教学工作计划是指教师在一定时间内对教学目标、教学内容、教学方法等进行规划和安排的一种重要文件。以下是精选的教学工作计划案例,供同行们一起学习进步。
2023年圆柱的表面积教案人教版(汇总16篇)篇一
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学重难点。
教学难点:圆柱体侧面积计算方法的推导。
教学工具。
ppt课件。
教学过程。
一、检查复习,引入新课(复习圆柱体的特征)。
1、复习圆的周长与面积公式、长方形的面积公式。
2、师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。
引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。
二、引导探究,学习新知。
(一)教学圆柱表面积的意义。
设疑:长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?
板书:底面积×2+侧面积=表面积。
要求圆柱的表面积,首先应该计算它的底面积和侧面积。
(二)根据条件,计算圆柱的底面积。
圆柱的底面是圆形,同学们会求它的面积吗?
(多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)。
条件:(厘米)r=3d=4c=31.4。
底面积(平方厘米)28.2612.5678.5。
(三)教学圆柱体侧面积的计算。
1、引导探究圆柱体侧面积的计算方法。
(2)小组合作探究。(剪圆柱形纸筒)。
(3)汇报交流研究结果,多媒体课件展示。
(4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
2、计算圆柱体的侧面积。
多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的侧面积。并把结果记录下来。
条件(厘米)h=5h=8h=10。
侧面积(平方厘米)94.2100.4862.8。
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?
2、学生根据数据进行计算?
3、汇报计算方法及结果,媒体出示结果进行验证。
表面积(平方厘米)150.72125.669.08。
(五)小结:圆柱表面积的意义及计算方法。
三、练习巩固,灵活运用。
1.求下面圆柱的侧面积。
(1)底面周长是1.6m,高是0.7m。
(2)底面半径是3.2dm,高是5dm。
四、总结反思,畅谈收获。
这个课你收获了什么?
板书。
长方形的面积=长×宽。
2023年圆柱的表面积教案人教版(汇总16篇)篇二
[知识与能力]1、认识本课生字词,并结合上下文理解词语意思。2、能正确、流利、有感情的朗读课文。3、理解老人所创造的奇迹,说出“青山不老”的含义。4、领悟老人植树造林的精神,感受老人改造山林、绿化家园的艰辛与决心。
[过程与方法]朗读、品析。
[情感态度与价值观]感受老人改造山林、绿化家园的艰辛与决心,激发学生环保意识。
二教学重难点:
1、理解语言文字背后所蕴藏的含义。
2、领悟青山不老的含义。
三教学过程:
(一)创设情境,激发兴趣。
我国地大物博、幅员辽阔,这里不仅孕育了灿烂的中华文化,而且还涌现出了许许多多可歌可泣的人物事迹。他们之中有的慷慨激昂,有的缠绵悱恻,有的惊天地、泣鬼神,也有的平凡中透着伟大。今天,我们这节语文课就来讲述一个平凡老者的不同寻常的故事(板书:青山不老)。
(二)初读课文,感知奇迹。
1、请大家先自读课文,概括地表述一下这篇文章的主要内容。
2、交流。
小结:肆虐的风沙抵挡不住老人坚定的信心,满坡的翠绿是老人恒久相守的理想。下面就让我们感受一下这种变化带给人们的震撼吧!
