实用函数与方程的说课稿范文(18篇)

时间:2025-06-02 作者:飞雪

教案模板的编写需要结合教学资源和教学手段,使教育技术发挥更大的作用,提高教学效果。以下是一些教案模板的示例,供大家参考和借鉴,希望能够对大家有所启发。

实用函数与方程的说课稿范文(18篇)篇一

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美,学生在探索过程中体验到的数形结合以及数学建模思想,既是对前面所学知识的升华,同时也对今后学习高中的解析几何有着十分重要的意义。

情感态度方面:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信。

从以上目标可以看出,学生既要通过对一次函数与二元一次方程(组)关系的探究,习得知识、培养能力,又要用此关系解决相关实际问题,因此,本节课的教学重点应是一次函数与二元一次方程(组)关系的探索。考虑到八年级学生的数学应用意识不强,本节课的难点应是综合运用方程(组)、不等式和函数的知识解决相关实际问题。而关键则是通过问题情境的设计,激发学生的求知欲,引导学生探索、交流,引导学生发现、分析、解决问题。

《数学课程标准》明确指出“数学教学是数学活动的教学”,“学生是数学学习的主人”。教师的职责在于向学生提供从事数学活动的机会,在活动中激发学生的学习潜能,引导学生自由探索、合作交流与实践创新。对于认知主体来说,八年级学生乐于探索,富于幻想,但他们的数学推理能力以及对知识的主动迁移能力较弱,为帮助学生更好地构建新的认知结构,促进学生的主动发展,本节课我采用情境—探究式教学法,以“情境――问题――探究――交流――应用――反思――提高”的模式展开,以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快学习。

本着重实际、重探究、重过程、重交流的教学宗旨,我将本节课的教学设计成以下六个环节:情景导入——探究合作——解决问题——巩固提高——归纳小结——布置作业。

这节课,我首先用贴近学生实际、学生感兴趣的问题——上网交费问题引导学生进入本节课的学习,充分调动学生的积极性。课件展示学生回答的用列方程组解答的过程,并提出问题:“同学们在解这个二元一次方程组时,基本上都是用的代入法或加减法,那么解二元一次方程组还有其它的方法吗?”学生讨论后可能会感到束手无策,感到原有的知识不够用了。一石激起千层浪,问题提出来后,如何解决呢?此时,作为教师,应把握好组织者、引导者和合作者的身份,不要急于发表自己的意见,而应启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的态势,从而唤起学生强烈的学习热情,使他们主动积极地投入到探索活动中来。另外,此问题的设置也为后面例题的讲解作好铺垫,有利于教学难点的突破。

为使学生更好地掌握本节课的重点知识,我遵循从特殊到一般,再从一般到特殊的认知规律,设计了以下问题“你们能否将方程转化为一次函数的形式呢?”“如果能,你们能在平面直角坐标系中能画出它的图象吗?”在学生将方程转化为一次函数的形式并画出图象后,我引导学生观察直线上的几个点,发现它们的坐标都是方程的解,紧接着问“直线上任意一点的坐标一定是方程的解吗?”“是否任意的二元一次方程都可以转化为一次函数的形式呢?”“是否所有直线上任意一点的坐标都是它所对应的二元一次方程的解呢?”学生先独立思考,然后小组讨论,不难发现:每个二元一次方程都对应一个一次函数,于是也就对应一条直线。一连串的问题由浅入深,环环相扣,引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

紧接着问学生:“你能用刚才的方法研究另一个方程2x—y=1吗?”学生在同一坐标系中画出一次函数y=2x—1的图象后,发现两条直线有一个交点,我又问“这个交点坐标与这两条直线所对应的方程的解有什么关系?与这两个方程组成的方程组的解又有什么关系?”此时,学生慢慢体会到:既然每个二元一次方程都对应一条直线,二元一次方程的每一个解又对应直线上的每一个点,那么两个二元一次方程的公共解就对应着两条直线的公共点,也就是说,二元一次方程组的解不就是对应着两条直线的交点吗?这个时期,教师应留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予及时帮助,师生共同归纳出:用画图象的'方法可以解二元一次方程组,从而解决了本节课开头所提出的问题。然后共同归纳:从“形”的角度看,解方程组相当于确定两条直线交点的坐标。这告诉我们,既可用画图象的方法可以解二元一次方程组,也可用解方程组的方法求两条直线交点的坐标。利用刚才已有的探究经验,学生很容易想到此问题的探究还可以从数的角度看,进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,这个函数值是何值。

这样,学生经过自主探索、合作交流,从数和形两个角度认识了一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,并使学习过程成为一种再创造的过程。学生从一个个小问题的回答,到最后的归纳,充分享受学习、探究带来的快乐,此时教师应充分肯定学生的探究成果,及时对学生进行鼓励,关注学生的情感体验。

为满足学生学以致用、争强好胜的心理需求,我特意设计了两个抢答题,既加强了对所学知识的消化理解,又调动了学生的积极性,更让他们在抢答中品味到了成功的快乐。趁着学生高涨的情绪,我迅速引入开头部分意犹未尽的上网收费问题,加以变式,再次激起学生强烈的求知欲望和主人翁的学习姿态。经过一番探索,学生可能想到:要选择合理的收费方式就需要对它们所收费用的大小进行比较,因此一定会有学生用过去的知识——方程或不等式解决问题,对于这部分学生的想法要给予充分的肯定表扬,然后继续提问“你能用今天所学的图象法来解决这个问题吗?”引导学生建立函数模型进行探索。

学生在同一坐标系中分别画出两个一次函数的图象后,我引导学生观察图象的特征,学生讨论后发现当0≤x400时,红色点在蓝色点的上方;当x=400时,红色点与蓝色点重合;当x400时,红色点在蓝色点的下方,这样利用直线上点位置的高低直观地比较函数值的大小,从而找到答案。为避免图象法作图误差造成的不足,可引导学生通过代数计算求出交点坐标。为培养学生一题多解的能力,我启发学生用作差法,类似地用点位置的高低直观地找到y0,y=0及y0时所对应的x的范围,进而得到答案。通过对实际问题的探究,学生可以发现图象法的直观性,体会数形结合这一思想方法的应用,并学会用函数的观点,动态地分析不等式和方程(组)。

为了巩固学生的学习成果,我把刚刚结束不久的铁山矿冶文化旅游节带进课堂,让学生欣赏一组美丽的黄石矿冶文化景点图片,在学生体验家乡美好的轻松愉快氛围中,我再一次出示了一个与之有关的旅游购票问题,并鼓励学生用不同的方法进行解答,进一步培养学生应用数学的意识,从而更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

在课堂临近尾声时,引导学生对本节课所学进行小结,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。尝试开放式课堂教学,以真正体现学生的主体地位,使课堂活动民主化,多样化。

本节课的作业由必做题和选做题组成,体现分层教学,让不同的学生在数学上得到不同的发展。

这节课,我始终贯穿以学生为主体的原则,突出数形结合的思想,体现数学建模的价值,渗透应用数学的意识,关注学生个性的发展,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的学生在数学的各个不同方面上都得到不同的发展。

实用函数与方程的说课稿范文(18篇)篇二

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

教学重难点。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

教学过程。

(一)引入新课。

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

(二)进行新课。

填空:二元一次方程可以转化为________。

(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。

进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

3、列一元二次不等式。

解法1:设上网时间为分,若按方式a则收元;若按方式b则收元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式a省钱;当上网时间等于400分时,选择方式a、b没有区别;当上网时间多于400分时,选择方式b省钱。

解法2:设上网时间为分,方式b与方式a两种计费的差额为元,得到一次函数:,即,然后画出函数的图象,计算出直线与轴的交点坐标,类似地用点位置的高低直观地找到答案。

注意:所画的函数图象都是射线。

4、习题。

(1)、以方程的解为坐标的所有点都在一次函数_____的图象上。

(2)、方程组的解是________,由此可知,一次函数与的图象必有一个交点,且交点坐标是________。

5、旅游问题。

古城荆州历史悠久,文化灿烂。

实用函数与方程的说课稿范文(18篇)篇三

探究式创造性思维教学法是新课程理念下的一个科研课题.本节课就是以这一理论为指导,借助多媒体手段创设问题情境,指导学生研究式学习和体验式学习.如,函数零点与方程根之间的关系是这节课的一个重点,为了突破这一重点,在教学中利用多媒体教学,调动了学生学习的积极性,几何画板画图象,准确、直观、易于学生理解,符合学生的认知特点,调动了学生主动参与教学的积极性,使他们进行自主探究与合作交流,亲身体验知识的形成过程,变静态教学为动态教学.

2、渗透数学思想方法重在平时。

当学生有一天不再学习数学了,我们给他们留下了什么?我想应该是学生遇到具体问题时那种思考问题的方式,和解决问题的方法.本节课始终是注意数学思想方法和数学探索方式的合理渗透,如特殊一般,数形结合,类比归纳等的交叉运用.

3、问题设计合理。

通过层层深入,由浅入深,由特殊到一般的阶梯式问题,有效的降解了本课的难点,帮助学生实现了思维的腾飞.

