实用函数与方程的说课稿(模板14篇)

时间:2025-07-28 作者:紫衣梦

在编写教案模板时,要充分考虑学生的思维方式和学习习惯,以促进学生的积极主动学习和自主发展。通过阅读这些教案模板的范文,你可以了解到先进的教学理念和策略。

实用函数与方程的说课稿(模板14篇)篇一

本节课选自人教版高中数学必修一第三章第一节。是在学生学习了基本初等函数的图象和性质的基础上,引入函数零点的概念,研究函数零点与相应方程根的关系,函数零点存在的条件,及零点个数的判断方法。为后面学习“用二分法求方程的近似解”奠定基础。

二、学情分析。

高中学生有丰富的想象力,乐于探索,不满足于知识的灌输,自主学习和探索新知的习惯已初步形成,有初步的数形结合的意识,但本节课对思想方法的要求较高,而学生数学探究的能力不足,因此需要教师在方法上加强指导。

三、教学目标。

根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

(一)知识与技能。

体会方程的根与函数零点之间的关系,学会函数零点存在的判定方法,会利用函数单调性判断函数零点的个数。

(二)过程与方法。

通过观察、思考、分析、猜想、验证的过程,体验从特殊到一般及函数与方程的思想方法,提升抽象和概括能力。

(三)情感态度与价值观。

通过学习,学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,逐步养成勇于提问,善于探索的思维品质。

四、教学重难点。

我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。根据授课内容可以确定本节课的教学重点是:对函数零点概念的理解;函数零点存在性的判定。教学难点是:探究并发现零点存在性定理及其应用。

五、教学方法。

新课程标准指出,教无定法,贵在得法,教师是学生学习活动的组织者、引导者和合作者,是师生关系中平等的首席,根据这一教学理念,我主要采用启发诱导式的教学方式,鼓励学生交流,并让学生运用已学知识大胆创新。

在学法的指导上,我始终将学生放在主体地位上,使学习的主要内容不是由教师灌输给学生,而是以问题的形式呈现出来,由学生自己去思考讨论,然后内化为自己的'一部分。

六、教学过程。

(一)引入新课。

首先我会带领学生复习一元二次方程的根及判别式,一元二次函数的图象。

引发学生思考,引出课题。

复习旧知的目的是唤起学生已有的知识经验,把握好教学的起点,抓住方程的根和函数零点间的关系,引起学生学习新知的欲望。

(二)探索新知。

接下来是最重要的探索新知环节。在这一部分,我会做好教师的引导者的角色,启发引导学生自主思考、探索、交流,形成知识,从而锻炼学生发现问题、提出问题、分析问题、解决问题的能力。

实用函数与方程的说课稿(模板14篇)篇二

探究式创造性思维教学法是新课程理念下的一个科研课题.本节课就是以这一理论为指导,借助多媒体手段创设问题情境,指导学生研究式学习和体验式学习.如,函数零点与方程根之间的关系是这节课的一个重点,为了突破这一重点,在教学中利用多媒体教学,调动了学生学习的积极性,几何画板画图象,准确、直观、易于学生理解,符合学生的认知特点,调动了学生主动参与教学的积极性,使他们进行自主探究与合作交流,亲身体验知识的形成过程,变静态教学为动态教学.

2、渗透数学思想方法重在平时。

当学生有一天不再学习数学了,我们给他们留下了什么?我想应该是学生遇到具体问题时那种思考问题的方式,和解决问题的方法.本节课始终是注意数学思想方法和数学探索方式的合理渗透,如特殊一般,数形结合,类比归纳等的交叉运用.

3、问题设计合理。

通过层层深入,由浅入深,由特殊到一般的阶梯式问题,有效的降解了本课的难点,帮助学生实现了思维的腾飞.

美中不足的是教学重点不是太突出,零点的引入部分可以简化改进,使之更趋合理,零点存在性定理引入部分略显生硬,应该有更艺术的方式.高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位.函数与方程相联系的观点的建立,函数应用的意识的初步树立,应该是本节课必须承载的重要任务.在这一任务的达成度方面,本课还需更加浓墨重彩的予以突出.另外,课堂上教师怎样引导学生也是值得我深思的一个问题,还有少讲多学方面也是我今后教学中努力的方向.

实用函数与方程的说课稿(模板14篇)篇三

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、教法说明。

对于认知主体学生来说,他们已经具备了初步探究问题的能力,但是对知识的.主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在生动活泼、民主开放、主动探索的氛围中愉快地学习。

三、教学过程。

(一)感知身边数学。

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用上网收费这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成心求通而未能得,口欲言而不能说的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

(二)享受探究乐趣。

[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

[设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

(三)乘坐智慧快车。

[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:你家选择的上网收费方式好吗?再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

(四)体验成功喜悦。

1、抢答题。

2、旅游问题。

[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

(五)分享你我收获。

在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

(六)开拓崭新天地。

1、数学日记。

2、布置作业。

[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让不同的人在数学上得到不同的发展。

四、教学设计反思。

1、贯穿一个原则以学生为主体的原则。

2、突出一个思想数形结合的思想。

3、体现一个价值数学建模的价值。

4、渗透一个意识应用数学的意识。

实用函数与方程的说课稿(模板14篇)篇四

本节课选自人教版高中数学必修一第三章第一节。是在学生学习了基本初等函数的图象和性质的基础上,引入函数零点的概念,研究函数零点与相应方程根的关系,函数零点存在的条件,及零点个数的判断方法。为后面学习“用二分法求方程的近似解”奠定基础。

二、学情分析。

高中学生有丰富的想象力,乐于探索,不满足于知识的灌输,自主学习和探索新知的习惯已初步形成,有初步的数形结合的意识,但本节课对思想方法的要求较高,而学生数学探究的能力不足,因此需要教师在方法上加强指导。

三、教学目标。

根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

(一)知识与技能。

体会方程的根与函数零点之间的关系,学会函数零点存在的判定方法,会利用函数单调性判断函数零点的个数。

(二)过程与方法。

通过观察、思考、分析、猜想、验证的过程,体验从特殊到一般及函数与方程的思想方法,提升抽象和概括能力。

(三)情感态度与价值观。

通过学习,学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,逐步养成勇于提问,善于探索的思维品质。

四、教学重难点。

我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。根据授课内容可以确定本节课的教学重点是:对函数零点概念的理解;函数零点存在性的判定。教学难点是:探究并发现零点存在性定理及其应用。

五、教学方法。

新课程标准指出,教无定法,贵在得法,教师是学生学习活动的组织者、引导者和合作者,是师生关系中平等的首席,根据这一教学理念,我主要采用启发诱导式的教学方式,鼓励学生交流,并让学生运用已学知识大胆创新。

在学法的指导上,我始终将学生放在主体地位上,使学习的主要内容不是由教师灌输给学生,而是以问题的形式呈现出来,由学生自己去思考讨论,然后内化为自己的'一部分。

六、教学过程。

(一)引入新课。

首先我会带领学生复习一元二次方程的根及判别式,一元二次函数的图象。

引发学生思考,引出课题。

复习旧知的目的是唤起学生已有的知识经验,把握好教学的起点,抓住方程的根和函数零点间的关系,引起学生学习新知的欲望。

(二)探索新知。

接下来是最重要的探索新知环节。在这一部分,我会做好教师的引导者的角色,启发引导学生自主思考、探索、交流,形成知识,从而锻炼学生发现问题、提出问题、分析问题、解决问题的能力。