3、资料交流:晋西北环境恶劣的沙尘场面。
小结:在我国的晋西北素有“一年一场风,从春刮到冬,无风三尺土,风起土满天”的说法。恶劣的自然环境给人们的生产生活带来了严重的困难,许多的村庄,每一、二十年就得被迫搬迁一次.很多人忍受不住,含泪扶老携幼,背景离乡,那金黄的沙土成了此地人们心中隐隐的痛。
(过渡)虽然环境是恶劣的,条件是艰苦的,但是仍有一部分人站了出来,他们要用自己的双手创造幸福的家园。这位老人就是其中之一。即使肆虐的风沙把他们的劳动一次次毁掉,即使干旱、霜冻不时冲击他们本已贫困的生活,但是对未来美好的憧憬、对绿意无限眷恋,使他们义无反顾,终于,一片绿波荡漾、松涛阵阵的绿洲屹立在黄土之上,出现在世人眼前。
4、同学们,此时如果让你看到一片绿波荡漾、松涛阵阵的绿洲屹立在黄土之上,你有什么感受呢?请大家畅所欲言,谈一谈你的看法。
(三)品析重点词句,解读奇迹。
1、是啊!苦心人,天不负,有志者事竟成。亲勤劳的双手描绘了美好的家园;辛勤的汗水滋润了干渴的心田。老人用粗糙的双手、单薄的身躯创造了一个属于大家的奇迹,这个奇迹是什么呢?(读文用--画出来)。
2、出示:啊!绿化了8条沟,造了7条防风林带,3700亩林网,这是多么了不起的奇迹。
(15年在人生之中是长还是短?人生苦短能有几个15年,而在老人这15年中却干了多少事啊!)。
(齐读)绿化了8条沟、7条防护林带、3700亩林网……。
(一亩约667平方米,我们的教室不过60~70平方米,你能想象一下老人造了多大面积的树林吗?)。
3、这一连串的数字背后是老人15年的枯燥岁月;这一连串的数字面前是满山遍野的绿。通过这一连串的数字,你的脑海中会浮现出老人什么样的形象呢?(伟岸、高大、值得尊敬、学习。)。
小结:老人用他不屈不挠的毅力在风沙面前竖立起一道天然屏障,也在我们的心中竖立了高大的形象,现在就让我们用赞美的声音读一下吧,来表达此时的心境。
4、奇迹已然创造,我们就要用心去品读,找出具体描写这一奇迹的句子读一读。(第一自然段)。
(出示)绿意()翠色()郁郁()()葱茏。
b、作者写出了绿渊的如此美丽,他是运用了什么修辞手法呢?(比喻)。
c、你能把这个比喻句有感情地读一读吗?
6、树的勇敢扼制了山洪的凶猛,庞大的根系牢牢扼住了稀疏的黄土,树土的关系在老人心里有着怎样的关系呢?(“这树下的淤泥有两米厚,都是……有了这绿树,我们才守住了这片土。”)。
小结:土地是庄稼人的命根,农民有了沃土才会有希望,而树恰恰是保证水土流失的关键,所以,老人把他的精力都用在了植树造林上,这树是他的命根,这树是他的希望,这树就是诠释他生命价值的最好体现。
7、同学们,绿色对于我们并不陌生,可对于生活在面朝黄土背朝天的晋西北来说却是难得一见的,那么,为什么在这里植树就这么难呢?(大环境,风沙肆虐,干旱、霜冻、沙尘暴)。
8、老人用他的坚毅抵住了环境的恶劣,而他生活的地方又有怎样辛酸的故事呢?(早出晚归、七位同伴五位过世、风雨同舟的老伴没能见上最后一面)。
9、(出示)15年啊,绿色披上了青山,而青丝却变成了白发,死亡带走了他的亲人,也正一步步向他逼近,但是,他不走,因为读“他觉得种树是命运的选择”他不走,因为读“他觉得屋后的青山就是生命的归宿”。
从这句话中,你读懂了什么?(老人要把一生、把生命奉献给山沟,奉献给青山)。
10、(出示)齐读。
“他已经将自己的生命转化为另一种东西。他是真正与山川同在、与日月同辉了。”
(另一种东西是什么东西?与“山川共存,与日月同辉”什么意思?)。
小结:是啊,老农不仅留下了这片青山,还留下了与环境作斗争的不屈精神、绿化家园、保护环境的奉献精神,造福人类的精神。这一切将与山川同在,与日月同辉。让我们带着对老人的崇敬再读一读这句话吧!
总结:巍巍青山承载了几代人的梦想,棵棵杨柳记载了老人寄情荒山,造福人类的足迹,老人的生命是有限的,但他的意义却在茫茫青山之中得到了扩张,而且将随着青山永垂不朽,让我们满怀敬佩、崇拜、感激之情与作者同呼:读青山是不会老的!(板书)巍巍青山常绿,白发老人沉思)。
(四)畅谈感想。
1、面对这位老人,你想说什么?
2、总结:同学们,地球是我们共同的家,植树造林、绿化荒山,是每个公民的责任,让我们像晋西北的老农一样,珍惜自然资源,共营生命绿色!
2023年圆柱的表面积教案人教版(汇总16篇)篇三
教材40页、41页例1、例2、例3及做一做,练习十第2-5题。
素质教育目标。
(一)知识教学点。
(二)能力训练点。
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点。
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点。
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备。
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学步骤。
一、铺垫孕伏。
1.口答下列各题(只列式不计算)。
(1)圆的半径是5厘米,周长是多少?面积是多少?
