作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。既然教案这么重要,那到底该怎么写一篇优质的教案呢?下面我帮大家找寻并整理了一些优秀的教案范文,我们一起来了解一下吧。
圆的面积教案人教版圆的面积教案北师大版篇一
:根据人教版和北师大版课标教材六年级上册中圆的相关知识自行开发的教材。
1、进一步理解圆的周长和面积计算公式的推导过程,进一步掌握圆的周长和面积的计算公式。
2、能运用圆的知识熟练、正确解答有关圆的周长和面积的问题。
3、建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力。
复习课是帮助学生复习、巩固已学过的知识,建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力的一种课型。复习课不同于练习课,复习课虽然要继续训练解题的技能技巧,但其更重要的任务是把所学的知识进行归纳、整理,把原来分散学习的知识有机地联系起来,使它形成一个完整的知识系统。这样做的目的是使学生获得稳定、清晰的核心概念,形成良好的认知结构,便于对知识的理解和记忆,也为以后学习新概念打下良好的知识基础。
一、创设情境,揭示课题。
二、回顾整理,讨论交流。
3、精彩会放。(教师结合课件演示帮助学生回顾圆的周长和面积公式的.推导过程)
4、圆的周长和面积公式的推导过程对我们学习的启示。(转化思想)
5、学生交流:在计算圆的周长和面积时怎样能够提高计算速度?
三、发现生活中的数学问题
教师结合图片演示,让学生提出有关圆的周长和面积的问题。
图片内容:农村的喷灌、碾子、拴在木桩上的小羊。
四、走进美丽的图形世界
教师通过一些圆形和正方形等图形的变化,形成各种几何图形,让学生计算圆的周长和面积。
五、开心词典
以开心词典的形式,让学生做六道选择题。
六、走进生活,解决问题
1、小猴子骑独轮车走钢丝。求车轮要转多少周。
2、用绳子绕树干10周,求横截面的直径。
七、思考生活中的数学问题
1、在200米和400米比赛时,为什么运动员站在不同的起跑线上?
2、阅读关于400米标准跑道的小资料。
圆的面积教案人教版圆的面积教案北师大版篇二
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
教学重、难点:圆面积公式的推导与运用。
教学过程
1.请同学们拿出准备好的圆,用手摸一摸,引导说说关于圆,都知道了什么,为学新知做好铺垫。
2.引导确定新的学习目标:还想知道圆的什么知识,适时揭示课题,(板书课题:圆的面积)
3.引导简单回忆平行四边形、三角形、梯形面积公式的推导方法,鼓励学生自己动手,运用转化法探索圆面积的计算方法。
1.猜想、引导,确定方法
(学生可能会想到长方形、平行四边形、三角形、梯形等。)
师:请同学们看手中的学具,想一想把圆怎样剪?剪成什么样的图形?
(根据学生猜想,指导学生试着把圆平均分成8、16、32个相等的扇形,然后拼一拼,看能拼成什么图形。)
2.动手操作,尝试探究
师请同学们动手剪拼一下,看到底能拼成什么图形。
(学生动手操作,小组合作探究)
师谁能向大家汇报一下,你把圆拼成了什么图形?请你把拼好的图形放在实物投影上展示给大家看。(各小组汇报,共享思维成果)
3.课件演示,突破难点
(1)圆与有近似的长方形有什么关系?
(2)把圆16等份和32等份后,拼成的图形有什么区别?
(3)如果等分份数仅需增加,结果会怎样?
师:课件进一步演示把一个圆等分成64份、128份…拼成长方形,是学生之观感知:将圆等分的份数越多,拼成的图形越接近于长方形。
4.观察比较,导出公式
学生汇报讨论结果。使学生明确:拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于圆的半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径,也就是s=πr×r=πr2
(可能有的同学会把圆剪开后拼成了平行四边形、三角形或梯形。教师要给予肯定,并引导推出同样的计算公式。)
5.尝试运用
出示例3,读题列式,学生尝试练习,反馈评价。
2.完成第116页做一做的第1题。
3.看书质疑。
1.求下面各圆的面积,只列式不计算。
直径50分米
2.一块圆形铁板的半径是3分米,它的面积是多少平方分米?
这节课你自己运用了什么方法,学到了哪些知识?
第118页的第3题和第4题。
圆的面积教案人教版圆的面积教案北师大版篇三
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
正确计算圆的面积。
圆面积公式的推导。
多媒体课件二套,圆片。
1、 师:(出示图)草地上长满了青草,一只羊被栓在草地的木桩上,请问:它能吃光全部青草吗?它最多能吃到哪个范围内的青草?请大家画出这只羊活动范围的示意图,两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)(动画演示)
师:这个范围的大小指圆的周长还是面积?为什么?谁画的正确,(圆的面积)。
(板书:圆的面积)
2.师:什么是圆的面积?先说,再看书,学生读,(教师用课件演示)
师:看到这个课题后,你们会想到什么?这堂课要解决什么问题呀?
生:学生圆的面积公式。
师:你们知道圆的面积公式后,你们还想到什么问题?