将本文的word文档下载到电脑,方便收藏和打印。

实用函数与方程的说课稿(模板14篇)篇五

本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。

函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图形表示看,函数的零点就是函数f(x)与x轴交点的横坐标.函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。定理不需证明,关键在于让学生通过感知体验并加以确认,由些需要结合具体的实例,加强对定理进行全面的认识,比如定理应用的局限性,即定理的前提是函数的图象必须是连续的,定理只能判定函数的“变号”零点;定理结论中零点存在但不一定唯一,需要结合函数的图象和性质作进一步的判断。

对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。

函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”。用函数的.观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。

本节是函数应用的第一课,因此教学时应当站在函数应用的高度,从函数与其他知识的联系的角度来引入较为适宜。

二、教学目标解析。

1.结合具体的问题,并从特殊推广到一般,使学生领会函数与方程之间的内在联系,从而了解函数的零点与方程根的联系。

2.结合函数图象,通过观察分析特殊函数的零点存在的特点,通过问题,理解连续函数在某个区间上存在零点的判定方法,并能由此方法判定函数在某个区间上存在零点。了解定理应用的前提条件,应用的局限性,及定理的准确结论。

3.通过具体实例,学生能结合函数的图象和性质进一步判断函数零点的个数。

4.在学习过程中,体验函数与方程思想及数形结合思想。

三、教学问题诊断分析。

1.通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。由此作为函数应用的第一课时,有必要点明函数的核心地位,即说明函数与其他知识的联系及其在生活中的应用,初步树立起函数应用的意识。并从此出发,通过问题的设置,引导学生思考,再通过实例的确认与体验,从直观到抽象,从特殊到一般的学习方式,捅破学生认识上的这层“窗户纸”。

2.对于零点存在的判定定理,教材不要求给予其证明,这需要教师提供一定量的具体案例让学生操作感知,同时鼓励学生举例来验证,最终能自主地获得并确认该定理的结论。对于定理的条件和结论,学生往往考虑不够深入,需要教师通过具体的问题,引导学生从正面、反面、侧面等不同的角度重新进行审视。

3.函数的零点,体现了函数与方程之间的密切联系,教学中应遵循高中数学以函数为主线的这一原则进行联结,侧重在从函数的角度看方程,同时为二分法求方程的近似解作知识和思想上的准备。

四、教学过程设计。

(一)创设情景,揭示课题。

函数是中学数学的核心内容,它不仅在生活中有着大量的应用,与其他数学知识有着千丝万缕的联系,若能抓住这一联系,你就拥有了一把解决问题的金钥匙。

案例1:周长为定值的矩形。

不妨取l=12。

问题1:求其面积的值:

显然面积是一个关于x的一个二次多项式。

用几何画板演示矩形的变化:

问题2:求矩形面积的最大值?

当x取不同值时,代数式的值也相应随之变化,你能从函数的角度审视其中的关系吗?

问题3:能否使得矩形的面积为8?你是如何分析的?

(1)实验演示的角度进行估计,拖动时难以恰好出现面积为8的情况;。

(2)解方程:x(6-x)=8。

问题4:

一般地,对于一般的二次三项式,二次方程与二次函数,它们之间有何联系?

结论:

代数式的值就是相应的函数值;。

更一般地。

方程f(x)=0的根,就是使函数值y=f(x)的函数值为0的x值,从函数的角度我们称之为零点。

设计意图:本节课是函数应用的第一课,有必要让学生对函数的应用有所了解。从具体的问题出发,揭示函数与代数式、方程之间的内在联系,并从学生所熟悉的具体的二次函数,推广到一般的二次函数,再进一步推广到一般的函数。

(二)互动交流研讨新知。

对于函数。

把使。

成立的实数。

叫做函数。

的零点.

2.对零点概念的理解。

案例2:观察图象。

问题1:此图象是否能表示函数?

问题2:你能从中分析函数有哪些零点吗?

问题3:从函数图象的角度,你能对函数的零点换一种说法吗?

结论:函数。

的零点就是方程。

实数根,亦即函数。

的图象与。

轴交点的横坐标.即:

方程。

有实数根。

函数。

的图象与。

轴有交点。

函数。

有零点.

设计意图:进一步掌握函数的核心概念,同时通过图象进行一步完善对函数零点的全面理解,为下面借助图象探究零点存在性定理作好一定的铺垫。

2.零点存在定理的探究。

案例3:下表是三次函数。

的部分对应值表:

问题2:结合图象与表格,你能发现此函数零点的附近函数值有何特点?

生:两边的函数值异号!

注意:函数在区间上必须是连续的(图象能一笔画),从而引出零点存在性定理.

问题4:有位同学画了一个图,认为定理不一定成立,你的看法呢?

问题5:你能改变定理的条件或结论,得到一些新的命题吗?

如3:一般化:一个函数的零点是否都可由上述的定理进行判断?(反例:同号零点,如案例2中的零点-2)。

设计意图:通过表格,是为了进一步巩固对函数这一概念的全面认识,并为观察零点存在性定理中函数值的异号埋下伏笔。通过教师的设问让学生进一步全面深入地领悟定理的内容,而鼓励学生提问,是培养学生学习主动性和创造能力必要的过程。

(三)巩固深化,发展思维。

例1、求函数f(x)=rx+2x-6的零点个数。

设计问题:

(1)你可以想到什么方法来判断函数零点?

(2)你是如何来确定零点所在的区间的?请各自选择。

(3)零点是唯一的吗?为什么?

本题可以使学生意识对零点的区间是不唯一的,为下一节二分法求方程的近似解奠定基础。

让学生进一步领悟,零点的唯一性需要借助函数的单调性。

(四)归纳整理,整体认识。

请回顾本节课所学知识内容有哪些?

所涉及到的主要数学思想又有哪些?

你还获得了什么?

(五)作业(略)。

实用函数与方程的说课稿(模板14篇)篇六

本节课安排了两个内容:一是探索一次函数与二元一次方程(组)的关系,这是本节的重点;二是综合运用函数与方程、不等式的关系解决简单的实际问题,这是本节的难点。

教师先让学生把一个具体的二元一次方程转化成一次函数,再通过画图来揭示二元一次方程与一次函数之间的关系,然后在同一坐标系中画出另一条直线,观察、思考得到二元一次方程组与一次函数之间的关系,进而得到二元一次方程组的解与两条直线交点坐标之间的关系,这些都为从函数的观点认识解方程组作好了铺垫。学生经历了前面的探究学习后,很自然从“形”的角度来认识解方程组。为了帮助学生从“数”的角度来认识解方程组,教师设计一个练习,先让学生体验再引导学生归纳结论,使学生的思维活跃起来。这种呈现知识的形式符合学生的认知规律。

在例题的教学中,教师引导学生分析题意,建立函数模型,然后让学生讨论交流比较大小的方法.对于利用图象比较大小的两种方法,第一种是教师让学生独立画图,分析比较,然后强调自变量的取值范围;对于第二种方法,教师着重引导学生作差得到一个新函数,并把要解决的`问题设计成填空的形式,让学生结合画图分析完成。