美中不足的是教学重点不是太突出,零点的引入部分可以简化改进,使之更趋合理,零点存在性定理引入部分略显生硬,应该有更艺术的方式.高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位.函数与方程相联系的观点的建立,函数应用的意识的初步树立,应该是本节课必须承载的重要任务.在这一任务的达成度方面,本课还需更加浓墨重彩的予以突出.另外,课堂上教师怎样引导学生也是值得我深思的一个问题,还有少讲多学方面也是我今后教学中努力的方向.

实用函数与方程的说课稿范文(18篇)篇四

作为一位不辞辛劳的人民教师,常常需要准备说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。我们该怎么去写说课稿呢?以下是小编为大家整理的八年级数学一次函数与二元一次方程(组)说课稿,希望能够帮助到大家。

各位评委、老师们:

大家好!

今天能有这个展示的机会,得到各位评委、老师的指导,感到非常荣幸、

基于以上对教学内容的理解,结合我所教学生的特点,我确定本节课教学目标为:

3.通过现实化的实际问题背景,反映祖国科技和经济的发展、

本课的教学过程分为五个环节完成、首先请看“创设情境,提出问题”的教学过程、(插入录像1)。

设计意图:因为学生对刚学过的一次函数理解得还不够透彻,有一定的畏难情绪,并且他们对一元一次方程、二元一次方程(组)和一元一次不等式都很熟悉,因而缺乏学习这部分内容的'热情,或者只是机械地背记结论,所以我从本课引入部分,就力求能马上吸引住学生。通过对一道七年级课本中曾经解决过的问题的再认识,使学生在认知上形成冲突,从而产生学习新知的需要;接着我设计了一个师生互动的游戏,使学生对老师是怎么迅速判断出方程组解的情况产生了强烈的好奇心,从而有了学习新知的强烈愿望、(插入录像2)。

1、进入新知的学习,我首先通过一段视频为学生创设了一个贯穿整节课的问题情境,使学生始终在倍感新鲜的环境中进行学习、本课新知由两部分构成,一是研究一次函数与二元一次方程的关系,二是研究一次函数与二元一次方程组的关系,下面请看第一部分的教学过程、(插入录像3)。

为了帮助学生加深对所学内容的理解,我设计了下面的例题、(插入录像5)。

下面请看第四个环节“解决问题,加深认识”的教学过程、(插入录像6)。

这就是我对这节课的教学设计,其中难免有很多不足之处,真诚的希望得到各位老师的批评指正,以使我在今后的教学中加以改进、谢谢!

实用函数与方程的说课稿范文(18篇)篇五

1、教学思路清晰,教学过程设计合理,由浅入深,循序渐进,符合学生的认知规律。

2、教师语言简练,英语口语流利,达到了双语教学的目的。

3、教学中突出了“零点的概念”以及“零点存在的条件”这两个重点内容。教师能够围绕函数零点的本质,不断启发学生发现问题,引导学生参与学习过程,最终得出函数在某开区间上存在零点的充分条件,即:图像连续的函数在区间的两端点函数值异号。很好的解决了本节课的学习难点。

4、本节课容量大,内容丰富,对问题的发生和对典型例题的评讲,十分重视渗透“由特殊到一般”,“数形结合”,“等价转化”等数学思想方法,取得了很好的教学效果。如,将方程有实根这个代数问题,转化为对应函数的图像与x轴的交点问题,函数图像与x轴的交点的判定又通过计算函数值来实现。这样就将方程、函数、图像三者融为一体。另外,冯老师十分注意细节,如特别强调“零点”是数不是点。

5、

教案。

设计新颖规范,板书简明扼要,条理清晰,值得我们学习。

6、两个条件展示的早了些,学生讨论的还不够充分,如能结合反比例函数的图象进行反思,更有助学生的理解和掌握。

7、时间安排的合理性上略有不足,组织学生进行层次练习和小结归纳时间不足。

总之,冯老师在这节课上将枯燥的内容生动化,抽象的知识通俗化,是一节很成功的数学双语公开课。

实用函数与方程的说课稿范文(18篇)篇六

上完课后失败感比较强。

本节课是人教版八年级上册第十一章第三节第三课时。此前,学生已经探究过一次函数、一元一次方程及一元一次不等式的联系。通过本节课的学习,让学生能从函数的角度动态地分析方程(组)、不等式,提高认识问题的水平。

本节课的引入我通过一个一次函数形式问题提问,学生看出即使一次函数也是二元一次方程创设情境,引出一次函数与方程有一定的关系,使学生主动投入到一次函数与二元一次方程(组)关系的探索活动中;紧接着,用一连串的问题引导学生自主探索、合作交流,从数和形两个角度认识它们的关系,使学生真正掌握本节课的重点知识。在探究过程中,我把学生分为一个函数组一个方程组,使学生能身临其境感受知识,并及时的进行团结合作教育,把德育教育渗透在我的教学中。在探究中,我把握自己是组织者、引导者和合作者的身份,及时对学生进行知识探究。但在实际操作过程中还是把握的不够好,没有很好的起到引导者的作用,缺乏情感性的鼓励,没有使大多数学生能完全积极融入到的知识的探讨与学习中。

本节教学内容是《一次函数与一元二次方程(组)》,“一个二元一次方程对应一个一次函数,一般地一个二元一次方程组对应两个一次函数,因而也对应两条直线。如果一个二元一次方程组有唯一的解,那么这个解就是方程组对应的两条直线的交点的坐标。本节的'图象解法依据了这个道理。”因此本节需要迅速画出图象,利用图象解决问题。而我的失误主要发生在画图象上。大部分学生不能迅速画出图象,并找准交点,这就使他们理解本节知识有了困难。

为了培养学生的发散思维和规范解题的习惯,我引导学生将“上网收费”问题延伸为拓展应用题,前后呼应,使学生有效地理解本节课的难点。但在此题的探讨过程中,我做的不够好,没有给学生充分思考的时间及学生探讨解决问题的方法,又由于用多媒体课件展示,点了一下屏幕,结果解题答案出来了,有点操之过急,而且我当时也没有采取扑救措施,这是我的失误,也是这节课的失败之处。

一次失误也反映了一位老师驾驭课题的能力,今后,在我的课堂教学中要注重培养这种能力,关注细节,完善课堂和各个环节,不留遗憾,提高教育教学质量。

将本文的word文档下载到电脑,方便收藏和打印。

实用函数与方程的说课稿范文(18篇)篇七

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美,学生在探索过程中体验到的数形结合以及数学建模思想,既是对前面所学知识的升华,同时也对今后学习高中的解析几何有着十分重要的意义。

(二)说教学目标。

情感态度方面:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信。

(三)说教学重、难点。

从以上目标可以看出,学生既要通过对一次函数与二元一次方程(组)关系的探究,习得知识、培养能力,又要用此关系解决相关实际问题,因此,本节课的教学重点应是一次函数与二元一次方程(组)关系的探索。考虑到八年级学生的数学应用意识不强,本节课的难点应是综合运用方程(组)、不等式和函数的知识解决相关实际问题。而关键则是通过问题情境的设计,激发学生的求知欲,引导学生探索、交流,引导学生发现、分析、解决问题。

二、说教法分析。

《数学课程标准》明确指出“数学教学是数学活动的教学”,“学生是数学学习的主人”。教师的职责在于向学生提供从事数学活动的机会,在活动中激发学生的学习潜能,引导学生自由探索、合作交流与实践创新。对于认知主体来说,八年级学生乐于探索,富于幻想,但他们的数学推理能力以及对知识的主动迁移能力较弱,为帮助学生更好地构建新的认知结构,促进学生的主动发展,本节课我采用情境—探究式教学法,以“情境――问题――探究――交流――应用――反思――提高”的模式展开,以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快学习。

三、说过程分析。

本着重实际、重探究、重过程、重交流的教学宗旨,我将本节课的教学设计成以下六个环节:情景导入——探究合作——解决问题——巩固提高——归纳小结——布置作业。

这节课,我首先用贴近学生实际、学生感兴趣的问题——上网交费问题引导学生进入本节课的学习,充分调动学生的积极性。课件展示学生回答的用列方程组解答的过程,并提出问题:“同学们在解这个二元一次方程组时,基本上都是用的代入法或加减法,那么解二元一次方程组还有其它的方法吗?”学生讨论后可能会感到束手无策,感到原有的知识不够用了。一石激起千层浪,问题提出来后,如何解决呢?此时,作为教师,应把握好组织者、引导者和合作者的身份,不要急于发表自己的意见,而应启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的态势,从而唤起学生强烈的学习热情,使他们主动积极地投入到探索活动中来。另外,此问题的设置也为后面例题的讲解作好铺垫,有利于教学难点的突破。

为使学生更好地掌握本节课的重点知识,我遵循从特殊到一般,再从一般到特殊的认知规律,设计了以下问题“你们能否将方程转化为一次函数的形式呢?”“如果能,你们能在平面直角坐标系中能画出它的图象吗?”在学生将方程转化为一次函数的形式并画出图象后,我引导学生观察直线上的几个点,发现它们的坐标都是方程的解,紧接着问“直线上任意一点的坐标一定是方程的解吗?”“是否任意的二元一次方程都可以转化为一次函数的形式呢?”“是否所有直线上任意一点的坐标都是它所对应的二元一次方程的解呢?”学生先独立思考,然后小组讨论,不难发现:每个二元一次方程都对应一个一次函数,于是也就对应一条直线。一连串的问题由浅入深,环环相扣,引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

