆柱学具使水面上升的情境,引导学生观察思考,直观感知圆柱体积的概念,同时意识到过去学的排水法可以用来求圆柱的体积,紧接着当老师再出示橡皮泥捏成的圆柱体模型,并追问大厅内圆柱的体积等问题时,学生意识到前面所说求体积计算方法的局限性,从而产生思维困惑,进一步激发了探究圆柱体积计算方法的欲望。这样的导入不仅为学生创造了一个十分宽松的生活化学习环境,还为学生后面构建数学模型,发现圆柱体积公式奠定了基础。在练习的设计上,为避免纯数学的计算,我以学生熟悉的学校圆柱形花坛为背景,提出求花坛填土体积这样的问题,让学生学会灵活应用知识解决简单的实际问题,在巩固体积计算方法的同时,进一步感受到数学知识的使用价值。这样的教学安排不仅体现了数学来源于生活,又应用于生活的思想,也使数学的课堂教学充满浓浓的生活味。
二、引导学生经历知识探究的全过程。
动手实践、自主探究、合作交流是《新课程标准》所倡导的数学学习的主要方式。在本课教学中,由于学具的欠缺,没能给学生提供小组动手操作的机会,为了弥补这一不足,最大限度发挥学生自主学习的作用,教学中我努力为学生搭建探究平台,通过观察、设疑、猜想、验证,经历圆柱体积的转化过程,发展学生的空间想象能力。在探究圆柱体积的过程中,我从本班学情出发,大胆放手让学生猜想“圆柱体积大小可能与什么有关,可能怎样计算,为什么?”,然后再结合以往学习几何图形的经验,回顾圆的面积推导过程,实现知识迁移,明确“转化”思想在数学研究中的重要意义。为了让学生直观感受到圆柱体转化为长方体的过程,我较好地借助实物模型和多媒体课件演示,把二者有机结合,先让两个学生上台操作演示,然后再课件动态模拟,在学生充分观察的基础上,小组讨论交流:当圆柱体转化成近似的长方体后什么变了,什么没变?长方体的底面积与圆柱的底面积有什么关系?长方体的高与圆柱的高有什么关系?从而得出结论:圆柱的体积等于底面积乘以高。整个探究过程以学生自主学习为主,知识的形成给学生留下深刻的印象。伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。
三、注重学法指导和数学思想方法的渗透。
“学会学习”是对学生“学”的最高要求,因此在教学中不但要教给学生知识,更要教给学生学习的方法,让学生终身受用。在本节课的教学中,我把“观察、猜想、验证”的学法指导,贯穿于整个学习过程,使学生学得主动有效。在探究方法的引导上从回忆圆的面积公式推导入手,确定转化的方法,体验转化的过程,验证转化的结果,使“转化”、“极限”等数学思想在课中得到良好渗透,学生进一步体会到科学、条理的数学思维方式,从而发展了学生的数学能力。
热门圆柱的体积心得体会(模板19篇)篇十二
教材来源:小学六年级《数学》教科书/人民教育出版社2009版内容来源:小学六年级数学(下册)第二单元主题:圆柱的体积课时:共1课时,授课对象:六年级学生设计者:
目标确定的依据。
1、课程标准相关要求。
(1)通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图。
(2)结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法。
2、教材分析。
《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。。
3、学情分析。
六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
学习目标。
1、结合具体情境和实践活动,理解圆柱体积的含义。
2、探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
评价任务。
任务1:想一想,我们当初是如何推导出圆的面积计算公式的呢?