(2)圆的直径是3分米,周长是多少?面积是多少?
2.长方形的面积计算公式是什么?
3.教师出示圆柱体模型,指同学说出它有什么特征?
二、探究新知。
1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。
(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。
(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的'长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。
2.教学例1。
(1)出示例1,指同学读题,找出已知条件和所求问题。
学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。
板书:3。14×0。5×1。8。
=1。75×1。8。
≈2。83(平方米)。
答:它的侧面积约是2。83平方米。
(2)反馈练习:完成做一做41页第1题。
学生独立解答,然后订正。
3.教学。
(1)教师说明:圆柱的侧面积加上两个底面积就是。
(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。
4.教学例2。
(2)指同学读题,找出已知条件和所求问题。
(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。
(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。
教师巡视指导,注意检查学生的计算结果和计量单位是否正确。
做完后订正,订正时让学生说出有关的计算公式。
(5)反馈练习:完成做一做第2题。
指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。
5.教学例3。
(1)出示例3,指名读题,找出已知条件和所求问题。
(2)教师提示:解答这道题应注意什么?
启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。
(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。
(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。
(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。
(6)“四舍五入”法与“进一法”有什么不同。
2023年圆柱的表面积教案人教版(汇总16篇)篇四
理解求表面积、侧面积的计算方法,并能正确进行计算.
能灵活运用表面积、侧面积的有关知识解决实际问题.
一、复习准备。
(一)口答下列各题(只列式不计算).
1.圆的半径是5厘米,周长是多少?面积是多少?
2.圆的直径是3分米,周长是多少?面积是多少?
(二)长方形的面积计算公式是什么?
(三)回忆圆柱体的特征.
二、探究新知。
1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.
2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高.
(二)教学例1.
1.出示例1。
例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的'侧面积.(得数保留两位小数)。
2.学生独立解答。
教师板书:3.14×0.5×1.8。
=1.75×l.8。
≈2.83(平方米)。
答:它的侧面积约是2.83平方米.
3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积.
(三).
1.教师说明:圆柱的侧面积加上两个底面积就是.
是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积.
(四)教学例2.
1.出示例2。
例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
2.学生独立解答。
侧面积:2×3.14×5×15=471(平方厘米)。
底面积:3.14×=78.5(平方厘米)。
表面积:471+78.5×2=628(平方厘米)。
3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.
(五)教学例3.
1.出示例3。
例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)。
2.教师提问:解答这道题应注意什么?
这道题是求做这个水桶要用铁皮多少平方厘米.实际上是求这个圆柱形水桶的表面积.题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积.
3.学生解答,教师板书.
水桶的侧面积:3.14×20×24=1507.2(平方厘米)。
水桶的底面积:3.14×。
=3.14×。
=3.14×100。
=314(平方厘米)。
需要铁皮:1507.2+314=1821.2≈1900(平方厘米)。
答:做这个水桶要用1900平方厘米.
4.教师说明:这里不能用“四舍五入”法取近似值.在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.
5.“四舍五入”法与“进一法”有什么不同.
(1)“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去.
(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.
三、课堂小结。
归纳:,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握.如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积.另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用.
四、巩固练习。
1.底面周长是1.6米,高是0.7米。
2.底面半径是3.2分米,高是5分米。
(二)计算下面各.(单位:厘米)。
(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积.(有盖和无盖两种)。
五、课后作业。
(二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?
六、
探究活动。
面包的截面。
活动目的。
培养学生的观察能力和操作能力,发展学生的空间观念.
活动题目。
有一个圆柱形的面包,要切一刀把它分成两块,截面会是什么形状的图形?
活动过程。
1、学生分组讨论.
2、利用橡皮泥捏一个圆柱体,进行实验,验证结论.
3、画出截面图,表示结论,发展空间观念.