紧接着问学生:“你能用刚才的方法研究另一个方程2x—y=1吗?”学生在同一坐标系中画出一次函数y=2x—1的图象后,发现两条直线有一个交点,我又问“这个交点坐标与这两条直线所对应的方程的解有什么关系?与这两个方程组成的方程组的解又有什么关系?”此时,学生慢慢体会到:既然每个二元一次方程都对应一条直线,二元一次方程的每一个解又对应直线上的每一个点,那么两个二元一次方程的公共解就对应着两条直线的公共点,也就是说,二元一次方程组的解不就是对应着两条直线的交点吗?这个时期,教师应留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予及时帮助,师生共同归纳出:用画图象的方法可以解二元一次方程组,从而解决了本节课开头所提出的问题。然后共同归纳:从“形”的角度看,解方程组相当于确定两条直线交点的坐标。这告诉我们,既可用画图象的方法可以解二元一次方程组,也可用解方程组的方法求两条直线交点的坐标。利用刚才已有的探究经验,学生很容易想到此问题的探究还可以从数的角度看,进一步归纳出:从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,这个函数值是何值。

这样,学生经过自主探索、合作交流,从数和形两个角度认识了一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,并使学习过程成为一种再创造的过程。学生从一个个小问题的回答,到最后的归纳,充分享受学习、探究带来的快乐,此时教师应充分肯定学生的探究成果,及时对学生进行鼓励,关注学生的情感体验。

为满足学生学以致用、争强好胜的心理需求,我特意设计了两个抢答题,既加强了对所学知识的消化理解,又调动了学生的积极性,更让他们在抢答中品味到了成功的快乐。趁着学生高涨的情绪,我迅速引入开头部分意犹未尽的上网收费问题,加以变式,再次激起学生强烈的求知欲望和主人翁的'学习姿态。经过一番探索,学生可能想到:要选择合理的收费方式就需要对它们所收费用的大小进行比较,因此一定会有学生用过去的知识——方程或不等式解决问题,对于这部分学生的想法要给予充分的肯定表扬,然后继续提问“你能用今天所学的图象法来解决这个问题吗?”引导学生建立函数模型进行探索。

学生在同一坐标系中分别画出两个一次函数的图象后,我引导学生观察图象的特征,学生讨论后发现当0≤x400时,红色点在蓝色点的上方;当x=400时,红色点与蓝色点重合;当x400时,红色点在蓝色点的下方,这样利用直线上点位置的高低直观地比较函数值的大小,从而找到答案。为避免图象法作图误差造成的不足,可引导学生通过代数计算求出交点坐标。为培养学生一题多解的能力,我启发学生用作差法,类似地用点位置的高低直观地找到y0,y=0及y0时所对应的x的范围,进而得到答案。通过对实际问题的探究,学生可以发现图象法的直观性,体会数形结合这一思想方法的应用,并学会用函数的观点,动态地分析不等式和方程(组)。

为了巩固学生的学习成果,我把刚刚结束不久的铁山矿冶文化旅游节带进课堂,让学生欣赏一组美丽的黄石矿冶文化景点图片,在学生体验家乡美好的轻松愉快氛围中,我再一次出示了一个与之有关的旅游购票问题,并鼓励学生用不同的方法进行解答,进一步培养学生应用数学的意识,从而更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

在课堂临近尾声时,引导学生对本节课所学进行小结,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。尝试开放式课堂教学,以真正体现学生的主体地位,使课堂活动民主化,多样化。

本节课的作业由必做题和选做题组成,体现分层教学,让不同的学生在数学上得到不同的发展。

四、说设计说明。

这节课,我始终贯穿以学生为主体的原则,突出数形结合的思想,体现数学建模的价值,渗透应用数学的意识,关注学生个性的发展,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的学生在数学的各个不同方面上都得到不同的发展。

实用函数与方程的说课稿范文(18篇)篇八

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、教法说明。

对于认知主体――学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。

三、教学过程。

(一)感知身边数学。

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用“上网收费”这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成“心求通而未能得,口欲言而不能说”的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

教学引入。

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:

场景一:正方形折叠演示。

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质―边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。]。

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课。

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

场景二:正方形的性质。

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]。

动画演示:

场景三:矩形的性质。

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]。

动画演示:

场景四:菱形的性质。

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

[学生活动:积极思考,有同学做跃跃欲试状。]。

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

(二)享受探究乐趣。

[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

[设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

(三)乘坐智慧快车。

[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:“你家选择的上网收费方式好吗?”再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

(四)体验成功喜悦。

1、抢答题。

2、旅游问题。

[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

(五)分享你我收获。

在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

(六)开拓崭新天地。

1、数学日记。

2、布置作业。

[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让“不同的人在数学上得到不同的发展”。

四、教学设计反思。

1、贯穿一个原则――以学生为主体的原则。

2、突出一个思想――数形结合的思想。

3、体现一个价值――数学建模的价值。

4、渗透一个意识――应用数学的意识。

实用函数与方程的说课稿范文(18篇)篇九

本节课选自人教版高中数学必修一第三章第一节。是在学生学习了基本初等函数的图象和性质的基础上,引入函数零点的概念,研究函数零点与相应方程根的关系,函数零点存在的条件,及零点个数的判断方法。为后面学习“用二分法求方程的近似解”奠定基础。

二、学情分析。

高中学生有丰富的想象力,乐于探索,不满足于知识的灌输,自主学习和探索新知的习惯已初步形成,有初步的数形结合的意识,但本节课对思想方法的要求较高,而学生数学探究的能力不足,因此需要教师在方法上加强指导。

三、教学目标。

根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

(一)知识与技能。

体会方程的根与函数零点之间的关系,学会函数零点存在的判定方法,会利用函数单调性判断函数零点的个数。

(二)过程与方法。

通过观察、思考、分析、猜想、验证的过程,体验从特殊到一般及函数与方程的思想方法,提升抽象和概括能力。

(三)情感态度与价值观。

通过学习,学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,逐步养成勇于提问,善于探索的思维品质。

四、教学重难点。

我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。根据授课内容可以确定本节课的教学重点是:对函数零点概念的理解;函数零点存在性的判定。教学难点是:探究并发现零点存在性定理及其应用。

五、教学方法。

新课程标准指出,教无定法,贵在得法,教师是学生学习活动的组织者、引导者和合作者,是师生关系中平等的首席,根据这一教学理念,我主要采用启发诱导式的教学方式,鼓励学生交流,并让学生运用已学知识大胆创新。

在学法的指导上,我始终将学生放在主体地位上,使学习的主要内容不是由教师灌输给学生,而是以问题的形式呈现出来,由学生自己去思考讨论,然后内化为自己的'一部分。

六、教学过程。

(一)引入新课。

首先我会带领学生复习一元二次方程的根及判别式,一元二次函数的图象。

引发学生思考,引出课题。

复习旧知的目的是唤起学生已有的知识经验,把握好教学的起点,抓住方程的根和函数零点间的关系,引起学生学习新知的欲望。

(二)探索新知。

接下来是最重要的探索新知环节。在这一部分,我会做好教师的引导者的角色,启发引导学生自主思考、探索、交流,形成知识,从而锻炼学生发现问题、提出问题、分析问题、解决问题的能力。

实用函数与方程的说课稿范文(18篇)篇十

本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。

函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图形表示看,函数的零点就是函数f(x)与x轴交点的横坐标.函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。定理不需证明,关键在于让学生通过感知体验并加以确认,由些需要结合具体的实例,加强对定理进行全面的认识,比如定理应用的局限性,即定理的前提是函数的图象必须是连续的,定理只能判定函数的“变号”零点;定理结论中零点存在但不一定唯一,需要结合函数的图象和性质作进一步的判断。

对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。

函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”。用函数的.观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。

本节是函数应用的第一课,因此教学时应当站在函数应用的高度,从函数与其他知识的联系的角度来引入较为适宜。

二、教学目标解析。

1.结合具体的问题,并从特殊推广到一般,使学生领会函数与方程之间的内在联系,从而了解函数的零点与方程根的联系。

2.结合函数图象,通过观察分析特殊函数的零点存在的特点,通过问题,理解连续函数在某个区间上存在零点的判定方法,并能由此方法判定函数在某个区间上存在零点。了解定理应用的前提条件,应用的局限性,及定理的准确结论。

3.通过具体实例,学生能结合函数的图象和性质进一步判断函数零点的个数。

4.在学习过程中,体验函数与方程思想及数形结合思想。

三、教学问题诊断分析。

1.通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。由此作为函数应用的第一课时,有必要点明函数的核心地位,即说明函数与其他知识的联系及其在生活中的应用,初步树立起函数应用的意识。并从此出发,通过问题的设置,引导学生思考,再通过实例的确认与体验,从直观到抽象,从特殊到一般的学习方式,捅破学生认识上的这层“窗户纸”。

2.对于零点存在的判定定理,教材不要求给予其证明,这需要教师提供一定量的具体案例让学生操作感知,同时鼓励学生举例来验证,最终能自主地获得并确认该定理的结论。对于定理的条件和结论,学生往往考虑不够深入,需要教师通过具体的问题,引导学生从正面、反面、侧面等不同的角度重新进行审视。

3.函数的零点,体现了函数与方程之间的密切联系,教学中应遵循高中数学以函数为主线的这一原则进行联结,侧重在从函数的角度看方程,同时为二分法求方程的近似解作知识和思想上的准备。

四、教学过程设计。

(一)创设情景,揭示课题。

函数是中学数学的核心内容,它不仅在生活中有着大量的应用,与其他数学知识有着千丝万缕的联系,若能抓住这一联系,你就拥有了一把解决问题的金钥匙。

案例1:周长为定值的矩形。

不妨取l=12。

问题1:求其面积的值:

显然面积是一个关于x的一个二次多项式。

用几何画板演示矩形的变化:

问题2:求矩形面积的最大值?