这节课较好地体现了教材的编写意图,结合实际,不误时机地对学生进行“数形结合”思想方法的教学,并让学生在动口、动手、动脑的过程中体会四个“一次”之间的关系。教师注重知识形成过程的教学,突出学生活动这条主线,多媒体辅助教学应用自然,师生互动、生生互动,较好地体现了“以人为本”的教学理念。

实用函数与方程的说课稿(模板14篇)篇七

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美,学生在探索过程中体验到的数形结合以及数学建模思想,既是对前面所学知识的升华,同时也对今后学习高中的解析几何有着十分重要的意义。

情感态度方面:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信。

从以上目标可以看出,学生既要通过对一次函数与二元一次方程(组)关系的探究,习得知识、培养能力,又要用此关系解决相关实际问题,因此,本节课的教学重点应是一次函数与二元一次方程(组)关系的探索。考虑到八年级学生的数学应用意识不强,本节课的难点应是综合运用方程(组)、不等式和函数的知识解决相关实际问题。而关键则是通过问题情境的设计,激发学生的求知欲,引导学生探索、交流,引导学生发现、分析、解决问题。

《数学课程标准》明确指出“数学教学是数学活动的教学”,“学生是数学学习的主人”。教师的职责在于向学生提供从事数学活动的机会,在活动中激发学生的学习潜能,引导学生自由探索、合作交流与实践创新。对于认知主体来说,八年级学生乐于探索,富于幻想,但他们的数学推理能力以及对知识的主动迁移能力较弱,为帮助学生更好地构建新的认知结构,促进学生的主动发展,本节课我采用情境—探究式教学法,以“情境――问题――探究――交流――应用――反思――提高”的模式展开,以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快学习。

本着重实际、重探究、重过程、重交流的教学宗旨,我将本节课的教学设计成以下六个环节:情景导入——探究合作——解决问题——巩固提高——归纳小结——布置作业。

这节课,我首先用贴近学生实际、学生感兴趣的问题——上网交费问题引导学生进入本节课的学习,充分调动学生的积极性。课件展示学生回答的用列方程组解答的过程,并提出问题:“同学们在解这个二元一次方程组时,基本上都是用的代入法或加减法,那么解二元一次方程组还有其它的方法吗?”学生讨论后可能会感到束手无策,感到原有的知识不够用了。一石激起千层浪,问题提出来后,如何解决呢?此时,作为教师,应把握好组织者、引导者和合作者的身份,不要急于发表自己的意见,而应启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的态势,从而唤起学生强烈的学习热情,使他们主动积极地投入到探索活动中来。另外,此问题的设置也为后面例题的讲解作好铺垫,有利于教学难点的突破。

为使学生更好地掌握本节课的重点知识,我遵循从特殊到一般,再从一般到特殊的认知规律,设计了以下问题“你们能否将方程转化为一次函数的形式呢?”“如果能,你们能在平面直角坐标系中能画出它的图象吗?”在学生将方程转化为一次函数的形式并画出图象后,我引导学生观察直线上的几个点,发现它们的坐标都是方程的解,紧接着问“直线上任意一点的坐标一定是方程的解吗?”“是否任意的二元一次方程都可以转化为一次函数的形式呢?”“是否所有直线上任意一点的坐标都是它所对应的二元一次方程的解呢?”学生先独立思考,然后小组讨论,不难发现:每个二元一次方程都对应一个一次函数,于是也就对应一条直线。一连串的问题由浅入深,环环相扣,引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

紧接着问学生:“你能用刚才的方法研究另一个方程2x—y=1吗?”学生在同一坐标系中画出一次函数y=2x—1的图象后,发现两条直线有一个交点,我又问“这个交点坐标与这两条直线所对应的方程的解有什么关系?与这两个方程组成的方程组的解又有什么关系?”此时,学生慢慢体会到:既然每个二元一次方程都对应一条直线,二元一次方程的每一个解又对应直线上的每一个点,那么两个二元一次方程的公共解就对应着两条直线的公共点,也就是说,二元一次方程组的解不就是对应着两条直线的交点吗?这个时期,教师应留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予及时帮助,师生共同归纳出:用画图象的'方法可以解二元一次方程组,从而解决了本节课开头所提出的问题。然后共同归纳:从“形”的角度看,解方程组相当于确定两条直线交点的坐标。这告诉我们,既可用画图象的方法可以解二元一次方程组,也可用解方程组的方法求两条直线交点的坐标。利用刚才已有的探究经验,学生很容易想到此问题的探究还可以从数的角度看,进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,这个函数值是何值。

这样,学生经过自主探索、合作交流,从数和形两个角度认识了一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,并使学习过程成为一种再创造的过程。学生从一个个小问题的回答,到最后的归纳,充分享受学习、探究带来的快乐,此时教师应充分肯定学生的探究成果,及时对学生进行鼓励,关注学生的情感体验。

为满足学生学以致用、争强好胜的心理需求,我特意设计了两个抢答题,既加强了对所学知识的消化理解,又调动了学生的积极性,更让他们在抢答中品味到了成功的快乐。趁着学生高涨的情绪,我迅速引入开头部分意犹未尽的上网收费问题,加以变式,再次激起学生强烈的求知欲望和主人翁的学习姿态。经过一番探索,学生可能想到:要选择合理的收费方式就需要对它们所收费用的大小进行比较,因此一定会有学生用过去的知识——方程或不等式解决问题,对于这部分学生的想法要给予充分的肯定表扬,然后继续提问“你能用今天所学的图象法来解决这个问题吗?”引导学生建立函数模型进行探索。

学生在同一坐标系中分别画出两个一次函数的图象后,我引导学生观察图象的特征,学生讨论后发现当0≤x400时,红色点在蓝色点的上方;当x=400时,红色点与蓝色点重合;当x400时,红色点在蓝色点的下方,这样利用直线上点位置的高低直观地比较函数值的大小,从而找到答案。为避免图象法作图误差造成的不足,可引导学生通过代数计算求出交点坐标。为培养学生一题多解的能力,我启发学生用作差法,类似地用点位置的高低直观地找到y0,y=0及y0时所对应的x的范围,进而得到答案。通过对实际问题的探究,学生可以发现图象法的直观性,体会数形结合这一思想方法的应用,并学会用函数的观点,动态地分析不等式和方程(组)。

为了巩固学生的学习成果,我把刚刚结束不久的铁山矿冶文化旅游节带进课堂,让学生欣赏一组美丽的黄石矿冶文化景点图片,在学生体验家乡美好的轻松愉快氛围中,我再一次出示了一个与之有关的旅游购票问题,并鼓励学生用不同的方法进行解答,进一步培养学生应用数学的意识,从而更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

在课堂临近尾声时,引导学生对本节课所学进行小结,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。尝试开放式课堂教学,以真正体现学生的主体地位,使课堂活动民主化,多样化。

本节课的作业由必做题和选做题组成,体现分层教学,让不同的学生在数学上得到不同的发展。

这节课,我始终贯穿以学生为主体的原则,突出数形结合的思想,体现数学建模的价值,渗透应用数学的意识,关注学生个性的发展,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的学生在数学的各个不同方面上都得到不同的发展。

实用函数与方程的说课稿(模板14篇)篇八

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、教法说明。

对于认知主体――学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

三、教学过程。

(一)感知身边数学。

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

教学引入。

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:

场景一:正方形折叠演示。

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质―边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。]。

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课。

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

场景二:正方形的性质。

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]。

动画演示:

场景三:矩形的性质。

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]。

动画演示:

场景四:菱形的性质。

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

[学生活动:积极思考,有同学做跃跃欲试状。]。

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

(二)享受探究乐趣。

[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

[设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

(三)乘坐智慧快车。

[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

(四)体验成功喜悦。

1、抢答题。

2、旅游问题。

[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

(五)分享你我收获。

在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

(六)开拓崭新天地。

1、数学日记。

2、布置作业。

[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让“不同的人在数学上得到不同的发展”。

四、教学设计反思。

1、贯穿一个原则――以学生为主体的原则。

2、突出一个思想――数形结合的思想。

3、体现一个价值――数学建模的价值。

4、渗透一个意识――应用数学的意识。

实用函数与方程的说课稿(模板14篇)篇九

各位老师,你们好!我今天说课的内容是《一次函数》,现在给大家说一说当初我是如何跟学生一起学习这节内容的,希望各位多加指导!我将从以下几个方面给大家做一详细介绍:

(一)本节内容在教材中的地位和作用。

本课的内容是人教版八年级上册第14章第2节第2课时,就是课本115到116页的内容。在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

(二)说教学目标。

基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

知识技能:

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会利用两个合适的点画出一次函数的图象;

数学思考:

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度:

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

(三)说教学重点难点。

教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

1、教学方法。

依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:

1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

2、直观教学法——利用多媒体现代教学手段。

目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导。

做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本着这样的原则,课上指导学生采用以下学习方法。

1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。

2、指导学生观察图象,分析材料。培养观察总结能力。

(一)、创设情境,导入新课。

活动1:观察:

展示学生作图作品(书p28例2),强调列表及图象上的点的对应关系。

课前一两分钟对学生上交的作图作品进行快速筛选,进量多选出一部分,课上多肯定多表扬多鼓励。再从中选取一两幅优秀的作品上课为示例。

目的有四:

2、课上展示学生作品本身就是对学生完成作业情况的肯定,这又恰好给予了学生足够的成功感和荣誉感,这便增加了学生学习数学的信心,乐意学习数学,激发了学习热情,听课更加专心。

3、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

4、令教师对学生有了更深层次的了解,能更好地把握课堂。

(二)尝试探索、体验新知:

活动1、观察探索:

比较两个函数图象的相同点与不同点?

第一步;根据你的观察结果回答问题。(书中原问题1、2、3)。

目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(—b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

活动2:知识再体验:在同一直角坐标系中画出四个k值不同的一次函数图象,并观察分析。

目的:进一步巩固两点作图法,为探究一次函数的性质作准备。

活动3:展示“上下坡”材料,解决象限问题。(多媒体展示)。

目的:让学生触发漫画中“上下坡”的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

活动4:师生互动(师生角色互换),提高拓展。(多媒体展出内容)。

目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

(三)课堂小结。

引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受。

目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。

(四)作业布置。

加强“教、学”反思,进一步提高“教与学”效果。

采用了如下板书,要点突出,简明清晰。

正比例函数图像的画法:确定两点为(0,0)和(1,k)一次函数选择的两点为:(0,k)和(—bk,0)。

实用函数与方程的说课稿(模板14篇)篇十

线性约束条件:关于x、y的一次不等式(或方程)组成的不等式组所表示的平面区域。

线性目标函数:目标函数为x、y的一次解析式。(目标函数:欲达到最大值或最小值所涉及的变量x、y的解析式。)。

线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题。

可行解:满足线性约束条件的解(x、y)。

可行域:所有可行解组成的集合。

最优解:使目标函数取得最大值或最小值的可行解。

父母的殷切期望,亲人们的寄托,老师的期待,社会的希望,升学的压力,学习任务的繁重,为自己前途的打算……那是一条条不等式画出的线条,那斜率相差无几的线条,却是数也数不清的线条。于是构成了一个诺大的区域,线条密集得让人头皮发麻。擦去边角多余的线条,才发现围成的区域已近乎一个圆了。再也不会有棱角,再也不会有锋芒了。

我们,就是那条目标函数。我们上下反复地移动着,只为寻求那最优解。最大值是怎样去取得最优异的学习成果;最小值就是怎样寻求最有效的学习方法,最高的学习效率。

在可行域里,我们生存的好辛苦,好疲惫。

也曾尝试挣脱那厚实的'线圈成的地方,去寻求外面那更广阔、更自由的空间,没有约束,没有沉重,没有疲惫。

可我们无法做到,我们注定在可行域里才会有意义。

也不知道,如果我们真的挣脱了,我们又将会是什么样。可我们明白,那样只会是遍体鳞伤。没有世外桃源,我们就只是生存在这个世界中,这个实实在在的,充满竞争的世界。

我们只是希望,哪天那直线的条数能被我们数清,我们又有了那棱角,那锋芒。我们每个人都有着不同的区域,形状的不同,约束条件的不同,而不是每个人都属于那个如出一辙的偌大的圆。那样,我们才是我们自己,不同于别人的自己,我们不必为寻找最优解的位置疲惫不堪,而我们要做的就是顺着最优解的方向一直走下去,把珍贵的时间用于对那种有意义的探索。而实际上,节省了寻找最优解的时间,我们也就找到了一种最优解。

我们是目标函数,我们有不同的形式,可以得到不同的结果,我们寻求最优的我们,只要那可行域简洁些,真的,我们能做的很好,在各个方面。因为,我们有能力,去一次次将我们自己、各方面的自己,放到那可行域中去试探,寻找最优解的位置。

数学课上,线性规划的题做得很麻烦,因为又是画图,又要找区域、确定目标函数、找最优解。

可我们不会怕麻烦,因为我们在寻求,寻求最优解……。

实用函数与方程的说课稿(模板14篇)篇十一

各位评委、老师们:

大家好!

今天能有这个展示的机会,得到各位评委、老师的指导,感到非常荣幸、

基于以上对教学内容的理解,结合我所教学生的特点,我确定本节课教学目标为:

1.理解一次函数与二元一次方程(组)的关系、

3.通过现实化的实际问题背景,反映祖国科技和经济的发展、

一、创设情境,提出问题。

本课的教学过程分为五个环节完成、首先请看“创设情境,提出问题”的教学过程、(插入录像1)。

设计意图:因为学生对刚学过的一次函数理解得还不够透彻,有一定的畏难情绪,并且他们对一元一次方程、二元一次方程(组)和一元一次不等式都很熟悉,因而缺乏学习这部分内容的热情,或者只是机械地背记结论,所以我从本课引入部分,就力求能马上吸引住学生。通过对一道七年级课本中曾经解决过的问题的再认识,使学生在认知上形成冲突,从而产生学习新知的需要;接着我设计了一个师生互动的游戏,使学生对老师是怎么迅速判断出方程组解的情况产生了强烈的好奇心,从而有了学习新知的强烈愿望、(插入录像2)。

二、循序渐进,学习新知。

1、进入新知的学习,我首先通过一段视频为学生创设了一个贯穿整节课的问题情境,使学生始终在倍感新鲜的环境中进行学习、本课新知由两部分构成,一是研究一次函数与二元一次方程的关系,二是研究一次函数与二元一次方程组的关系,下面请看第一部分的教学过程、(插入录像3)。

2、下面请看学生如何“研究一次函数与二元一次方程组的关系”、(插入录像4)。

三、剖析例题,巩固新知。

为了帮助学生加深对所学内容的理解,我设计了下面的例题、(插入录像5)。

四、解决问题,加深认识。

下面请看第四个环节“解决问题,加深认识”的教学过程、(插入录像6)。

五、归纳小结,布置作业。

这就是我对这节课的教学设计,其中难免有很多不足之处,真诚的希望得到各位老师的批评指正,以使我在今后的教学中加以改进、谢谢!