生:圆的面积公式根据什么推导出来的。
师:对!刚才这几位同学跟老师想的一样。这堂课我们要解决两个问题。
(通过创设情景,激发学生的学习兴趣,形成良好的学习动机。通过学生提出问题,明确学习目标。)
1. 猜测(每项用课件出示)
生:不等。
师:为什么?
生:因为,这个圆面积还要加上外面的4小块,才是4 r2 。
生:这个正方形是由四个同样大小的三角形组成,每个面积1/2r2,总面积2r2。
生:圆的面积大
师:可以观察出圆的面积范围在2r2-4r2
(这里让学生了解解决问题时要善于观察、敢于猜想。渗透无限等数学思想,)
2. 回忆旧知,
师:圆能不能直接用面积单位支量呢?为什么?
生: 因为圆是由曲线围成的,用面积单位直接量是有困难的。
师:该怎么办呢?(教室沉默)
师: 请同学们看屏幕,(师播放课件)边看边回忆:以前我们研究过平行四边形、三角形和梯形面积的求法,那时我们是怎样处理的?(用投影机放出几种图形的转化图解,边出示,边讨论)
师:这些图形面积公式的推导方法对我们研究圆的面积有什么启示呢?
生:我们可以用图形转化的方法,求圆的面积。(把未知的转化为已知的)
师:这个办法很好。那么把圆形转化成什么图形呢?
3.动手操作
(1)师:请同学们动手剪拼一下,看到底能拼成什么图形。(学生动手操作。)
师:谁能向大家汇报一下,你把圆拼成了什么图形?(生答:拼成了。请把你拼好的图形放在实物投影上展示给大家看。一个同学用8等份的圆片摆成近似平行四边形,一个用不着16等份的圆片摆成近似长方形)
(2)师::请看大屏幕,16等份的和8等份谁拼成更接近长方形?
生:16等份拼成的图形就会越接近于长方形。如果分的份数越多,每一份就会越细,)
(3)看拼成的长方形与圆有什么联系?你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。 (教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。)
学生汇报讨论结果。生答师继续演示课件。
生答:能,因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长宽
所以圆的面积=周长的一半半径
s=r
s=r2
(4)师:这个面积公式是不是正确,我们可以通过其它图形来验证一下。有的同学把圆拼成了三角形我们用三角形来验证一下,你能根据三角形计算公式推导圆的面积计算公式吗?(课件演示)
生答:三角形的底相当于圆周长的,高相当于圆半径的4倍。
因为 三角形的面积=底高2
所以 圆的面积=周长的半径的4倍
s=4r2
s=r2
(5)生:我们把圆转化成梯形来验证。(课件演示)
生:梯形的上底与下底的和相当于圆周长的一半,高相当于半径的2倍。
因为梯形的面积=(上底+下底)高2
所以圆的面积=周长的一半半径的2倍
s=2r2
s=r2 用梯形的面积
3.小结:刚才你们把圆转化成为哪些图形,分别推导出圆的面积计算公式?(s=r2)
我们根据拼成的近似平行四边形、长方形、三角形、梯形都推导出了同样的公式:s圆=r2。
唉!我们刚才猜的圆面积是多少?你们真了不起!与r2很接近啊!
圆的面积必需要具备哪些条件?
1、 现在你可以求出小羊大约最多能吃到多少面积的青草吗?为什么?请你给它补个条件。
(照应了开头,又学练习了面积的计算。)
2、 根据下面条件求出圆的面积
r =5分米 d =3米
(用学到的知识来解决生活中的问题,培养学生的应用能力)
(学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。)
圆的面积教案人教版圆的面积教案北师大版篇四
2.培养学生动手操作的能力,启发思维,开阔思路;
3.渗透初步的辩证唯物主义思想。
圆面积公式的推导方法。
已知半径,圆周长的一半怎么求?
(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)
这节课我们一起来学习圆的面积怎么计算。
(板书课题:圆的面积)
1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。
决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。
展示曲变直的变化图。
2.动手操作学具,推导圆面积公式。
为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。
思考:
(1)你摆的是什么图形?
(2)所摆的图形面积与圆面积有什么关系?
(3)图形的各部分相当于圆的什么?
(4)你如何推导出圆的面积?
(学生开始动手摆,小组讨论。)
指名发言。(在幻灯前边说边摆。)
①拼出长方形,学生叙述,老师板书:
②还能不能拼出其它图形?
学生可以拼出:
刚才,我们用不同思路都能推导出圆面积的公式是:s=r2。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。
例1 一个圆的半径是4厘米,它的面积是多少平方厘米?
s=r2=3.1442=3.1416=50.24(平方厘米)
答:它的面积是50.24平方厘米。
想一想;求圆面积s应知道什么?如果给d和c,又怎样求圆面积?