任务2:现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?探索推导出圆柱体体积计算的公式。
任务3:能正确计算圆柱的体积,并会解决一些简单的实际问题,完成练习中的第1、2题。
教学过程。
设计者:周伟红/新密市市直第二小学。
目标确定的依据。
1、课程标准相关要求。
(1)通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图。
(2)结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法。
2、教材分析。
本节课是在学生学习了《圆柱的表面积》和《圆柱体积》基础上进行的,旨在进一步研究圆柱体的表面积和体积的区别,是学生发展空间观念的又一次飞跃。通过本课练习,让学生在解决实际问题的过程中,进一步理解和掌握圆柱的表面积和体积公式,感受所学的数学知识的应用价值。
3、学情分析。
单独计算圆柱的表面积和体积,学生基本上都没问题,只是计算上的错误。但是如果解决圆柱的实际问题,有一部分学生不知道到底是求圆柱哪几个面的面积,不能正确运用公式解决实际问题。
学习目标。
1、进一步熟练求圆柱体表面积和体积的方法。
2、能根据实际情况运用计算公式解决一些实际问题。
评价任务。
任务1:回答:怎样计算圆柱的表面积和体积呢任务2:求下面各圆柱的表面积体积。
任务3:能正确运用圆柱的表面积和体积,解决一些简单的实际问题。
教学过程。
热门圆柱的体积心得体会(模板19篇)篇十三
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
圆柱切割组合模具、小黑板。
一、创设情境,生成问题
1、什么是体积?( 物体所占空间的大小叫做物体的体积。)
2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的面积怎样计算?
二、探索交流,解决问题
(启发学生思考。)
2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:
(1)圆柱切开后可以拼成一个什么形体?(长方体)
(2)通过实验你发现了什么?
小组讨论:实验前后,什么变了?什么没变?
讨论后,整理出来,再进行汇报。
(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方
体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)
4、推导圆柱体积公式
小组讨论:怎样计算圆柱的体积?
学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?
板书: v=sh
5、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?
三、巩固应用练习。
1、一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,
这个水桶的容积是多少升?
说明:求水桶的容积,就是求水桶的体积。想一想先求什么?
2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?
先求底面半径再求底面积,最后求体积。
已知底面周长对解决问题有什么帮助吗?必须先求出什么? 四:课堂小结:
通过这节课你学会了哪些知识,有什么收获?五:课后作业:
教材第9页,练一练第1、3、4、题
热门圆柱的体积心得体会(模板19篇)篇十四
本节课的设计思考:
一、让学生在现实情境中体验和理解数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。
二、鼓励学生独立思考,引导学生自主探索、合作交流
办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同学们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识――公式)。 不足之处:
在学生们动手操作时,我处理的有点急,没有给学生充分的思考和探究的时间。在今后的教学中我要特别关注学生的学习过程,优化课堂教学,对教材进行适当的加工处理。数学知识的教学,必须抓住各部分内容之间的内在联系,遵循教材特点和学生的认知规律。圆柱体积的教学,要借助于学生已经学过的长方体体积的计算方法,通过分析、推导、演示,发现新知识。推导出圆柱体积的计算公式,实现教学目的。圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。在新的课改形势下,死记硬背这种肤浅的、教条的、机械的学习方式已经完全不适应教学改革的需要,不利于学生健康的成长发展的需要,教师要重视引导学生去探索,思考,发现规律,培养学生分析问题和解决问题的能力。反思本节课的教学,觉得在练习设计上还可以下一番功夫。比如可以设计开放性习题:给一个圆柱形积木,让学生先测量相关数据再计算体积等等。
二、教师的语言非常贫乏
在课堂教学中,评价语言是非常重要,它总是伴随在教学的始终,贯穿于整个课堂,缺乏激励的课堂就会像一潭死水,毫无生机。而精妙的评价语言就像是催化剂,能使课堂掀起层层波澜,让学生思维的火花时刻被点燃。教师准确,生动,亲切的评价语言大大调动了学生学习的主动性和积极性,让学生在激励中学、自信中学、快乐中学,让教师与学生零距离地接触,我想学生的心理更能感觉到更大的鼓舞。
苏霍姆林斯基指出:“教育的艺术首先包括谈话的艺术。”教师的教学效果,很大程度上取决于他的语言表达能力。数学课堂教学过程就是数学知识的传递过程。在整个课堂教学过程中,数学知识的传递、学生接受知识情况的反馈,师生间的情感交流等,都必须依靠数学语言。教师的语言表达方式和质量直接影响着学生对知识的接受,教师语言的情感引发着学生的情感,所以说教师的语言艺术是课堂教学艺术的核心。我这节课最大的失误是语言没有发挥出调控课堂驾驭课堂的作用。
热门圆柱的体积心得体会(模板19篇)篇十五
活动目标:
1、初步认识圆柱体的基本特征,探索生活中与圆柱体相似的物体。
2、激发幼儿探索圆柱体秘密的兴趣。
活动准备:
1、知识经验准备:
(1)请家长引导幼儿观察生活中与圆柱体相似的物体。
(2)已认识过球体。
2、材料准备:
(1)提供圆柱体实物若干,如易拉罐、茶罐、积木、固体胶等,准备印泥、纸张。
(2)一样大小的.硬币若干、透明胶、长方形纸张、固体胶、橡皮泥。
活动过程:
一、幼儿在活动室寻找各种圆柱体实物并自由探索。
1、它们与球有什么不同?