当x取不同值时,代数式的值也相应随之变化,你能从函数的角度审视其中的关系吗?

问题3:能否使得矩形的面积为8?你是如何分析的?

(1)实验演示的角度进行估计,拖动时难以恰好出现面积为8的情况;。

(2)解方程:x(6-x)=8。

问题4:

一般地,对于一般的二次三项式,二次方程与二次函数,它们之间有何联系?

结论:

代数式的值就是相应的函数值;。

更一般地。

方程f(x)=0的根,就是使函数值y=f(x)的函数值为0的x值,从函数的角度我们称之为零点。

设计意图:本节课是函数应用的第一课,有必要让学生对函数的应用有所了解。从具体的问题出发,揭示函数与代数式、方程之间的内在联系,并从学生所熟悉的具体的二次函数,推广到一般的二次函数,再进一步推广到一般的函数。

(二)互动交流研讨新知。

对于函数。

把使。

成立的实数。

叫做函数。

的零点.

2.对零点概念的理解。

案例2:观察图象。

问题1:此图象是否能表示函数?

问题2:你能从中分析函数有哪些零点吗?

问题3:从函数图象的角度,你能对函数的零点换一种说法吗?

结论:函数。

的零点就是方程。

实数根,亦即函数。

的图象与。

轴交点的横坐标.即:

方程。

有实数根。

函数。

的图象与。

轴有交点。

函数。

有零点.

设计意图:进一步掌握函数的核心概念,同时通过图象进行一步完善对函数零点的全面理解,为下面借助图象探究零点存在性定理作好一定的铺垫。

2.零点存在定理的探究。

案例3:下表是三次函数。

的部分对应值表:

问题2:结合图象与表格,你能发现此函数零点的附近函数值有何特点?

生:两边的函数值异号!

注意:函数在区间上必须是连续的(图象能一笔画),从而引出零点存在性定理.

问题4:有位同学画了一个图,认为定理不一定成立,你的看法呢?

问题5:你能改变定理的条件或结论,得到一些新的命题吗?

如3:一般化:一个函数的零点是否都可由上述的定理进行判断?(反例:同号零点,如案例2中的零点-2)。

设计意图:通过表格,是为了进一步巩固对函数这一概念的全面认识,并为观察零点存在性定理中函数值的异号埋下伏笔。通过教师的设问让学生进一步全面深入地领悟定理的内容,而鼓励学生提问,是培养学生学习主动性和创造能力必要的过程。

(三)巩固深化,发展思维。

例1、求函数f(x)=rx+2x-6的零点个数。

设计问题:

(1)你可以想到什么方法来判断函数零点?

(2)你是如何来确定零点所在的区间的?请各自选择。

(3)零点是唯一的吗?为什么?

本题可以使学生意识对零点的区间是不唯一的,为下一节二分法求方程的近似解奠定基础。

让学生进一步领悟,零点的唯一性需要借助函数的单调性。

(四)归纳整理,整体认识。

请回顾本节课所学知识内容有哪些?

所涉及到的主要数学思想又有哪些?

你还获得了什么?

(五)作业(略)。

实用函数与方程的说课稿范文(18篇)篇十一

本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的。

二、学情分析。

学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决。

三、目标分析。

1、教学目标。

知识与技能目标。

(1)初步理解二元一次方程和一次函数的关系;

(2)掌握二元一次方程组和对应的两条直线之间的关系;

过程与方法目标。

(2)通过做一做引入例1,进一步发展学生数形结合的意识和能力。

(3)情感与态度目标。

(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。

(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。

2。教学重点。

(1)二元一次方程和一次函数的关系;

(2)二元一次方程组和对应的两条直线的关系。

3。教学难点。

数形结合和数学转化的思想意识。

四、教法学法。

1、教法学法。

启发引导与自主探索相结合。

2、课前准备。

教具:多媒体课件、三角板。

学具:铅笔、直尺、练习本、坐标纸。

五、教学过程。

本节课设计了六个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索,建立方程与函数图像的模型;第三环节典型例题,探究方程与函数的相互转化;第四环节反馈练习;第五环节课堂小结;第六环节作业布置。

第一环节:设置问题情境,启发引导。

内容:1、方程x+y=5的解有多少个?是这个方程的解吗?

2、点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?

3、在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?

4、以方程x+y=5的解为坐标的`所有点组成的图像与一次函数y=的图像相同吗?

由此得到本节课的第一个知识点:

二元一次方程和一次函数的图像有如下关系:

(1)以二元一次方程的解为坐标的点都在相应的函数图像上;

意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y=相互转化,启发引导学生总结二元一次方程与一次函数的对应关系。

效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识。

前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系。顺其自然进入下一环节。

第二环节自主探索方程组的解与图像之间的关系。

内容:

1、解方程组。

2、上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。

(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。

(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。

意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础。

效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力。

第三环节典型例题。

探究方程与函数的相互转化。

内容:例1用作图像的方法解方程组。

例2如图,直线与的交点坐标是。

意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解。通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理。这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫。

效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化。

第四环节反馈练习。

内容:

1、已知一次函数与的图像的交点为,则。

2、已知一次函数与的图像都经过点a(2,0),且与轴分别交于b,c两点,则的面积为()。

(a)4(b)5(c)6(d)7。

3、求两条直线与和轴所围成的三角形面积。

4、如图,两条直线与的交点坐标可以看作哪个方程组的解?

意图:4个练习,意在及时检测学生对本节知识的掌握情况。

效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性。

第五环节课堂小结。

内容:以问题串的形式,要求学生自主总结有关知识、方法:

1、二元一次方程和一次函数的图像的关系;

(1)以二元一次方程的解为坐标的点都在相应的函数图像上;

2、方程组和对应的两条直线的关系:

(1)方程组的解是对应的两条直线的交点坐标;

(2)两条直线的交点坐标是对应的方程组的解;

(1)代入消元法;

(2)加减消元法;

(3)图像法。要强调的是由于作图的不准确性,由图像法求得的解是近似解。

意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用。

第六环节作业布置。

习题7。7。

附:板书设计。

六、教学反思。

本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化。教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解。因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题。

实用函数与方程的说课稿范文(18篇)篇十二

各位评委老师,各位同事,下午好!我是来自,今天我说课的题目是《方程的根与函数的零点》第一课时,选自人教版《普通高中课程标准实验教科书》a版必修1第三章第一节。下面我将从教材分析、教学目标分析、重难点分析、教法与学法分析、教学过程设计五个方面来进行阐述。

【教材分析】。

函数是中学数学的核心概念,核心的原因之一就在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。

本节课是在学生学习了基本初等函数及其相关性质,具备初步的数形结合的能力基础之上,利用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续学习奠定基础。

因此本节内容具有承前启后的作用,地位至关重要.。

【教学目标分析】。

根据本节课的教学内容以及新课标对本节课的教学要求,结合以上对教材以及学情的分析,我制定以下教学目标:

知识与技能目标:理解方程的根与函数零点之间的.关系,学会函数零点存在的判定方法,理解利用函数单调性判断函数零点的个数。

过程与方法目标:经历“类比——归纳——应用”的过程,培养学生分析问题探究问题的能力,感悟由具体到抽象的研究方法,培养学生的归纳概括能力。

能力与情感目标:培养学生自主探究,合作交流的能力,激发学生的学习兴趣并培养学生严谨的科学态度。

【重难点分析】。

教学重点:判定函数零点的存在及其个数的方法。

教学难点:探究发现函数零点的存在性,及利用函数的图像和性质判别函数零点的个数。

【教法分析和学法指导】。

结合本节课的教学内容和学生的认知水平:

在教法上,我借助多媒体和几何画板软件,采用“启发—探究—讨论”的教学模式。充分发挥教师的主导作用,引导、启发、充分调动学生学习的主动性,让学生真正成为教学活动的主体。

在学法上,我体会到“授人以鱼,不如授人以渔”,因此我以培养学生探究精神为出发点,着眼于知识的形成和发展,注重学生的学习体验,精心设置一个个问题链,并以此为主线,由浅入深、循序渐进,给不同层次的学生提供思考、创造、表现和成功的舞台。