实用函数与方程的说课稿(模板14篇)篇十二

2、教学目标的确定及依据。

根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

(1)知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用。

(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、

分析、归纳等逻辑思维能力.。

(3)情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数。

学的精确和美妙之处,调动学生学习数学的积极性.。

3、教学重点与难点。

重点:对数函数的意义、图像与性质.。

难点:对数函数性质中对于在与两种情况函数值的不同变化.。

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生实验、观察、联想、思考、分析、归纳;

(2)采用“从特殊到一般”、“从具体到抽象”的方法;

(3)渗透类比、数形结合、分类讨论等数学思想方法.。

2、教学手段:

计算机多媒体辅助教学.。

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)类比学习:与指数函数类比学习对数函数的图像与性质.。

(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,

(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,

使问题得以圆满解决.。

1、温故知新。

设计意图:既复习了指数函数和反函数的有关知识,又与本节内容有密切关系,

有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生。

分析问题的能力.。

2、探求新知。

设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过动手操作、

观察、联想、类比、思考、分析、探索,在此过程中,通过小组讨论,

协作构建起新的知识.这充分体现了基于建构主义学习理论的探究定。

向性学习和主动合作式学习.。

3、课堂研究,巩固应用。

设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充。

分体现了数形结合和分类讨论的数学思想方法.同时为课外研究题的。

解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔.。

4、课外研究。

5、课堂小结。

引导学生进行知识回顾,使学生对本节课有一个整体把握.从三方面进行小结:

(2)掌握对数函数的图像与性质,体会类比、数形结合的思想方法;

(3)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的。

解法,体会分类讨论的思想方法.。

6、课外作业。

公式无法显示,完整word文档点击下载此文件。

实用函数与方程的说课稿(模板14篇)篇十三

各位专家,各位老师,大家好!

今天我说课的课题是“义务教育课程标准实验教科书”八年级上册第六章第五节《一次函数图象的应用》第二课时,我将分以下几个方面进行分析:

一,教材分析。

新的课程标准将初中学段的数学知识分为四个领域,“数与代数”“空间与图形”“统计与概率”“实践与综和”,每个领域在三个年级里都是螺旋上升的,由于学生在七年级下册学习了变量之间的关系,学生对函数——研究世界变化规律的一个重要模型,已经有了一定的感性认识。而且通过“一次函数图象的应用”第一节的学习,学生的识图能力增强了,通过识图解决实际问题的求知欲望更迫切了,同时本节也渗透了数形结合,形象思维能力的培养,为以后学习其他函数奠定了兴趣基础和能力基础,因此,本节课在整个教材中起到了承上启下的作用,由于本节内容针对的学习者是八年级上的学生,已经具备了一定的生活经验和初步教学活动体验,乐意并能够与同伴进行合作交流共享,为此确定目标如下:

二,教学目标。

(一)知识与技能目标。

1,经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力。

2,经历函数图象信息的识别与应用过程,发展学生的形象思维能力。

3,更进一步培养学生的识图能力,即从“形”的方面解决问题。

(二)情感与态度目标。

1,进一步形成利用函数的观点认识现实世界的意识和能力。

2,通过学生自主探索研究生活中的事例,如“台风麦莎”对岛城的影响,促进学生的思考认知能力,激发学数学用数学的兴趣,培养团队协作意识和关心时事的意识。

3,丰富学生数学学习的成功体验。

三,教学重点和难点及关键。

本节课的教学重点是进一步培养学生良好的识图能力,更深层的体会数形结合,

难点是富有挑战性的数学史料。

四,教学理念和教学方式。

本节课将采用“教师为主导,学生为主体,训练为主线,思维为核心”的教学理念,以人的“兴趣学习”和“可持续发展”为关注目标,来体现教学方式中的“新意”。

教学中将采用合作交流和自主探究的教学策略,重视培养学生的独立思考能力,“数形结合”分析问题的能力,鼓励学生大胆里利用图形解决问题,培养创新精神。

评价方式体现多元化和人性化,关注思维,即解决问题的过程,淡化对知识的机械记忆,针对个人和小组进行及时的赞赏和肯定。

五,教学媒体和教学技术选用。

为使教学活动更有效,符合八年级上学生的年龄特点,需要教学媒体技术的支持,丰富学生的认知资源,拓展学生的思维空间。

六,教学和活动过程。

(一)教学准备:1,提前一天了解“麦莎”的有关内容。

(二)教学过程。

全课分为五个教学环节。

1,情景引入学习新知。2分钟。

2,议一议探索新知。8分钟。

3,练一练巩固新知。10分钟。

4,试一试开阔思路。5分钟。

5,读一读培养兴趣。7分钟。

6,练一练巩固新知。8分钟。

7,想一想感悟收获。4分钟。

8,布置作业。1分钟。

具体过程如下:(多媒体课件)。

将本文的word文档下载到电脑,方便收藏和打印。

实用函数与方程的说课稿(模板14篇)篇十四

各位专家,各位老师,大家好!

今天我说课的课题是“义务教育课程标准实验教科书”八年级上册第六章第五节《一次函数图象的应用》第二课时,我将分以下几个方面进行分析:

新的课程标准将初中学段的数学知识分为四个领域,“数与代数”“空间与图形”“统计与概率”“实践与综和”,每个领域在三个年级里都是螺旋上升的,由于学生在七年级下册学习了变量之间的关系,学生对函数——研究世界变化规律的一个重要模型,已经有了一定的感性认识。而且通过“一次函数图象的应用”第一节的学习,学生的识图能力增强了,通过识图解决实际问题的求知欲望更迫切了,同时本节也渗透了数形结合,形象思维能力的培养,为以后学习其他函数奠定了兴趣基础和能力基础,因此,本节课在整个教材中起到了承上启下的作用,由于本节内容针对的学习者是八年级上的学生,已经具备了一定的生活经验和初步教学活动体验,乐意并能够与同伴进行合作交流共享,为此确定目标如下:

(一)知识与技能目标。

1,经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力。

2,经历函数图象信息的识别与应用过程,发展学生的形象思维能力。

3,更进一步培养学生的识图能力,即从“形”的方面解决问题。

(二)情感与态度目标。

1,进一步形成利用函数的观点认识现实世界的意识和能力。

2,通过学生自主探索研究生活中的事例,如“台风麦莎”对岛城的影响,促进学生的思考认知能力,激发学数学用数学的兴趣,培养团队协作意识和关心时事的意识。

3,丰富学生数学学习的成功体验。

本节课的教学重点是进一步培养学生良好的识图能力,更深层的体会数形结合,

难点是富有挑战性的数学史料。

本节课将采用“教师为主导,学生为主体,训练为主线,思维为核心”的教学理念,以人的“兴趣学习”和“可持续发展”为关注目标,来体现教学方式中的'“新意”。

教学中将采用合作交流和自主探究的教学策略,重视培养学生的独立思考能力,“数形结合”分析问题的能力,鼓励学生大胆里利用图形解决问题,培养创新精神。

评价方式体现多元化和人性化,关注思维,即解决问题的过程,淡化对知识的机械记忆,针对个人和小组进行及时的赞赏和肯定。

为使教学活动更有效,符合八年级上学生的年龄特点,需要教学媒体技术的支持,丰富学生的认知资源,拓展学生的思维空间。

(一)教学准备:1,提前一天了解“麦莎”的有关内容。

(二)教学过程。

全课分为五个教学环节。

1,情景引入学习新知。2分钟。

2,议一议探索新知。8分钟。

3,练一练巩固新知。10分钟。

4,试一试开阔思路。5分钟。

5,读一读培养兴趣。7分钟。

6,练一练巩固新知。8分钟。

7,想一想感悟收获。4分钟。

8,布置作业。1分钟。

具体过程如下:(多媒体课件)。

猜你喜欢 网友关注 本周热点 精品推荐
策划方案的编写应该以简洁、清晰、具体的方式呈现,方便相关人员理解和执行。如果你对策划方案的编写感到困惑,不妨先来看看以下这些范文,或许能给你带来灵感。
心得体会是我们在一段时间内对自己的成长和发展,对他人的影响和帮助等方面进行总结和思考的结果。在这里,小编为大家整理了一些精彩的心得体会范文,希望能对大家有所帮助
通知的内容通常包括时间、地点、具体事项和联系方式等,以确保信息的准确性和传达的完整性。为了帮助你更好地撰写通知,我们特别整理了一些通知写作的技巧和注意事项,供你
通过写心得体会,可以借鉴他人的经验和教训,避免重复犯错。在下面,我们一起来看看一些别人的心得体会,从中反思和总结自己的经验和感悟。随着时代的发展,生物制药专业逐
租赁合同可以保障承租人的居住权益,也为出租人提供了法律保障。请大家在使用这些租赁合同范文时,根据具体情况进行修改和调整,以满足自身需求。甲方与乙方经友好协商,现
在制定活动方案时,要充分考虑风险和变数,制定相应的预案和应急措施。以下是小编为大家整理的一些活动方案范例,供大家参考和借鉴。本公司是上海大众在xxx地区特约指定
通过写工作心得,可以帮助我们发现和解决工作中的问题,并提出改进和创新的建议。以下是小编为大家收集的工作心得范文,供大家参考和借鉴,欢迎大家一起来学习和交流。
在培训过程中,我们不仅要听讲座、参加讨论,还要积极思考并写下自己的培训心得。培训心得范文可以帮助我们更好地了解培训的内容和目的,提高学习的效果。小学语文教师培训
通过个人总结,我们可以看到自己的成长轨迹,感受到自己的不断进步和成长,激励自己在未来更加努力。在下面的范文中,我们能够看到不同人在个人总结中所展现出的风格和特点
每一次的心得体会都是一次宝贵的学习机会,可以帮助我们更好地发现自己的优点和不足。接下来是一些优秀学生的心得体会分享,让我们一起来看看他们的学习和成长经验。
读书心得是一个宝贵的学习方法,它可以帮助我们更好地掌握书中的知识,并从中获得启发和思考。以下是一些经典的读书心得文章,供大家参考和欣赏,希望能够对大家的写作有所
优秀作文需要具备清晰的逻辑结构、丰富的语言表达和深入的思考。我们特地为大家收集了一些经典的优秀作文素材,希望能够激发大家的写作灵感。古代时有名人利用“悬梁刺股”
工作是我们与社会互动的桥梁,通过工作,我们可以发挥自己的专长,为社会做出贡献,实现自我价值。以下是小编为大家整理的用工技巧和方法,希望能对大家的工作有所帮助。
助学金申请书不仅要突出自身的困难,还要展示自己的优势和未来的潜力,让评委相信我们值得获得资助。这些助学金申请书范文是根据实际申请情况和成功案例整理而成的,希望能
心得体会是对所经历事物的感悟和理解,有助于我们提升自己的思考能力。以下是我为大家精选的一些心得体会范文,希望对大家有所帮助。钳工作为一种基本职业,其在现代工业生
通过总结个人心得体会,我们能够更好地规划未来的发展方向,做出更明智的决策和选择。下面是一些学生的心得体会,他们通过努力和积累发现了一些学习方法和心得。
读后感是我们对阅读过程中的感受和思考进行总结和概括的一种方式,它能够帮助我们更好地理解和消化所读的内容。为了帮助大家提高读后感的写作水平,以下是一些优秀的读后感
作文是一种表达思想与感情的艺术形式,我们需要写一篇优秀的作文来展现自己的才华。小编为大家整理了一些优秀作文范文,希望能够给大家带来一些帮助和启发。漳州港坐落在厦
在总结心得体会的过程中,我们可以更好地审视自己,发现自己的优点和不足。继续往下看,小编为大家准备了一些值得品味的心得体会,希望能够吸引你的注意力。作为一名普通的
月工作总结是我们向上级展示自己工作成果的机会,也是学习和成长的机会。以下是小编为大家收集的月工作总结范文,供大家参考借鉴。20年湖沟镇综合文化站将在县文体局的支
在幼儿园大班里,孩子们逐渐养成了自觉的学习习惯和积极的参与态度。以下是小编为大家准备的幼儿园大班总结范文,希望能给您带来些许灵感和启示。1、让幼儿初步了解自己从
月工作总结是一个让我们反思工作中得失的过程,通过总结,我们可以更好地规划和安排未来的工作。接下来请看小编为大家整理的月工作总结范文,希望对大家有所启发。
通过写心得体会,我们可以更深入地反思自己的学习或工作过程,发现其中的问题和不足。接下来是小编为大家准备的一些写心得体会的范文,希望对大家的写作有所帮助。
心得体会是在学习、工作、生活等方面经验积累后的个人总结和感悟,它能够帮助我们提高并优化自己的表现。小编为大家收集了一些优秀的心得体会范文,希望能够对大家的写作提
公司是一个复杂的组织系统,它需要各个部门之间的协同合作和有效的沟通。通过对这些公司总结范文的分析,我们可以发现共同的成功因素和管理经验。被申请人:xx有限责任公
心得体会可以成为自己的宝贵财富,对今后的学习和工作起到积极的指导作用。看看下面,小编为大家挑选了一些深入浅出的心得体会范文,希望能帮助到你。参加消防救援工作7年
在这个令人兴奋的时刻,我愿意担任主持人的责任,带领大家共同探索活动的精彩之处。接下来,我们将有幸聆听到领导的重要指示和激励的讲话。甲乙丙丁:晚上好!(合)。丙:
运动会不仅仅是比赛,更是提高身体素质和培养勇气、毅力的过程,对个人发展有着重要意义。下面是小编为大家整理的运动会优胜者的感言,让我们一起倾听他们的成功故事。
心得体会是对某一事件或经历中的感悟和领悟的总结和分享,可以帮助他人从中受益,同时也让自己更有价值感。小编为大家准备了一些优秀的心得体会范文,希望能给大家带来一些
写心得体会可以帮助我们更好地评估和提升自己的工作表现。6.在这次演讲中,我发现了自己表达的问题和改进的空间,并意识到了提高口才和沟通能力的必要性。大学时光匆匆而
申请书的核心是要体现自己与所申请的岗位或机构的匹配度。推荐阅读下面的申请书范文,或许能够帮助你提升自己申请书的撰写水平。尊敬的校团委领导:我是冶金分院电气二班
通过总结心得体会,我们可以更好地反思自己的成长和进步。如果你正在写心得体会,不妨看看以下范文,或许可以给你提供一些写作技巧。。没想到这次活动得到了广大社区居民的
心得体会是对于某个经历或学习过程的反思和总结,可以帮助我们更好地理解和应用所学知识。下面是小编为大家准备的一些心得体会范文,希望能为大家的写作提供一些参考和启示
通过总结心得体会,我们可以更好地理解自己的行为和决策,避免犯同样的错误。以下是小编为大家整理的心得体会范文,供大家参考和借鉴。结合公司党委要求,对存在的问题对照
通过转专业申请书,学生可以向相关部门清楚地表达自己对新专业的兴趣和热情。以下是小编为大家整理的转专业申请书范文,希望能给大家一些启示和参考。这些范文包括转专业的
感谢各位的光临,您的到来给我们的活动增添了无限的荣耀。精选以下总结引语,希望能够给大家带来一些启示和思考。尊敬的各位来宾,各位亲朋好友,今天是一个好日子,是一个
通过总结心得体会,我们可以提高自己的观察力和思考能力。接下来,小编为大家推荐了一些篇幅适中、内容充实的心得体会范文,希望能够对大家的写作起到一些启发和指导作用。
范文范本的阅读可以激发我们的写作灵感,帮助我们更好地表达自己的思想和观点。在参考范文范本的过程中,大家可以借鉴其中的思路和表达方式,加以运用和创新。
范文范本是对我们的写作能力进行评估和比较的一种工具,可以帮助我们发现自己的不足和提高空间。以下是小编收集的一些优秀范文范本,希望能够给大家提供一些写作的思路和方
通过总结自己的心得体会,我们可以更好地认识到自身的优点和不足,及时调整自己的学习或工作方法。下面是小编整理的一些心得体会范文,供大家阅读和学习。近日,在学校组织
心得体会是我们对自己努力和付出的一种总结,是对自己成长的肯定和认可。以下是一些写心得体会的范文,希望能给大家在写作上提供一些启发和指导。品质是企业长期的生命线,
演讲稿可以在演讲过程中提供一个结构清晰、条理明确的框架,使演讲更具逻辑性和连贯性。演讲稿范文的参考可以帮助我们更好地理解和应用演讲技巧,使我们的演讲更加生动有趣
通过培训心得的写作,可以将自己的认知和体会归纳为文字,形成自己的学习笔记。我特意搜索了一些培训心得范文,希望对大家的写作有所启发。4月3日,营口万都粤海国际会议
主持词可以借助幽默、诙谐的语言,来吸引观众的注意力,增加活动的趣味性。下面请大家静心聆听今天的专家演讲,相信会给我们带来很多启示。导语:六一儿童节即将到来,2
合同协议是商务谈判中最关键的一环,它具备法律效力,是双方约定事项的有力保障。对于合同协议的具体格式和内容,以下是一些范文供你参考。出租方:(简称:甲方)。地址:
在合作中,相互支持和互助是非常重要的,因为团队的力量来源于每个成员的贡献。以下是小编为大家收集的合作范文,仅供参考,大家一起来看看吧。夜,雨还在下。阳光点点照在
通过总结心得体会,我们可以更好地认识自己、提高自身的能力和素质。以下是一些精选的心得体会样例,希望对大家撰写自己的心得体会有所帮助。中央民族大学历史文化学院研三
申请书的撰写需要根据不同的目的和对象来进行针对性的调整和改进。阅读他人的申请书范文也能够拓宽我们的思维和视野,增加我们对不同领域和机构的了解和认识。
心得体会可以帮助我们总结经验教训,为未来的学习和工作提供有益的参考和指导。接下来是一些关于心得体会的范文案例,供大家参考和学习。朱光潜先生在他《谈美》一书的序言
写心得体会可以增强个人的自信心,让自己更加清楚地认识到自己的价值与能力。这里有一些关于心得体会的精选文章,希望可以帮助到正在写作的你。马克思主义五观、“三个离不
心得体会是通过对自己在学习、工作、生活等方面的经验和感悟进行总结和归纳,从而使我们更好地认识自己、提升自己的一种方式。小编为大家准备了一些心得体会的参考材料,希
在合作中,每个人都有自己的专长和优势,通过分享和互补,可以实现更好的结果。让我们一起来看看一些优秀团队的合作经验和故事,相信会给大家带来一些启示。甲方:____
写心得体会有助于我们发现自己的优点和不足,明确自己的长处和短板,从而更好地发展自己的个人特长和潜力。以下是一些成功的心得体会范文,希望能够帮助大家提高自己的写作
心得体会是对自己成长过程的回顾和总结,让我更加清楚了自己的长处和进步。以下是小编为大家收集的心得体会范文,希望能给大家一些启发和参考。我是一名普通的大学生,因为
优秀范文是对作者创作风格和思维方式的展示,它们能够启发我们发现自己的独特之处。让我们一起来欣赏一些优秀范文,感受其中的思想和情感的碰撞。经公开招标,甲方将___
心得体会是对自己过去行为和决策的反思和总结,可以帮助我们梳理经验、吸取教训,做出更好的选择。接下来,让我们一起欣赏一些精彩的心得体会范文,一起进步吧!
心得体会是一种反思和总结的过程,通过这种方式我们能够更好地认识自己、提高自己。英雄的心得体会,小编为大家整理了一些精选的范文,希望能给大家一些启示和思考。
护士的工作需要高度的责任心和职业道德,他们经常要处理各种紧急情况和突发情况,需要保持冷静和灵活的应对能力,所以护士是医疗团队中不可或缺的一员。下面是一些护士领导
通过撰写心得体会,我们可以更好地总结和概括自己在某一领域的经验和见解,形成自己的个人风格和特点。下面是一些优秀的心得体会范文,希望能给大家写作提供一些启示。
调研报告是对某一特定问题或现象进行深入研究和探索的一种书面成果。接下来是小编为大家提供的一些调研报告样本,希望能够给大家在撰写调研报告时提供一些思路和参考。
教案模板的作用在于帮助教师更好地组织教学内容和活动,提高教学效果。在编写教案模板时,教师可以参考同学、同事或专业教育机构的建议和指导。教学目标:1、默读课文,能
通过写心得体会,我们可以更好地反思自己的经历,并从中吸取教训,提高自己的能力。随后是一些经验丰富的作者所写的心得体会,值得我们借鉴和学习。首先是学习道路交通安全
通过写读后感,我们可以更好地理解和吸收所读的书籍,从中获取启示和提升自己的思考能力。小编为大家推荐了一些热门图书的读后感,希望能够给大家带来一些阅读的乐趣和收获