2、把圆柱体立在桌上和侧放在桌上会出现什么不同的现象?
3、把圆柱体上、下两面印下来,发现了什么?
4、小结:上下两面都是圆形,这两个圆形是一样大的,侧面没有棱角,而且从上。
到下都是一样粗细,叫做圆柱体。
二、组织幼儿讨论:你在社会中还见过哪些像圆柱体的物品。
三、玩一玩、变一变。
1、怎样把许多枚硬币变成圆柱体?
2、怎样把长方形纸张变成圆柱体?
3、怎样把橡皮泥变成圆柱体?
四、活动延伸:让幼儿自由选择区域进行活动。
计算角:提供各种圆柱体实物,供幼儿继续探索发现圆柱体的秘密。
操作角:提供多种材料供幼儿继续变成圆柱体。
热门圆柱的体积心得体会(模板19篇)篇十六
1.经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。
2.探索并掌握圆柱体积公式,能计算圆柱的体积。
3.在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学的探索性和挑战性,感受数学结论的确定性。
教学重点。
圆柱体积计算公式的推导过程。
教学难点。
圆柱体积计算公式的灵活运用。
教具准备。
教学过程。
一、复习铺垫。
1.请同学们回忆一下什么是物体的体积。
2.(出示幻灯片长方体)这是什么体?怎样计算它的体积?
同样的方法复习正方体。
3.长方体和正方体的体积可以用一个统一的公式来表示是怎样的?
[复习旧知,为后面推导圆柱体积计算公式做铺垫]。
二、情境导入。
师:同学们,你们都知道自己的生日吗?你们都喜欢过生日吗?
生:喜欢。
师:为什么?
生:有礼物,还有生日蛋糕。
师:今天是亮亮和爷爷的生日,你们观察一下书的图片,发现了什么?
生:亮亮的一家在一起过生日,亮亮和爷爷都有一个生日蛋糕,而且爷爷的生日蛋糕大,亮亮的生日蛋糕小。
生:亮亮和爷爷的生日蛋糕都是圆柱形的。
师:同学们观察得都很仔细,那么你们说说,爷爷的生日蛋糕,意味着什么?联系我们刚学过的.知识来说。
生:生日蛋糕大,就意味着它的体积大,生日蛋糕小,就是它的体积小。
师:你们真棒!那么想不想知道两个生日蛋糕的具体大小吗?今天我们就来探讨一个圆柱体的体积公式。
三、推导、论证。
1.拿出两个不易分辨体积大小的茶叶筒。
师:你们能说出哪个茶叶筒体积大吗?怎样比较两个茶叶筒体积的大小呢?