参考答案。
1、沿水平方向横切一刀,截面是圆形.(如图1)。
2、沿垂直方向纵切一刀,截面是一个长方形.(如图2)。
3、沿侧面斜切一刀,会形成大小不一的椭圆形.(如图3)。
4、从顶面向侧面斜切一刀,会形成椭圆的一部分.(如图4)。
5、从上底面斜切一刀到下底面,会形成椭圆的一部分.(如图5)。
(图1)(图2)(图3)(图4)(图5)。
2023年圆柱的表面积教案人教版(汇总16篇)篇五
本节课的教学采用操作和演示,讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练,相结合。
1、把握重点,突破难点,合理利用教材。
对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。
2、直观演示和实际操作相结合。
3、讲解与练习相结合。
本节课,改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。
【2】。
1、直观演示和实际操作相结合。
新课开始,教师通过圆住教具直观演示,引导学生复习圆柱的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆住形纸筒进行实际操作,最的`探究出侧面积的计算进行实际操作,最后探究出侧面积的计算方法。
2、培养了学生的合作创新意识。
在教学圆住侧面积计算方法时,教师设有拘泥于教材上把侧面积转化为长方形这一思路,而是放手让学生合作探究;能否将这个曲布置民化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开。结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等两面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的创意识。
【3】。
1、重学生学习的过程。传统中的教学是教师直接出示圆柱的表面积计算公式让学生进行死记硬背,然后套公式计算。这是只重结果,不重过程的现象。这节课,学生初步了解了圆柱的表面是由两个相同的底面和一个侧面构成的,计算圆柱底面积就是计算圆面积。我在学生初步理解圆柱表面积的含义后,重点安排学生进行圆柱侧面积计算方法的探索。学生通过剪、卷、滚等一系列活动探索出圆柱的侧面是一个长方形,从而推导出圆柱侧面积计算公式。
【4】。
在课后总结质疑时,学生一共提了两个问题:
问题一:计算圆柱的侧面积时,算不算接头处重叠的面积。
问题二:计算无盖塑料盒的面积时,算不算里面的面积。
其它数学问题的思考。
养成良好的习惯。同时我也反思,有序书写是在我的反复追问下,才有一个学生提到的,可见在平时的教学中对知识之外的情感、态度和价值观关注不够。
2023年圆柱的表面积教案人教版(汇总16篇)篇六
2.掌握圆柱侧面积和表面积的计算方法.。
3.会正确计算圆柱的侧面积和表面积.。
教学重点。
理解求表面积、侧面积的计算方法,并能正确进行计算.。
教学难点。
能灵活运用表面积、侧面积的有关知识解决实际问题.。
教学过程。
一、复习准备。
(一)口答下列各题(只列式不计算).。
1.圆的半径是5厘米,周长是多少?面积是多少?
2.圆的直径是3分米,周长是多少?面积是多少?
(二)长方形的面积计算公式是什么?
(三)回忆圆柱体的特征.。
二、探究新知。
(一)圆柱的侧面积.。
1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.。
(二)教学例1.。
1.出示例1。
例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积.(得数保留两位小数)。
2.学生独立解答。
教师板书:3.14×0.5×1.8。
=1.75×l.8。
≈2.83(平方米)。
答:它的侧面积约是2.83平方米.。
3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积.。
1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积.。
2.比较圆柱体的表面积和侧面积的区别.。
(四)教学例2.。
1.出示例2。
例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
2.学生独立解答。
侧面积:2×3.14×5×15=471(平方厘米)。
底面积:3.14×=78.5(平方厘米)。
表面积:471+78.5×2=628(平方厘米)。
答:它的表面积是628平方厘米.。
3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.。
(五)教学例3.。
1.出示例3。
例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)。
2.教师提问:解答这道题应注意什么?
3.学生解答,教师板书.。
水桶的侧面积:3.14×20×24=1507.2(平方厘米)。
水桶的底面积:3.14×。
=3.14×。
=3.14×100。
=314(平方厘米)。
需要铁皮:1507.2+314=1821.2≈1900(平方厘米)。
答:做这个水桶要用1900平方厘米.。
5.“四舍五入”法与“进一法”有什么不同.。
(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.。
三、课堂小结。
2023年圆柱的表面积教案人教版(汇总16篇)篇七
教学重点。
理解求表面积、侧面积的计算方法,并能正确进行计算、
教学难点。
能灵活运用表面积、侧面积的有关知识解决实际问题、
教学过程。
一、复习准备。
(一)口答下列各题(只列式不计算)、
1、圆的半径是5厘米,周长是多少?面积是多少?
2、圆的直径是3分米,周长是多少?面积是多少?
(二)长方形的面积计算公式是什么?