合同协议是双方达成一致的重要依据,有助于建立互信和合作关系。接下来,将为大家分享一些优秀的合同协议范例,希望能够给大家的合同写作带来一些启示。男方与女方于___
出纳需要了解公司的财务政策和制度,严格按照规定执行财务管理。小编为大家整理了一些出纳岗位的职责和要求,希望对大家有所帮助。工作计划网工作计划专区提醒各位朋友,机
竞聘是一种对自己实力的考验,我希望通过这个机会能够证明自己的能力。下面是小编为大家准备的一些优秀竞聘范文,希望能够给大家提供些许启发。尊敬的'各位领导,各位来宾
在工作心得体会中,我们可以反思自己的工作方式和效果,提高工作效率和质量。以下是一些成功企业家的工作心得体会,希望能够帮助大家更好地理解和应用在自己的工作中。
回顾过去一年在工作中遇到的挑战和成功,进行总结和思考。以下是一些优秀的个人总结案例,希望可以给大家提供写作上的灵感和思路。20xx年4月,我从区地税局调入区委办
心得体会是一种对于自己所经历过的事情的再次思考和总结,能够帮助我们更好地成长和进步。这些范文不仅仅是对过往经验的总结,更是一种对未来发展的思考和规划。
培训心得体会是一个总结经验教训,提高学习效率的过程。下面是一些优秀的培训心得体会,希望可以给大家带来一些灵感。近年来,随着新冠疫情的影响,各大企业纷纷加速了数字
教案模板是教师职业发展的重要组成部分,有利于教师的专业成长和提升。接下来是一些针对教师不同需求的教案模板,供教师根据实际情况进行选择和使用。孩子们在幼儿园游戏、
欢迎大家参加今天的活动,作为主持人,我会尽力让大家感到愉快和满意。下面是我精心为大家准备的一些主持词范例,供大家参考。友谊是人生旅途中寂寞心灵的良伴,特别是同学
心得体会可以是对自己成长过程中的反思,也可以是对某一事件的理解。以下是一些老师的心得体会,他们在教育教学中总结出了一些行之有效的方法。智能研修是指利用现代科技手
通过制定活动方案,我们可以提前预知可能出现的问题,并采取相应的解决措施。以下是小编为大家收集的活动方案范文,仅供参考,希望能给大家提供一些灵感和参考。
通过总结心得体会,我们可以更好地反思自己的成长和进步。下面是一些写心得体会的经典范文,可以帮助大家更好地理解和掌握这种写作方式。第一段:引入两会体育解读的背景和
总结是对所学知识、工作业绩和生活经历等进行概括和归纳的重要手段。欢迎大家阅读小编为大家准备的一些优秀总结范文,希望可以给大家带来一些思考和启示。教研组是实施教学
合同协议是指当事人在一定条件下自愿达成的约定,具有约束力的法律文件。在下面是一些合同协议的案例分析,希望能够对你编写合同提供一些思路。甲方有一套70平方房屋指标
在书写心得体会的过程中,我们可以更加深入地理解所学内容。小编搜集了一些写作精华的心得体会范文,希望能给大家带来一些启示。近日,我参与了一场赛课活动,这是我第一次
心得体会是对个人经历和感悟进行总结和概括的一种文字表达方式。请您阅读以下这些心得体会的例子,相信会对您撰写自己的心得体会有所帮助。在今天的英语教研活动中,教研员
写心得体会是一个反思和自我反馈的过程,可以帮助我们更加客观地认识自己的优点和不足。以下是一些有关工作经验和心得体会的文章,希望能对大家的工作产生一些积极的影响。
读书心得是在阅读一本书后对书中内容、作者观点进行总结和反思的一种写作方式,有助于加深对书籍的理解和掌握。这些范文可以帮助大家更好地把握书中的中心思想和主题,提高
6.心得体会是我们对所学内容的思考和理解,是知识积累的体现。以下是小编为大家整理的一些心得体会,希望能给大家一些参考和启发。动力绳,又称为“弹力绳”、“阻力带”
通过演讲稿的撰写,我们可以对自己要表达的内容进行精心组织,使思路更加清晰有条理。以下是小编为大家收集的学生演讲稿范文,希望能够给大家提供一些思路和启示。
生产是指将自然资源和劳动力加工转化为有用的产品或者提供有用的服务的过程。以下是小编为大家收集的生产范文,希望对大家的生产工作有所启发。生产是社会经济发展的重要环
范文范本的存在,可以激发我们对写作的兴趣和热情,提高写作的主动性和创造性。接下来,我们将通过一些实例来详细介绍如何写一篇优秀的总结。原告:姓名,性别,族别,**
毕业论文的写作过程需要学生进行广泛的文献查阅和资料搜集,以及深入的思考和分析,是一项充满挑战和机遇的任务。随着下文的阅读,大家将会看到许多精彩的毕业论文范文。
竞选是一次展示自我的机会,通过表现和演讲,候选人可以向选民展示自己的能力和观点。这是一些历届竞选的优秀作品,让我们一起来欣赏和学习吧。尊敬的学校领导、亲爱的老师
最后,汇报材料的撰写还需要进行审校和修改,确保材料的准确性和完整性。下面是一些经过认真整理的汇报材料范文,希望能够对大家的写作有所帮助。2009年度我校认真贯彻
6.心得体会是我们对所学内容的思考和理解,是知识积累的体现。以下是一份关于学习方法的心得体会,作者通过自身学习经验的总结,提出了一些高效学习的建议和方法。
培训心得体会的写作可以激发自身的学习动力和积极性,形成持续学习的习惯。下面是一些精选的培训心得体会范文,供大家参考和学习,希望能够激发大家对写作的灵感和兴趣。
三分钟,是我们生活中微小的一段时间,却能够改变很多东西。以下是小编为大家收集的三分钟内学会的技巧,供大家参考。敬爱的`陈老师、亲爱的同学们:大家好!今天是我课前
对财务工作进行总结可以帮助我们发现优势和不足,为未来的工作提供有力的参考依据。在下面的财务工作总结范文中,我们可以看到不同管理层次和职位的财务工作思路和方法。
报告范文可以用于学术研究、行业报告、工作总结等不同的领域和场景。现在,我们来一起看看以下精选的报告范文,希望对大家有所启发。为了全面提高辖区内的环境卫生水平和文
心得体会是在学习、工作、生活等方面经历一段时间后,对所获得经验和感悟进行总结和记录的一种方式。它是对自己的思考和反思,同时也是对他人分享的一种交流形式。心得体会
心得体会是对过去经历和所学知识的回顾和思考,可以帮助我们更好地应对未来的挑战。下面是一些给大家推荐的心得体会案例,希望能够对大家的写作提供借鉴。作为一名大学生,
总结心得体会可以帮助我们从中汲取经验教训,为自己的人生道路提供宝贵的指导。以下是小编为大家精选的一些优秀心得体会范文,供大家参考和借鉴。随着大学生英语学习的日益
真实、客观和有价值的心得体会可以为他人提供借鉴和启示。在这里,小编为大家推荐一些精选的心得体会范文,希望能为大家的写作提供一些参考和借鉴。近期以来,我一直沉醉在
人事管理需要进行员工绩效管理,对员工的工作表现进行评估和奖惩。小编整理了一些人事管理的常见误区,希望可以避免类似问题。在*****作为*****的这将近10个月
三分钟足够让一个人做出重要的决定,也足够改变一个人的命运。如果你不知道如何写一份完美的三分钟总结,不妨看看下面的范文。尊敬的各位领导、各位评委、各位同事:大家好
写心得体会可以促使我们思考自己在学习和生活中的表现,从而更好地规划未来的发展方向。小编整理了一些关于学习和生活中的心得体会,希望对大家有所帮助和启发。