让学生思考和交流。
2.大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形)。
4.师生合作。用教具把圆柱等分成16份,拼成一个近似的长方体。再把圆柱等分32份同样拼成一个近似长方体。观察两次等分的相同点和不同点:
生:相同点:都可以拼成一个近似的长方体。
不同点:等分的份数越多,就起接近一个长方体。
5.同学们观察一下,拼成的长方体和圆柱体有什么关系?你们发现了什么?
6.学生汇报讨论结果,同时板书。
生:近似长方体的底面就是圆柱的底面积;近似长方体的高就是圆柱的高;近似长方体的体积就是圆柱的体积。
7.根据学生的发现引导学生推导出圆柱的体积=底面积×高,用字母表示v=sh。
四、实际应用。
1.要求圆柱体积,必须知道哪些条件?(生:底面积和高)。
2.如果已知底面积和高,你们会求圆柱的体积吗?
3.学生读题,特别提示统一单位。学生自主计算后全班交流。
4.反馈练习。p31页练一练1。
练一练2:理解题意,使学生理解方钢的体积与锻造后的圆柱形体积相等,再自主解答。
五、家庭作业。
测量你身边的圆柱的体积并向大家汇报你是怎样测量的?比一比看谁的方法最好?
热门圆柱的体积心得体会(模板19篇)篇十七
一、我在导入时,突破教材,有所创新圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。
二、我教学新课时,实现人人参与,主动学习学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,由于学校教学条件差,没有更多的学具提供给学生,只是由教师示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的`长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生没有亲身参与操作,就缺乏情感空间感觉的体验,而且这部分又是小学阶段立体图形的教学难点,学生得不到充分的思考空间,也不利于教师营造思考的环境,不便于学生思考如何利用已知图形体积和教学思想去解决这一问题。学生缺乏行为、认知的投入和积极的情感投入,所以,课堂效果差就可想而知了。
热门圆柱的体积心得体会(模板19篇)篇十八
1.结合具体事例,经历探索容积计算问题的过程。
2.掌握计算容积的方法,能解决有关容积的简单实际问题。
3.在解决容积问题的过程中,体验数学与日常生活的密切联系。
利用体积公式计算保温杯的容积。
计算容积所需要的数据是容器内壁的高、底面直径或半径,如何获得这些数据。
(1)底面积3平方分米,高4分米;
(2)底面半径2厘米,高2厘米;
(3)底面直径2分米,高3分米。
提问:什么是容积?它与物体的体积有什么区别?我们是按什么方法计算容积的?
我们已经学习过圆柱的体积计算,知道了容积和容积的计算方法。这节课,就在计算圆柱体积的基础上,学习圆柱的容积计算。(板书课题)。
1.教学例题。
出示例题,读题。提问:这道题求什么?你能计算它的容积吗?请大家仔细看一下题目,解答这道题还要注意些什么?(统一单位或改写体积单位,取近似数)指名学生板演,其余学生做在练习本上。集体订正,说明每一步求的什么,怎样求的。同时注意是怎样统一单位和取近似值的'。
2.注意体积单位和容积单位的区别,以及它们之间的换算:
1立方分米=1升1立方厘米=1毫升。
4.学生独立完成。然后进行全班交流。
2.计算容积与计算体积有什么相同点和不同点?
把6个这样的保温杯倒满水,大约需要多少千克水?
注意大头蛙的话:1毫升水重1克。
1.拿一个水杯,量出它的内直径和高,算一算这个水杯大约可以装多少水?
注意:如果给出水杯的外壁直径、杯壁厚度和高,怎么计算?(内壁就减两个厚度,高减一个厚度,因为水杯没有盖。)。
2.练一练1:求水杯的水有多少是求水杯的容积吗?水杯的高度与计算容积有关吗?需要用哪个数据来计算?(杯中水的高度)。
3.练一练第4小题。怎么钢管的体积?