(三)回忆圆柱体的特征、
二、探究新知。
(一)圆柱的侧面积、
1、学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系、
(二)教学例1、
1、出示例1。
例1、一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积、(得数保留两位小数)。
2、学生独立解答。
教师板书:3.14×0.5×1.8。
=1.75×l.8。
≈2.83(平方米)。
答:它的侧面积约是2。83平方米、
3、反馈练习:一个圆柱,底面周长是94。2厘米,高是25厘米,求它的侧面积、
1、教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积、
2、比较圆柱体的表面积和侧面积的区别、
(四)教学例2、
1、出示例2。
例2、一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
2、学生独立解答。
侧面积:2×3。14×5×15=471(平方厘米)。
底面积:3。14×25=78。5(平方厘米)。
表面积:471+78。5×2=628(平方厘米)。
答:它的表面积是628平方厘米、
3、反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积、
(五)教学例3、
1、出示例3。
例3、一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)。
2、教师提问:解答这道题应注意什么?
3、学生解答,教师板书、
水桶的侧面积:3。14×20×24=1507。2(平方厘米)。
水桶的底面积:3。14×。
=3。14×。
=3。14×100。
=314(平方厘米)。
需要铁皮:1507。2+314=1821。2≈1900(平方厘米)。
答:做这个水桶要用1900平方厘米、
5、“四舍五入”法与“进一法”有什么不同、
(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一、
三、课堂小结。
四、巩固练习。
(一)求出下面各圆柱的侧面积、
1、底面周长是1。6米,高是0。7米。
2、底面半径是3。2分米,高是5分米。
(二)计算下面各圆柱的表面积、(单位:厘米)。
(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积、(有盖和无盖两种)。
五、课后作业。
(二)一个圆柱的侧面积是188。4平方分米,底面半径是2分米,它的高是多少分米?
六、板书设计。
探究活动。
面包的截面。
活动目的。
培养学生的观察能力和操作能力,发展学生的空间观念、
活动题目。
有一个圆柱形的面包,要切一刀把它分成两块,截面会是什么形状的图形?
活动过程。
1、学生分组讨论、
2、利用橡皮泥捏一个圆柱体,进行实验,验证结论、
3、画出截面图,表示结论,发展空间观念、
参考答案。
1、沿水平方向横切一刀,截面是圆形、(如图1)。
2、沿垂直方向纵切一刀,截面是一个长方形、(如图2)。
3、沿侧面斜切一刀,会形成大小不一的椭圆形、(如图3)。
4、从顶面向侧面斜切一刀,会形成椭圆的一部分、(如图4)。
5、从上底面斜切一刀到下底面,会形成椭圆的一部分、(如图5)。
(图1)(图2)(图3)(图4)(图5)。
2023年圆柱的表面积教案人教版(汇总16篇)篇八
1、合理的利用教材。
圆柱体的表面积这部分教学内容包括:圆柱的侧面积,表面积的计算,表面积在实际计算中的应用。上老师在进行教学时,将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学。教学设计和安排既源于教材,又不同于教材。整堂课容量较大,但学生学的轻松,教学效果也比较明显。
2、教师的主导与学生主体的统一。
本堂课在教学上采用了引导、放手、引导的方法,通过教师的导,鼓励学生积极主动的探究。
新课前的复习,由平面图形到立体图形,由长、正方体的表面积到圆柱体的表面积。通过圆柱体模型的演示,引导学生复习圆柱体的特征,进而理解圆柱体的表面积的.意义。
在教学侧面积的计算时,先让学生思考该怎样计算,再让学生动手探究。在实践中,学生很清楚地看到圆柱体的侧面展开是一个长方形(正方形、平行四边形等),求圆柱体的侧面积实际上就是求一个长方形的面积。
在学生会求侧面积的基础上,再加上两个圆面积,从而总结出求表面积的计算方法,使学生认识到立体转平面,形变量不变的辨证关系,培养学生的观察分析能力。
二、不足。
圆柱体的物体在生活中很普遍,如学生的透明胶带,矿泉水瓶盖等,让学生动手测量这些物体的有关数据,解决实际问题,学生的兴趣会更高写,也让数学回归到生活。
练习中,出现三个不同直径的圆,而出示的图片却是三个圆同样大,直观效果不明显。
2023年圆柱的表面积教案人教版(汇总16篇)篇九
2.掌握圆柱侧面积和表面积的计算方法。
(二)能力目标。
能灵活运用求表面积、侧面积的有关知识解决一些实际问题。
教学重点。
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点。
能灵活运用表面积、侧面积的有关知识解决实际问题。
教具学具准备。
1.教师、学生每人用硬纸做一个圆柱体模型。
2.投影片。
教学过程:
生:我想对老师们说,我们一定会好好表现的,不会让你们失望。
生:我们的课堂将比赛场更精彩……。
师:我坚信你们一定不会让老师失望的。
一、引入新课:
生:圆柱是由平面和曲面围成的立体图形。
生:我还知道圆柱各部分的名称……。
生:把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。
课件演示这一过程。
师:你们对圆柱已经知道得这么多了,真了不起,还想对它作进一步的了解吗?(生:想)。
师:你还想知道什么呢?