实用函数与方程的说课稿范文(18篇)篇十三

线性约束条件:关于x、y的一次不等式(或方程)组成的不等式组所表示的平面区域。

线性目标函数:目标函数为x、y的一次解析式。(目标函数:欲达到最大值或最小值所涉及的变量x、y的解析式。)。

线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题。

可行解:满足线性约束条件的解(x、y)。

可行域:所有可行解组成的集合。

最优解:使目标函数取得最大值或最小值的可行解。

父母的殷切期望,亲人们的寄托,老师的期待,社会的希望,升学的压力,学习任务的繁重,为自己前途的打算……那是一条条不等式画出的线条,那斜率相差无几的线条,却是数也数不清的线条。于是构成了一个诺大的区域,线条密集得让人头皮发麻。擦去边角多余的线条,才发现围成的区域已近乎一个圆了。再也不会有棱角,再也不会有锋芒了。

我们,就是那条目标函数。我们上下反复地移动着,只为寻求那最优解。最大值是怎样去取得最优异的学习成果;最小值就是怎样寻求最有效的学习方法,最高的学习效率。

在可行域里,我们生存的好辛苦,好疲惫。

也曾尝试挣脱那厚实的'线圈成的地方,去寻求外面那更广阔、更自由的空间,没有约束,没有沉重,没有疲惫。

可我们无法做到,我们注定在可行域里才会有意义。

也不知道,如果我们真的挣脱了,我们又将会是什么样。可我们明白,那样只会是遍体鳞伤。没有世外桃源,我们就只是生存在这个世界中,这个实实在在的,充满竞争的世界。

我们只是希望,哪天那直线的条数能被我们数清,我们又有了那棱角,那锋芒。我们每个人都有着不同的区域,形状的不同,约束条件的不同,而不是每个人都属于那个如出一辙的偌大的圆。那样,我们才是我们自己,不同于别人的自己,我们不必为寻找最优解的位置疲惫不堪,而我们要做的就是顺着最优解的方向一直走下去,把珍贵的时间用于对那种有意义的探索。而实际上,节省了寻找最优解的时间,我们也就找到了一种最优解。

我们是目标函数,我们有不同的形式,可以得到不同的结果,我们寻求最优的我们,只要那可行域简洁些,真的,我们能做的很好,在各个方面。因为,我们有能力,去一次次将我们自己、各方面的自己,放到那可行域中去试探,寻找最优解的位置。

数学课上,线性规划的题做得很麻烦,因为又是画图,又要找区域、确定目标函数、找最优解。

可我们不会怕麻烦,因为我们在寻求,寻求最优解……。

实用函数与方程的说课稿范文(18篇)篇十四

2、教学目标的确定及依据。

根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

(1)知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用。

(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、

分析、归纳等逻辑思维能力.。

(3)情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数。

学的精确和美妙之处,调动学生学习数学的积极性.。

3、教学重点与难点。

重点:对数函数的意义、图像与性质.。

难点:对数函数性质中对于在与两种情况函数值的不同变化.。

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生实验、观察、联想、思考、分析、归纳;

(2)采用“从特殊到一般”、“从具体到抽象”的方法;

(3)渗透类比、数形结合、分类讨论等数学思想方法.。

2、教学手段:

计算机多媒体辅助教学.。

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)类比学习:与指数函数类比学习对数函数的图像与性质.。

(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,

(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,

使问题得以圆满解决.。

1、温故知新。

设计意图:既复习了指数函数和反函数的有关知识,又与本节内容有密切关系,

有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生。

分析问题的能力.。

2、探求新知。

设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过动手操作、

观察、联想、类比、思考、分析、探索,在此过程中,通过小组讨论,

协作构建起新的知识.这充分体现了基于建构主义学习理论的探究定。

向性学习和主动合作式学习.。

3、课堂研究,巩固应用。

设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充。

分体现了数形结合和分类讨论的数学思想方法.同时为课外研究题的。

解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔.。

4、课外研究。

5、课堂小结。

引导学生进行知识回顾,使学生对本节课有一个整体把握.从三方面进行小结:

(2)掌握对数函数的图像与性质,体会类比、数形结合的思想方法;

(3)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的。

解法,体会分类讨论的思想方法.。

6、课外作业。

公式无法显示,完整word文档点击下载此文件。

实用函数与方程的说课稿范文(18篇)篇十五

各位专家,各位老师,大家好!

今天我说课的课题是“义务教育课程标准实验教科书”八年级上册第六章第五节《一次函数图象的应用》第二课时,我将分以下几个方面进行分析:

新的课程标准将初中学段的数学知识分为四个领域,“数与代数”“空间与图形”“统计与概率”“实践与综和”,每个领域在三个年级里都是螺旋上升的,由于学生在七年级下册学习了变量之间的关系,学生对函数——研究世界变化规律的一个重要模型,已经有了一定的感性认识。而且通过“一次函数图象的应用”第一节的学习,学生的识图能力增强了,通过识图解决实际问题的求知欲望更迫切了,同时本节也渗透了数形结合,形象思维能力的培养,为以后学习其他函数奠定了兴趣基础和能力基础,因此,本节课在整个教材中起到了承上启下的作用,由于本节内容针对的学习者是八年级上的学生,已经具备了一定的生活经验和初步教学活动体验,乐意并能够与同伴进行合作交流共享,为此确定目标如下:

(一)知识与技能目标。

1,经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力。

2,经历函数图象信息的识别与应用过程,发展学生的形象思维能力。

3,更进一步培养学生的识图能力,即从“形”的方面解决问题。

(二)情感与态度目标。

1,进一步形成利用函数的观点认识现实世界的意识和能力。

2,通过学生自主探索研究生活中的事例,如“台风麦莎”对岛城的影响,促进学生的思考认知能力,激发学数学用数学的兴趣,培养团队协作意识和关心时事的意识。

3,丰富学生数学学习的成功体验。

本节课的教学重点是进一步培养学生良好的识图能力,更深层的体会数形结合,

难点是富有挑战性的数学史料。

本节课将采用“教师为主导,学生为主体,训练为主线,思维为核心”的教学理念,以人的“兴趣学习”和“可持续发展”为关注目标,来体现教学方式中的'“新意”。

教学中将采用合作交流和自主探究的教学策略,重视培养学生的独立思考能力,“数形结合”分析问题的能力,鼓励学生大胆里利用图形解决问题,培养创新精神。

评价方式体现多元化和人性化,关注思维,即解决问题的过程,淡化对知识的机械记忆,针对个人和小组进行及时的赞赏和肯定。

为使教学活动更有效,符合八年级上学生的年龄特点,需要教学媒体技术的支持,丰富学生的认知资源,拓展学生的思维空间。

(一)教学准备:1,提前一天了解“麦莎”的有关内容。

(二)教学过程。

全课分为五个教学环节。

1,情景引入学习新知。2分钟。

2,议一议探索新知。8分钟。

3,练一练巩固新知。10分钟。

4,试一试开阔思路。5分钟。

5,读一读培养兴趣。7分钟。

6,练一练巩固新知。8分钟。

7,想一想感悟收获。4分钟。

8,布置作业。1分钟。

具体过程如下:(多媒体课件)。

实用函数与方程的说课稿范文(18篇)篇十六

本课的内容是华师大版八年级数学下册第18章第3节第2课时,一次函数在许多方面与正比例函数的.图象和性质有着紧密联系,是本章中的重点。本章中关于一次函数的知识结构如图:

本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习"用函数观点看方程(组)与不等式"的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习"数形结合"这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

(二)教学目标。

基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

知识目标:

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会利用两个合适的点画出一次函数的图象;

能力目标。

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度目标:

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

(三)教学重点难点。

教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

1、教学方法。

1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

2、直观教学法——利用多媒体现代教学手段。

目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导。

1、应用自主探究,培养学生独立思考能力,阅读能力和自主探究的学习习惯。

2、指导学生观察图象,分析材料。培养观察总结能力。

(一)、创设情境,导入新课。

活动1:观察:

展示学生作的函数图象(课本p41做一做),强调列表及图象上的点的对应关系。

1.课前让两名学生将图像画到黑板上,以备上课时应用。

2、课上展示学生函数图像作业,既为学生完成作业情况检查,又为本节课打下基础。

这样安排的目的:

1、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

2、教师对学生有了更深层次的了解,能更好地把握课堂。

(二)尝试探索、体验新知:

活动2、观察探索:

比较两个函数图象的相同点与不同点?