1)钢管体积=大圆柱体积-小圆柱体积。
2)钢管体积=钢管环形底面积高。
热门圆柱的体积心得体会(模板19篇)篇十九
【教学目标】1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
【教学重点】1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
【教学难点】理解圆柱体积公式的推导过程。
【教学过程】。
活动一:复习旧知。
1、什么是体积?(指名说)。
物体所占空间的大小叫做物体的体积。
2、长方体的体积该怎样计算?归纳到底面积乘高上来)。
3、圆的面积怎样计算?
4、圆是把圆面积转化成近似的长方形面积进行计算的。的面积是怎样推倒得来的?
活动二:经历圆柱体积的推导过程,得出公式。
启发学生思考。
2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示。
引导学生进行观察。
3、思考:
1)圆柱切开后可以拼成一个什么形体?
2)通过实验你发现了什么?
小组讨论:实验前后,什么变了?什么没变?
讨论后,整理出来,再进行汇报。
*拼成的近似长方体体积大小没变,形状变了。
*拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。
*近似长方形的高就是圆柱的高,没有变化。
4、根据圆面积的推导公式进行猜想:说说你猜想的结果。
如果把圆柱体32等份,64等份,128等份拼成的长方体的形状怎么样?生;平均分的分数越多,拼起来的形体越近似于长方体。
2、通过以上的观察你发现了什么?
师:平均分的分数越多,每分扇形的底面就越小,弧就越短,拼成的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?
板书:v=sh。
4、算一算:已知一根柱子的底面半径为0.4米,高为5米。你能算出它的体积吗?
要求这根柱子的体积,要先求什么?
请你先求底面积,再求体积,自己试计算。请生板演。
活动三:试一试。
正确理解题意,自己完成。
说明:求水桶的容积,就是求水桶的体积。想一想先求什么?
2、一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?
先求底面半径再求底面积,最后求体积。
已知底面周长对解决问题有什么帮助吗?必须先求出什么?
【板书设计】。
v=sh。
【课后反思】。
【教学目标】。
1、进一步理解圆柱体积公式的由来。
2、能灵活地运用公式解决一些简单的实际问题,提高解决问题的能力。
【教学重点】能灵活地运用公式解决一些简单的实际问题,提高解决问题的能力。
【教学难点】能灵活地运用公式解决一些简单的实际问题,提高解决问题的能力。
【教学过程】。
活动一:复习圆柱体积的计算公式。
1、长、正方体的体积都可以用什么公式进行计算?
指名请学生说。明确:长、正方体和圆柱的体积都可以用底面积乘高来进行计算。
活动二:解决简单的实际问题。
说说每个图已知什么和什么,求什么?怎么求?
2、一个底面直径是14厘米,高是20厘米的杯子。能装下3000毫升的牛奶多少杯?
要求能装多少杯牛奶,必须先求什么?
自己试独立计算,请同学板演。集体讲评。
请先求杯子的容积,再求能装几杯?自己独立计算。
3、一个装满稻谷的圆柱形粮屯,底面面积为2平方米,高为80厘米。每立方米稻谷约重600千克,这个粮屯存放的稻谷约重多少千克?通过读题,你发现了什么?(要换算单位)。
要求这个粮屯能存放多少稻谷,必须先求什么?(先求体积)明确题意后,自己独立计算。
师:高相等,可以比较底面积的大小。
先独立思考,然后同桌交流自己的想法。说说看不计算,怎样判断他们的大小?
这个铁块的体积和什么有关系?求铁块的体积就是求什么?
求铁块的体积就是求底面直径是10厘米,高2厘米的圆柱形的水的体积。
6、一根圆柱形木料底面周长是12.56分米,高是4米。
1)它的表面积是多少平方米?
2)它的体积是多少立方米?
3)如果把它截成三段小圆柱,表面积增加多少平方分米?
圆柱的表面积包括什么?怎样计算?侧面积怎样计算?
体积怎样计算?要求底面积先求什么?
表面积增加的部分是什么?增加了几个底面?必须先求什么?弄清题意,自己计算。