生:还想知道怎么求它的表面积......
二、探究新知。
指名学生摸其表面积,并追问:怎样求它的表面积?
学生汇报:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。(教师板书)。
师:两个底面是圆形的我们早就会求它的面积,而它的侧面是一个曲面,怎样计算它的侧面积呢?(请同学们讨论一下,我们看哪个小组最先找到突破口)。
小组代表汇报:把圆柱的侧面沿着它的一条高展开得到一个长方形,长方形的面积等于长乘宽,而这个长方形的长正好等于圆柱的底面周长,宽等于圆柱的高,所以我们由此推出:圆柱的侧面积就等于底面周长乘高。
师:大家同意他们的推理吗?(生:我们讨论的结果也跟他们一样)你们能够利用以前的经验,把它变成我们学过的图形来计算,太棒了。
课件展示其变化过程。
师生小结:(教师板书)侧面积=底面周长×高。
(评价:在体育赛场上你们是我的骄傲,在课堂上你们更是我的自豪)。
师:让我们用热烈的掌声庆祝一下我们的成功。(掌声……)。
投影呈现例一:一个圆柱,底面直径是0、4米,高是1、8米,求它的侧面积。
(1)学生独立解答。
(2)投影呈现学生的解答,并让其讲清自己的解题思路。
师:通过刚才的解题思路说明要计算圆柱的侧面积需要抓出哪两个量?
生:底面周长和高。
师:无论是直接告诉,还是间接告诉,只要能求出底面周长和高就可以求出其侧面积。
师:求侧面积似乎难不住大家,现在再加一问,你们还能行吗?(教师在例一的后面加上求它的侧面积和表面积)。
教师巡视,让一个学生板演,要求学生分步做,并标明每步求的是什么)。
指名学生说解题思路,
师:这说明要计算圆柱的表面积需要抓出哪两个量?
生:底面积和侧面积。
3、反馈练习:(略)。
师:想一想,应该先求什么?再求什么?请大家动手试一试。
4实践运用:师:在实际生活中计算某些圆柱的表面积时,要根据具体情况灵活运用公式,比如,求一个无盖的水桶的表面积,烟筒的表面积应该是怎样的呢?(生:略)。
三、全课小结:这节课你有什么收获?
你有没有想提醒同学们注意的地方?
生:要注意单位,还要注意所要求得圆柱有几个底面……。
最后,你们猜猜听课的老师对你们的表现是否满意?你觉得自己的表现如何?(生:略)。
2023年圆柱的表面积教案人教版(汇总16篇)篇十
2.计算下面圆柱的侧面积(口头列式):
(1)底面周长4.2厘米,高2厘米。
(2)底面直径3厘米,高4厘米。
(3)底面半径1厘米,高3.5厘米。
4.引入新课。
我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)。
2023年圆柱的表面积教案人教版(汇总16篇)篇十一
目标。
1、知道圆柱侧面积和表面积的含义。
2、通过操作推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。
重点。
圆柱侧面积和表面积的计算方法。
难点。
运用所学的知识解决简单的实际问题。
学 习 过 程。
师生笔记。
知识链接:
1、用公式表示出圆的半径、直径、周长、面积之间的关系。
2、圆柱的上下两个底面都是( ),它们的面积( )。
3、长方形的面积= 。
长方体的表面积= 。
正方体的表面积= 。
知识超市:
操作:(一)试一试,怎样可以得到圆柱形的侧面展开图?
把圆柱的侧面沿高剪开,展开图是( ),圆柱的底面周长就是它的( ),圆柱的高就是它的( )。
计算圆柱的侧面积实际就是计算( )。
(1)一个圆柱,底面周长是1.6m,高是0.7m,求它的侧面积。
(2)一个圆柱,底面直径是5cm,高是10cm,求它的侧面积。
操作(二)有两底的圆柱展开后呈什么形状?