第一步;根据你的观察结果回答问题。(书中原问题1、2、3)。

目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

活动3:知识再体验:在同一直角坐标系中画出四个k值不同的一次函数图象,并观察分析。

目的:进一步巩固两点作图法,为探究一次函数的性质作准备。

活动4:展示"上下坡"材料,解决象限问题。(多媒体展示)。

目的:让学生触发漫画中"上下坡"的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

活动5:师生互动(师生角色互换),提高拓展。(多媒体展出内容)。

目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

(三)课堂小结。

引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受。

目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。

(四)。作业布置。

加强"教、学"反思,进一步提高"教与学"效果,

做课本42页44页习题。

实用函数与方程的说课稿范文(18篇)篇十七

函数、方程和不等式都是人们刻画现实世界的重要数学模型。用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。

2、教学重难点。

重点:一次函数与二元一次方程(组)关系的探索。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

3、教学目标。

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。

解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

二、教法说明。

对于认知主体学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。以学生为中心,使其在生动活泼、民主开放、主动探索的氛围中愉快地学习。

(一)感知身边数学。

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。因此,用上网收费这一生活实际创设情境,并用问题启发学生去思、鼓励学生去探、激励学生去说,努力给学生造成心求通而未能得,口欲言而不能说的情势,从而唤起学生强烈的求知欲,使他们以跃跃欲试的姿态投入到探索活动中来。

(二)享受探究乐趣。

1、探究一次函数与二元一次方程的关系。

[设计意图]用一连串的问题引导学生发现一次函数与二元一次方程在数与形两个方面的关系,为探索二元一次方程组的解与直线交点坐标的关系作好铺垫。

2、探究一次函数与二元一次方程组的关系。

[设计意图]学生经过自主探索、合作交流,从数和形两个角度认识一次函数与二元一次方程组的关系,真正掌握本节课的重点知识,从而在头脑中再现知识的形成过程,避免单纯地记忆,使学习过程成为一种再创造的过程。此时教师及时对学生进行鼓励,充分肯定学生的探究成果,关注学生的情感体验。

(三)乘坐智慧快车。

[设计意图]为培养学生的发散思维和规范解题的习惯,引导学生将上网问题延伸为例题,并用问题:你家选择的上网收费方式好吗?再次激起学生强烈的求知欲望和主人翁的学习姿态。通过此问题的探究,使学生有效地理解本节课的难点,体会数形结合这一思想方法的应用。

(四)体验成功喜悦。

1、抢答题。

2、旅游问题。

[设计意图]抓住学生对竞争充满兴趣的心理特征,用抢答题使学生的眼、耳、脑、口得到充分的调动,并在抢答中品味成功的快乐,提高思维的速度。在学生感兴趣的旅游问题中,进一步培养学生应用数学的意识,更好地促进学生对本节课难点的理解和应用,帮助学生不断完善新的认知结构。

(五)分享你我收获。

在课堂临近尾声时,向学生提出:通过今天的学习,你有什么收获?你印象最深的是什么?

[设计意图]培养学生归纳和语言表达能力,鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。

(六)开拓崭新天地。

1、数学日记。

2、布置作业。

[设计意图]新课程强调发展学生数学交流的能力,用数学日记给学生提供一种表达数学思想方法和情感的方式,以体现评价体系的多元化,并使学生尝试用数学的眼睛观察事物,体验数学的价值。作业由必做题和选做题组成,体现分层教学,让不同的人在数学上得到不同的发展。

四、教学设计反思。

1、贯穿一个原则以学生为主体的原则。

2、突出一个思想数形结合的思想。

3、体现一个价值数学建模的价值。

4、渗透一个意识应用数学的意识。

《一次函数与二元一次方程(组)》教案。

教学目标。

知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。

情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。

教学重难点。

重点:一次函数与二元一次方程(组)关系的探索。

难点:综合运用方程(组)、不等式和函数的知识解决实际问题。

教学过程。

学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:一次函数与二元一次方程组之间是否也有联系呢?,从而揭示课题。

(二)进行新课。

1、探究一次函数与二元一次方程的关系。

填空:二元一次方程可以转化为________。

(3)是否直线上任意一点的坐标都是它所对应的二元一次方程的解?

2、探究一次函数图像与二元一次方程组的关系。

此时教师留给学生充分探索交流的时间与空间,对学生可能出现的疑问给予帮助,师生共同归纳出:从形的角度看,解方程组相当于确定两条直线交点的坐标。

进一步归纳出:从数的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值。

3、列一元二次不等式。

解法1:设上网时间为分,若按方式a则收元;若按方式b则收元。然后在同一坐标系中分别画出这两个函数的图象,计算出交点坐标,结合图象,利用直线上点位置的高低直观地比较函数值的大小,得到当一个月内上网时间少于400分时,选择方式a省钱;当上网时间等于400分时,选择方式a、b没有区别;当上网时间多于400分时,选择方式b省钱。

解法2:设上网时间为分,方式b与方式a两种计费的差额为元,得到一次函数:,即,然后画出函数的图象,计算出直线与轴的交点坐标,类似地用点位置的高低直观地找到答案。

注意:所画的函数图象都是射线。

4、习题。

(1)、以方程的解为坐标的所有点都在一次函数_____的图象上。

(2)、方程组的解是________,由此可知,一次函数与的图象必有一个交点,且交点坐标是________。

5、旅游问题。

古城荆州历史悠久,文化灿烂。

实用函数与方程的说课稿范文(18篇)篇十八

本课的内容是华师大版八年级数学下册第18章第3节第2课时,一次函数在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本章中关于一次函数的知识结构如图:

本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。

(二)教学目标。

基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:

知识目标:

1、理解直线y=kx+b与y=kx之间的位置关系;

2、会利用两个合适的点画出一次函数的图象;

能力目标。

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

情感态度目标:

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

(三)教学重点难点。

教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。

二、教法学法。

1、教学方法。

1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。

2、直观教学法——利用多媒体现代教学手段。

目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导。

1、应用自主探究,培养学生独立思考能力,阅读能力和自主探究的学习习惯。

2、指导学生观察图象,分析材料。培养观察总结能力。

三、教学程序设计。

(一)、创设情境,导入新课。

活动1:观察:

展示学生作的函数图象(课本p41做一做),强调列表及图象上的点的对应关系。

1.课前让两名学生将图像画到黑板上,以备上课时应用。

2、课上展示学生函数图像作业,既为学生完成作业情况检查,又为本节课打下基础。

这样安排的目的:

1、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。

2、教师对学生有了更深层次的了解,能更好地把握课堂。

(二)尝试探索、体验新知:

活动2、观察探索:

比较两个函数图象的相同点与不同点?