圆的面积教案人教版圆的面积教案北师大版篇五
圆的面积是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,因为以后学习圆柱、圆锥的知识打下基础。学生已有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆现象、勇于实践。在操作中将圆转化为已学过的平面图形,从中找到圆的面积与半径、直径的关系。
学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感体验和感受数学的价值。
1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确的计算圆的面积。
3、根据圆的半径或者圆的直径来计算圆的面积,解决简单的有关圆的面积计算的实际问题。
重点:使学生知道圆的面积的含义,理解和掌握圆面积的计算公式,并能正确计算圆的面积。
难点:理解圆的面积公式的推导过程,掌握转化的数学思想。
圆的面积教案人教版圆的面积教案北师大版篇六
2.回答下面各圆的面积。
1.说出s正=a2、s圆=πr2
2.左圆面积=π×22=4π
右圆面积=π×(2÷2)2=π
1.边长是5cm的正方形面积是多少?
5×5=25(cm2)
2.如果r=4cm,则圆的面积是多少?
3.14×42
=3.14×16
=50.24(cm2)
1.探究外方内圆图形和外圆内方图形的特点。课件出示两种图形,
思考:
老师明确:外方内圆的图形称为圆外切正方形。
老师明确:外圆内方的图形称为圆内接正方形。
2.引导学生画一个边长为8cm的正方形,然后在这个正方形内画一个最大的圆。
3.引导学生在圆内画一个最大的正方形。
4.将图形分解,分解为同一个圆的外切正方形和内接正方形两个组合图形。
1.
(1)外方内圆的图形是一个正方形内有一个最大的圆,圆的直径等于正方形的边长。
(2)外圆内方的图形是一个圆内有一个最大的正方形,正方形的对角线等于圆的直径。
2.小组合作讨论交流,然后说一说自己是怎么画的——以正方形的边长为直径画一个圆,正方形对角线的交点是这个圆的圆心。
3.小组合作讨论交流,说出作图的方法并明确:正方形的对角线等于圆的直径。
4.小组合作,将一个图形分解为同一个圆的外切正方形和内接正方形两个组合图形。
3.请画出一个半径是4cm的圆,并画出它的外切正方形和内接正方形,并说明画法。
1.计算圆外切正方形与圆之间部分的面积。
(1)课件出示半径为1m的圆外接正方形。组织学生讨论计算方法。
(2)组织学生算出正方形和圆之间部分的面积。
2.计算出圆内接正方形与圆之间部分的面积。
课件出示半径为1m的圆的方形组合图形,组织学生讨论计算方法。
1.
(1)观察图形的特点,讨论计算方法并尝试汇报交流。
(2)分别算出这个圆和正方形的面积:
s圆=3.14×12=3.14m2
s正=2×2=4m2
s阴=s正-s圆
=4-3.14
=0.86m2
2.观察图形,发现圆的半径与正方形的关系,讨论计算方法并尝试汇报交流。
1.如下图,已知圆的半径是3cm,求这个圆和正方形之间的面积。
1.读题,审题,明确题意后,尝试独立完成。
2.独立完成,然后全班汇报。
5.计算阴影部分的面积。
×102π-102≈57(cm2)
1.谈谈这节课你有哪些体会。
2.布置作业。
学生谈本节课学习的收获。
教学过程中老师的疑问
圆的面积教案人教版圆的面积教案北师大版篇七
2.能正确地计算圆柱的表面积。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
一复习旧知。
1计算下面圆柱的侧面积。
(1)底面周长2.5米,高0.6米。
(2)底面直径4厘米,高10厘米。
(3)底面半径1.5分米,高8分米。
2求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×3.14=56.52(平方分米)
(2)底面积:3.14×2×2=12.56(平方分米)
(3)表面积:56.52+12.56=81.64(平方分米)
答:它的表面积是81.64平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)
2计算下面各圆柱的表面积。
(1)底面周长是21.52厘米,高2.5分米。
(2)底面半径0.6米,高2米。
(3)底面直径10分米,高80厘米。
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)
圆的面积教案人教版圆的面积教案北师大版篇八
2、使学生能够正确地计算圆的面积,培养学生解决简单的实际问题的能力,渗透类比、极限的思想。
3、通过圆的面积公式推导过程,培养学生的合作精神和创新意识,培养观察、猜想、验证的实验方法与态度。
圆面积的公式推导的过程。
理解圆经过无数等分剪拼后可以拼成一个近似的长方形。并且发现拼成的长方形的长相当于圆周长的一半。
有关圆面积的课件,彩色圆形纸片(每小组1个),剪刀(每组2把).学生每人准备一个圆形物品。
一、创设情境,提出问题
揭示课题:圆的面积
二、充分感知,理解圆的面积的意义。
课件显示:圆所占平面的大小叫做圆的面积。
你认为圆面积的大小和什么有关?
三、自主探究,合作交流。
1、引导转化:
2、动手尝试探索。
(1)分小组动手操作,剪一剪,拼一拼,看能拼成什么图形?
(2)展示交流并介绍:你拼成了什么图形?在拼的过程中你发现了什么?
如果我们再继续等分下去,拼成的图形会怎么样?
小结:随着等分的份数无限增加,可以把圆剪拼成一个近似的长方形。
你能否根据圆与剪拼成的长方形之间的关系想出圆的面积公式?
3、学生合作探究,推导公式