圆柱是由( )和( )三部分组成的。
圆柱的表面积包括( )和( )。
(3)一个圆柱的高是15厘米,底面半径是5厘米,求它的表面积。
我会用:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)。
想:求做这样一顶厨师帽需用多少面料,实际上就是求这顶圆柱形厨师帽的( ),厨师帽由_________和__________组成。
列式计算:。
达标检测:
2023年圆柱的表面积教案人教版(汇总16篇)篇十二
教学要求:
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学难点:圆柱体侧面积计算方法的推导。
教具:圆柱体教具、多媒体课件。
学具:圆柱形纸筒、笔筒等。
教学过程:
师:(拿着圆柱模型)昨天我们认识了圆柱,谁来说说圆柱有哪些特征?(学生回答略)。
师:拿出圆柱形状的罐头,辨析:外面的商标纸的面积就是圆柱的什么?学生(圆柱的侧面积)。好,今天我们首先来探讨圆柱的侧面积。(板书:圆柱的侧面积)。
师:想一想如何计算包在外面的商标纸的面积?
生:圆柱的侧面是一个曲面,所以商标纸包在外面也是曲面,必须要把它拿下来。
师:说的对呀,那么怎么把商标纸拿下来,拿下来后和圆柱有什么关系?请同学们小组合作,拿出你们带来的圆柱形物体,动手操作去探究,去发现。
汇报交流:
生1:我们是沿着圆柱的高剪开的,剪开后就是一个长方形,-----。
(还没有等他说完,另一个学生就抢着说)。
生2:我们是斜着剪的,剪开后得到一个平行四边形;
我再问:还有不同的剪法吗?
生3:我没有剪,就是沿着罐头的接头撕开的,展开后也是一个长方形。
生4:我这个圆柱的商标纸有点紧,我撕得有点破,不太像长方形。
生5:简单,用我们上学期学的转化法就行了。接着他说了方法:就是再把那两种沿着高对折,剪开重新拼成长方形。
我照着他说的做演示,并且大声表扬他说:“同学们,这并不简单,转化方法是一种非常重要的数学思想方法,学会用它,就会化难为易,化复杂为简单啦!”
师:那么,我们可以总结一下,把圆柱的侧面沿着高剪开可以得到一个什么形?
师:这时,长方形的长和宽与圆柱有什么关系呢?(引导学生观察、发现)。
生:长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,得到圆柱的侧面积=底面周长×高。
生:老师,平行四边形也能推导出来,不需要变成长方形!让他来说说看,平行四边形的底就是圆柱的底面周长,平行四边形的高就是圆柱的高,也能推出来。我们给他以热烈的掌声,为他的精彩发言而喝彩!
生6:老师,刚才我没有用剪刀剪开,也没有撕,我也能推导出圆柱侧面积的计算方法。接着他边做边说:我这个商标纸有点松,我直接拖下来压平,这时也是一个长方形,长方形的长就是圆柱的底面周长的一半,长方形的宽就是圆柱的高,长方形的面积×2就是圆柱的侧面积,也就是底面周长的一半×高×2,所以圆柱的侧面积=底面周长×高。
师:今天同学们表现真不错,通过自己的探究活动,有自己的亲身体验,有自己的独特发现,同时我们从不同的途径得到了一个共同的结论,真棒!下面如果用s表示侧面积,c表示底面周长,h表示高。你能写出圆柱体侧面积的公式吗?(板书:s=ch)。
基本练习(求侧面积)。
1、底面周长是1.6米,高是0.7米。
2、底面半径是3.2分米,高是5分米。
3、底面直径是10厘米,高是25厘米。
师小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。
师:我们掌握了圆柱的侧面积的计算方法,那么表面积怎样计算呢?
请大家把上节课自己制作的圆柱模型展开,观察一下,援助的表面由那几个部分组成?
生:圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
板书:圆柱的表面积=圆柱侧面积+两个底面的面积。
5.教学例4。
课件出示例4的题目。
1教师:这道题已知什么?求什么?
3教师:要求圆柱的表面积,应该先求什么?·后求什么?
使学生明白:要先求圆柱侧面积和底面积,后求表面积。
4介绍进一法。
四、学以致用,灵活运用。
师:从例4可以看出来数学来源于生活,下面我们就来解决几道生活中常出现的问题。
提高练习:
师:我们在解决实际问题时,一定要分析好求的是哪一部分的面积?在选择解答方法。
设计制作一个笔筒需要解决哪些问题呢?怎样确定笔筒的大小?