第一步;根据你的观察结果回答问题。(书中原问题1、2、3)。

目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。

目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。

活动3:知识再体验:在同一直角坐标系中画出四个k值不同的一次函数图象,并观察分析。

目的:进一步巩固两点作图法,为探究一次函数的性质作准备。

活动4:展示“上下坡”材料,解决象限问题。(多媒体展示)。

目的:让学生触发漫画中“上下坡”的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。

活动5:师生互动(师生角色互换),提高拓展。(多媒体展出内容)。

目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。

(三)课堂小结。

引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受。

目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。

(四)。作业布置。

加强“教、学”反思,进一步提高“教与学”效果,

做课本42页44页习题。

猜你喜欢 网友关注 本周热点 精品推荐
心得体会是一个系统性的总结,可以让我们更好地规划和安排未来的学习和工作。以下是一些别人写的心得体会,但它们能够帮助我们更好地理解和学习如何撰写一篇出色的心得体会
月工作总结需要客观、全面地概括和总结自己一个月的工作表现,注意避免主观偏见或夸大其词。工作总结是一个反思和总结的过程,有助于我们认清工作的优势和不足。如何写一篇
培训心得是培训过程中的思考和感悟的记录,可以帮助我们发现自身的优势和不足。接下来,请大家共同欣赏一些来自不同人的培训心得范文,相信对大家写作有所帮助。
自我评价是一种客观分析自己在学习、工作和生活中的表现,它可以让我们更好地认识自己,发现自己的潜力和问题。接下来是一些自我评价的案例,希望对大家有所启发和帮助。
在现代社会中,几乎任何一个重要的机会都需要递交一份精心准备的更多申请书。接下来是一些成功的申请书案例,希望能够给大家提供一些实际操作的经验和思路。尊敬的校团委领
班级活动的举办可以增加同学们的参与感和归属感,加强班级的凝聚力。以下是小编为大家整理的一些班级活动范文,供大家参考对照,寻找灵感和借鉴经验。二、活动目的经过一年
合同协议包含了交易的主要条款和细节,如价格、数量、付款方式和交货时间等,确保各方之间达成一致。以下是小编为大家整理的合同协议范文,供大家参考和借鉴。
工作是人们为了满足生活需要、提高生活质量和实现个人目标而进行的努力和付出。以下是一些用工指标和考核方法的分享,希望对大家有所启发。随着互联网的飞速发展,电子商务
心得体会是我们对于生活、学习、工作等方面的个人理解和感悟,可以帮助我们更好地面对挑战和困惑。接下来是小编为大家搜集的心得体会范文,一起来看看有没有对你有所启发的
写心得体会可以帮助我们更好地理解自己的情感和思维方式。这些范文中所包含的心得体会或许能够给大家带来一些思考和启发。2020年的这个鼠年给全中国人民带来的一个不一
读后感不仅仅是对书中内容的简单复述,更重要的是对其中的深意和启示的思考和展开。在下面的范文中,作者通过细腻的描写和真实的感受,展示了对所读书籍的真正理解和体验。
通过写心得体会,我们可以更好地发现问题并找到解决问题的方法。以下是一些值得学习和参考的心得体会范文,希望对大家的写作有所启发和提升。中药是中国传统医学的重要组成
通过写心得体会,我们可以深入思考自己的优点和不足,找到提升自己的方法和机会。下面是一些成功人士的心得体会,他们的经验或许对我们有所借鉴。观察是人们获取知识、认识
通过写工作心得体会,我们可以提高自己的工作效率和质量。以下是一些具有启示性的工作心得体会范文,供大家进行参考和借鉴。第一段:引言(100字)。办公室长期工作给我
写作是一种创造性的表达,我们需要学会发散思维,尝试不同的写作技巧来提升作文的质量。小编为大家整理了一些优秀作文欣赏,希望能给大家在写作方面提供一些帮助。
心得体会的写作还可以培养我们的思辨精神,提高自己的分析和推理能力。接下来,请欣赏一些创业者的心得体会,他们分享了他们创业路上的坎坷和成功经验。作为警察,我进入这
月工作总结对于团队来说也非常重要,可以促进团队成员之间的交流和协作,提高整体的工作效能。在下面的范文中,我们可以看到不同职业岗位的月工作总结写作方式和技巧。
通过月工作总结,我们可以及时发现自己在工作中的不足和不足,以便更好地提升自己的工作能力和水平。小编整理了一些优秀的月工作总结范文,供大家参考,以期激发大家撰写总
写心得体会也是对自己成长过程中所经历的点点滴滴进行回顾和总结的一种方式。这些范文涵盖了不同领域的心得体会,可以帮助大家更全面地了解和掌握写心得的技巧。
通过写心得体会,我们可以更好地反思和总结自己的成长过程。这是一篇通过总结经验和反思思考写成的心得体会,希望对大家有所帮助。节约用水是每个人应该具备的基本素质之一
公司是由股东出资共同投资、共同承担经营风险、共同享有盈利的经济实体。接下来是一些来自不同行业的公司总结范文,一起来看看吧,相信能对你有所启发。法定代表人:申请目
转专业申请书是一种用于申请转入其他专业的书面材料,它需要清晰地说明个人的转专业原因和目标。以下是一些转专业申请书的范文,它们可以帮助我们更好地了解如何写一篇成功
一份精良的申请书应该具备独特性,通过个人的经历和见解来吸引读者,并与其他申请者相区分。每一篇范文都是经过认真考量和论证的,能为你的申请增添独特的亮点。
毕业论文是对学生在特定领域内深入研究和思考的结果,是对知识和能力的综合应用。接下来,将为大家介绍一些撰写毕业论文时需要注意的关键要素。行文至此,我的这篇论文已接
心得体会是对自己在某一方面经历的总结和感悟,可以反思经验和教训。接下来是一些优秀的心得体会范文,希望可以给大家一些启发和借鉴。心得体会是我们对一段经历、一个事件
在写作中参考范文范本可以帮助我们更好地组织思路,提高我们的写作效果。以下是小编为大家整理的一些范文范本,供大家参考和学习。一名学生干部,想要得到其他同学的期许与
护理是一个具有挑战性的职业,它要求护士具备专业素养、责任心和同理心。接下来是一些护理总结的典型例子,希望能够激发你的写作灵感。大家都说:“读书是的出路。”而我认
心得体会是我们在成长过程中不可或缺的一部分,可以帮助我们更好地认识自己。以下是小编为大家找到的一些心得体会经典范文,供大家参考和学习。心得体会方法论俗称“心得体
心得体会是对某个经历或活动的感悟和理解的总结,可以帮助我们更好地认识自己和他人。接下来是一些针对不同主题的总结范文,供大家选择适合自己的参考材料。作家龙应台的《
心得体会是对自己所经历的一段时间内的经验和感悟的总结,可以帮助我们更好地认识自己。以下是一份关于学习方法的心得体会,作者通过自身学习经验的总结,提出了一些高效学
述职报告可以帮助我们回顾过去的工作,总结经验教训,并为未来的发展做出合理的规划。通过对范文进行分析和比较,我们可以更好地理解如何运用语言和论述方式来撰写述职报告
总结心得体会可以帮助我更好地把握学习和工作的重点,从而提高效率和质量。以下是一些关于心得体会的示例,希望能够帮助大家更好地理解和掌握这种写作方式。每个人在生活中
心得体会是个人在工作、学习和生活中的一种概括性总结。如果你正苦于写心得体会,不妨看看以下这些例子,或许能给你一些灵感。教师作为社会的灵魂工程师,肩负着培养下一代
在教学工作计划中,教师需要明确教学目标、教学内容、教学方法、教学资源等方面的安排和要求。掌握了一套行之有效的教学工作计划范例,可以帮助教师提高教学质量。
在现代社会中,运输是支撑经济发展和社会交流的重要基础设施。接下来,我为大家推荐一些关于运输管理和运营的专业书籍和资料,希望能给大家带来一些专业知识和理论基础。
合同协议可以为交易提供法律保护,对于违约行为有明确的法律救济措施可供追究。参考以下合同协议范文,你可以更好地理解合同协议的写作要点。甲方:乙方:甲乙双方本着互惠
通过更多申请书,可以将自己的经历和成就更加有条理地呈现给读者。以下是一些成功申请者的申请书样本,希望对大家有所启发。敬爱的党支部:自20x年x月x日成为预备党员
写心得体会可以让我们更好地发现自己的不足和优点,进而有针对性地改进自己。接下来,请大家一起来看看小编为你们准备的心得体会范文。第一,在参加面试前,首先要对所应聘
编写心得体会可以帮助我们整理和梳理思路,对自己的思维逻辑和表达能力进行提升。下面是一些心得体会的范文,供大家参考。这些范文涉及到学习、工作、生活等各个领域,通过
在组织活动时,我们会发放参会证作为条据书信,用于验证参与者的身份和参与活动的资格。在写条据书信时,我们需要注意选择合适的证据材料,以及恰当地引用和解释这些材料。
心得体会是我们对自己所做的事情进行反思和总结的重要方式之一。以下是小编为大家整理的一些优秀心得体会范文,希望对大家的写作有所帮助。动物解剖是生物学学习中不可或缺
心得体会是个人在学习、工作、生活等方面的经验总结和体悟,通过对自己的思考和总结,能够更好地提高自己的认识和能力。在日常的学习和工作中,我们都有着各种各样的经历和
生活中的心得体会是我们对生活中各种经历和事件的感悟和思考,它能够帮助我们更好地面对困难和挫折。以下是小编为大家整理的心得体会范文,供大家参考和借鉴。希望通过阅读
广播稿的撰写还需要经常进行修改与完善,通过不断的实践和反思,提高自己的表达能力。广播稿的撰写需要注意挖掘独特的视角和表达方式,以下是一些独具特色的广播稿案例。
通过写心得体会可以加深对所学知识和技能的理解和掌握。以下是小编为大家整理的心得体会范文,供大家参考和借鉴。最近,我在田野里找了一些蜜蜂,我深深体会到了寻找蜜蜂的
服务月是学校开展公益活动的重要机会,可以增强学生的社会责任感和团队合作能力。以下是小编为大家整理的服务月推广方案,希望对大家的服务工作有所启示。延迟退休方案真的