五、师小结:下课铃响起,老师希望在座的各位同学能够应用本节课所学知识制作出的笔筒送给你最喜爱的人。
六、板书设计:
圆柱的侧面积=底面周长×高。
s = ch。
圆柱的表面积=圆柱的侧面积+底面积×2。
步的几何知识概念,空间想象力的基础上进行教学的。本节课的教学目标是通过教学培养学生的合作意识和从生活实践中探求知识的学习品质;使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱体侧面积和表面积;培养学生观察、操作、概括的能力。教学的重、难点是圆柱体侧面积计算方法的推导。
教学设计意图:对于《圆柱的表面积》的教学,以往我都是在第一课时《圆柱的认识》的教学中推导出圆柱侧面积的公式,然后在第二课时《圆柱的表面积》教学时,要求学生在教师的指令下进行操作,将圆柱的侧面展开得到一个长方形,再比较两者之间的关系,从而推导出侧面积公式,然后通过一系列的练习来加深巩固,课堂的教学设计以练笔的形式进行教学,但这样的教学学生的学习效果不明显,容易把求表面积中所应用到的公式混淆在一起,而且这种教学手段学生是在老师的牵引下被动学习,不利于学生创造性思维的发展,局限了学生应用已有知识去解决问题的能力。今天我再教学《圆柱的表面积》,如何让学生充分运用已有的知识经验和基本技能,用自己的思维方式去尝试解决新问题,构建新的知识,这是本节课教学设计的灵魂。
教学反思:
我首先解决的是“商标纸的面积就是圆柱的侧面积”,再进而启发学生想到“如何把商标纸拿下来”,学生自然就想到“用剪或其他方法”,探究的方向准确后,我则放手让学生去发挥,去操作,留给学生大量的思维空间。学生在活动中,会随着操作的不同而有不同的发现,个性化的精彩随之绽放!中国有句古话就是:给你点颜色,你就开染坊!我觉得确实是的,我们的学生就是这样:你给他一个探究的空间,他就会回馈你一个意想不到的惊喜,还你以一幅精彩的画面!“天高任鸟飞,海阔凭鱼跃”,只有为学生的思维提供足够的时间和空间,才能让学生“如鱼得水”,让学生的精彩得以释放,让学生的潜能得以发挥,让学生的智慧充分展示,让我们的课堂永远充满生命和活力!
2023年圆柱的表面积教案人教版(汇总16篇)篇十三
1、圆柱底面周长是20厘米,高是10厘米。
2、圆柱底面直径径是6厘米,高是3分米。
3、圆柱底面半径是3厘米,高是10厘米。
二、选择题:
1、甲乙两人分别用一张长12。56厘米、宽9。42厘米的长方形纸用两种不同的方法卷成一个圆柱体,(接头处不重合),那么卷成的圆柱体1。
a高一定相等。
b侧面积一定相等。
c侧面积和高都相等。
d侧面积和高都不相等。
2、把一个棱长是2分米的正方体削成一个最大的圆柱体,它的侧面积是()平方分米。
a。6。28b。12。56c。18。84d。25。12。
3、冬天护林工人给圆柱形的树干的下端涂防蛀涂料,那么粉刷树干的面积是指()。
a。底面积b。侧面积c。表面积d。体积。
三、综合练习。
2、是一个圆柱形状的'蛋糕盒,底面直径是20厘米,高是12厘米。
(1)做这样一个蛋糕盒需要多少硬纸板?
四、拓展练习:
思考:如果圆柱的底面周长和高相等,侧面展开是什么形状的?
2023年圆柱的表面积教案人教版(汇总16篇)篇十四
学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。
2023年圆柱的表面积教案人教版(汇总16篇)篇十五
2、探索求圆柱的侧面积、表面积的计算方法,并能运用到实际中解决问题。
3、理解和掌握圆柱侧面积、表面积的计算方法,能正确计算圆柱的侧面积、表面积。
4、培养合作意识和主动探求知识的学习品质,培养学生的创新精神和实践能力。
2023年圆柱的表面积教案人教版(汇总16篇)篇十六
(1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)。
(2)指名板演,其他学生独立完成于课堂练习本上。
2、练习二第17题。
先引导学生明确题意,求用彩纸的面积就是圆柱的表面积减去(78.5×2)平方厘米,再组织学生独立练习,集体订正。
3、练习二第13题。
(1)复习长方体、正方体的表面积公式:
长方体的表面积=(长×宽+长×高+宽×高)×2。
(2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。
4、练习二第19题。
(1)学生小组讨论:可以漆色的面有哪些?
(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。
(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留两位小数。