离婚协议是夫妻双方在离婚过程中达成的一项协议,对于维护双方合法权益非常重要。以下是关于离婚协议的范文,仅供参考,希望对您有所帮助。男方:_________,身份
写心得体会是一个思考和思想沉淀的过程,可以帮助我们更清晰地认识自己。小编整理了一些关于心得体会的精彩文章,希望能够给大家带来一些思考和启发。第一段:引言(字数:
施工是一个复杂而又细致的过程,需要严格按照施工计划和工艺要求进行操作。小编给大家推荐了一些施工工具和设备,可以提高施工效率和质量。作为土建施工员,我负责监督和协
演讲稿范文可以启迪演讲者的思维,拓展他们的观点,使演讲更加富有思想性和感染力。现在就让我们一起来欣赏这些打动人心的演讲,相信会给你带来感动和思考。大家好!今天,
通过写心得体会,我们可以对所学知识进行巩固和扩展,提升自己的学习能力和运用能力。接下来是一些写作精品心得体会范文,希望能够给大家带来一些写作上的启发和思考。
心得体会是对个人在学习、工作、生活等方面的一种反思和总结,它能够帮助我们发现问题、总结经验、提升能力。最后,欢迎大家分享自己的心得体会,让我们共同进步和成长。
通过写心得体会,可以促使我们对某一问题或事件进行深入思考和分析,达到深度思考和理解的目的。小编搜集了一些有关心得体会的文章,供大家参考和阅读。作为一名大一新生,
承包合同要求双方遵守法律法规,并按合同约定的方式履行合同义务。您可以参考以下范文,了解如何编写一份符合要求的承包合同。甲方:乙方:。为更好地搞好富林果园场的经营
心得体会是我们在经历中所获得的启示和经验,它能够帮助我们更好地应对类似的情况和问题。以下是小编为大家精心挑选的一些心得体会范文,希望能给大家提供一些写作的灵感和
不同类型的调研报告在形式和内容上可能有所不同,但其核心目标都是解决问题、获取信息并做出准确判断。如果您正在研究和撰写一份调研报告,那么小编为大家精心整理的一些案
参与比赛可以帮助人们发现自己的优点和不足,进而进行进步和改进。比赛不仅仅是竞争和胜负,更是一次对自己能力和潜力的考验,以下是一些鼓舞人心的比赛故事。
军训心得可以是文字形式的,也可以是图片、视频等多种形式的记述,具有很高的灵活性与创新性。以下是小编为大家整理的军训心得心得分享,希望能给大家带来一些启示和思考。
读后感是对读完一本书或者一篇文章后的个人感受和体会的总结。以下是小编为大家收集的读后感范文,供大家参考和学习。有些日子行走在路上,有些日子只能睡在童话的梦里。—
在商业领域中,合同协议是非常重要的,它可以确保各方的合作和交易的顺利进行。想要了解更多关于合同协议的内容,不妨参考以下范文,或许对你会有所帮助。立约人:王全巨,
个人总结是一个自我认知和自我超越的过程,通过总结自己的经验和教训,我们可以不断提升自己的能力和素质。通过阅读这些总结范文,我们可以更好地理解总结的意义和作用,明
培训心得体会是对自己在培训中所面临的问题和困惑的思考和总结。为了帮助大家更好地理解培训心得体会的写作方式,小编精心挑选了一些范文供大家参考。近年来,随着新冠疫情
合伙协议涉及到合作期限、投资份额、利润分配、决策权等多个方面的内容。以下是小编为大家收集的合伙协议范文,仅供参考,帮助大家更好地起草合伙协议。甲乙双方本着公平、
策划书是在进行项目或活动策划时所必备的一种书面材料,它承载了所有策划内容的概括和总结。在下面,我们将为大家呈现一些成功项目的策划书范文,希望能够给大家一些启示和
作为主持人,我希望通过我的努力,为大家带来一场充满活力的活动。再次欢迎各位来到本次会议。主持一场会议需要准备充分,充满自信地引导讨论。以下是我为大家收集的一系列
总结范文是对我们过去一段时间学习和工作的“点滴记录”,让我们不忘初心,继续前行。在这里,小编为大家整理了一些总结范文,希望可以对大家有所帮助。熟悉产品:了解产品
写心得体会可以梳理思路,加深对学习或者工作内容的理解和记忆。以下是小编为大家收集的心得体会范文,供大家参考。这些范文涵盖了不同主题和领域,从中可以学习到一些好的
在商业活动中,合同协议扮演着重要的角色,它规范了各方之间的权益和义务。通过查看合同协议的范例,可以帮助大家更好地了解和掌握合同编写的技巧。甲方(卖方):身份证号
通过写心得体会,我们能够反思自己的不足,找到提升的方法和途径。以下是小编为大家整理的一些心得体会范文,供大家参考和学习。剑锋从磨砺出,梅花香自苦寒来。无论时代怎
合同协议是一种合法的约束力文件,双方都有责任遵守其规定。小编搜集了一些常见的合同协议案例,供大家参考和借鉴。乙方(受委方):________。地址:______
年度总结是一种很重要的反思和总结的方式,让我们可以更好地规划未来。下面是一些经过精心挑选的年度总结范文,它们涉及不同的行业和领域,希望能给大家带来一些灵感。
心得体会是在学习、工作、生活等过程中对所获得的经验和感悟进行总结和概括的一种文字表达形式,它可以帮助我们更好地认识自己、提高自己。我想我们都有很多心得体会需要分
通过研读范文范本,我们可以了解到什么是一篇优秀的总结,以及如何运用正确的写作技巧来表达我们的观点和思考。这些范文范本可以帮助我们了解各种语言风格和文体形式。
学生演讲稿通常包括开场白、主题陈述、论据支持和结论等部分。小编整理了一些经典学生演讲稿的案例,供大家参考学习。大家好!我很荣幸能担任这次学生会的组织部部长,首先
合同协议一旦确定,各方就应该诚实守信地履行约定,确保交易的顺利进行。需要提醒的是,合同协议的范文只是供参考,具体情况还需根据实际情况进行调整。乙方:某某(车型:
写心得体会可以帮助我们总结经验,进一步改进和提升自己的能力和素质。小编为大家整理了一些经典的心得体会范文,希望能够给大家提供一些写作思路。作为一种重要的质量管理
幼儿园教案的编写应该注重评价和反思,及时调整和改进教学方法和过程。希望以下的幼儿园教案范文能够对教师们在编写教案时起到一定的启发作用。教学目标:1、充分认识安全
在写培训心得体会的过程中,我们可以对培训内容进行总结和归纳,形成系统化的学习思维。以下是小编为大家收集的培训心得体会范文,供大家参考和学习。科研是现代社会不可或
通过写心得体会,我们可以对自己的所思所想进行总结,从而更好地认识自己。通过总结心得体会,我逐渐明确了自己的职业规划和发展方向。我将全力以赴,朝着自己的目标努力前
通过写心得体会,我们可以不断提高自己的思维能力和表达能力。为了让大家更好地理解心得体会的写作特点和方法,以下是一些具体的实例供大家参考。家教是指在家庭环境下进行
心得体会的写作不仅可以反映个人的成长,也可以展现个人的思维和表达能力。以下是小编为大家收集的心得体会范文,供大家参考和学习。《新概论》是大学本科课程中的必修课程
进行建设工作前,我们需要明确目标,制定具体的建设方案来指导工作。正确认识和理解建设方案的重要性,可以帮助我们更好地规划和管理工程项目。杨柳初中元旦春节慰问活动方
在培训心得中,可以对培训过程、培训方式等进行评价和反思,以便今后的改进和提升。以下是一些来自不同领域和行业的培训心得,可以通过阅读它们来了解不同领域的学习和成长
在项目或活动的策划过程中,制定详细的策划方案可以提高工作效率。有了一个好的策划方案,我们的工作将更有目标性和针对性,以下范文可以帮助你更好地制定计划。
在写心得体会时,要着重突出自己的思考过程和感悟,而不仅仅是描述事情的发生和结果。这些心得体会范文深入浅出,字字珠玑,值得大家细细品味和参考。近年来,我作为一名检
作为一个职场新人,我认为竞聘能够提供一个展示自己优势的平台。1.以下是小编为大家收集的竞聘范文,供大家参考和学习。下面是小编为大家整理的,供大家参考。各位领导、
在制定活动方案时,需要与相关人员进行充分的沟通和协商,以确保各方的需求和意见得到充分考虑。活动方案的成功与否,还需要考虑到环境和时机的因素,以下是一些成功案例的
通过分析范文范本的结构和语言运用,我们可以进一步提高我们的写作技巧。如果你正在写作中遇到困难,不妨阅读一些范文范本,或许可以借鉴一些优秀的写作思路和表达方式。
感谢各位的莅临,有您们的支持,我们的活动才能更加精彩。以下是一些值得推荐的总结实例,希望能给大家带来一些灵感和思绪。乙:今天,我们相聚在这里,一起用心来感受真情
演讲稿的撰写也需要注重练习和反复修改,以获得更好的口头表达效果。通过阅读这些范文,你可以提高你的写作和演讲表达能力。在我们的校园里,则更应弘扬文明礼仪之风。作为
心得体会能够帮助我们发现问题、总结经验并提出改进的建议。10.通过这次实践,我对所学知识有了更深刻的应用和理解,也发现了自己在实践中的不足和改进的空间。
心得体会是我们内心的一种表达,可以帮助我们更好地总结经验、提高自我认知。心得体会让我明白了成功的背后是汗水和努力,只有不断反思总结,才能不断成长。我会时刻保持对
在写办公室工作总结时,应不追求形式,注重实质,重点突出,深入分析。这次办公室工作总结中,我总结了自己在工作中的成长和进步,并对接下来的工作提出了更高的要求和期望
在总结心得体会的过程中,我可以系统化地整理和梳理自己的思路和经验。以下是一些写心得体会的范文,供大家参考和学习,希望能够提高大家的写作水平。我参加了新东方_年的
教师心得体会是教师在教学工作中通过实践经验而形成的观点和感悟,它是教师思考、反思和总结的重要内容之一。教师心得体会能够帮助教师不断提高教育教学水平,促进学生的全
工作计划书还能够帮助我们更好地评估工作的进展情况,及时调整工作策略和计划。通过阅读范文,你可以了解到工作计划书的基本结构和要点,以及如何有效地进行整理和编写。
写心得体会可以帮助我们认识自己、激励自己、改进自己。接下来是一些写心得体会的范文,希望可以帮助大家更好地理解和应用。上帝是公正的也是吝啬的,他只赐予每个人一次生
社会实践报告是对参与社会实践活动的过程、经历以及所获得的收获和感悟进行总结和整理的一种书面材料。接下来,我们将分享一些优秀的社会实践报告范文,希望能够对大家的写
自我介绍是展示个人特点和优势的方式,它可以让他人更好地了解我们的能力和价值。对于自我介绍不太自信的朋友,不妨借鉴一下以下范文,或许能帮到你。大家好,我的名字叫—
建筑设计的创新性和独特性是评判一个建筑作品好坏的关键因素。建筑是人类创造的物质载体,展现着历史和文化的痕迹。如何在建筑设计中融入环保和可持续发展的理念?以下是一