教案的编写过程要注重教学目标的明确性、教学步骤的清晰性和教学资源的有效性。以下是小编为大家整理的高一教案范文,希望对教师们的教学有所启发。
体积的认识教案篇一
1、圆柱的体积公式是什么?用字母怎样表示?
2、求下列各圆柱的体积。(口答)
(1)底面积是5平方厘米,高是6厘米。
(2)底面半径4分米,高是10分米。
(3)底面直径2米,高是3米。
师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。(板书:圆锥的体积)
二、新课教学
师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。
生:圆锥的底面是圆形的。
生:从圆锥的顶点到底面圆心的距离是圆锥的高。
师:你能上来指出这个圆锥的高吗?
师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。
师:你们看到过哪些物体是圆锥形状的?(略)
师:对。在生活中有很多圆锥形的物体。
师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积。请同学们拿出一对等底等高圆锥和圆柱。想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。
出示小黑板:
1、圆锥的体积和同它等底等高的圆柱的体积有什么关系?
2、圆锥的体积怎么算?体积公式是怎样的?
学生分组做实验,老师巡回指导。
生:圆柱的体积是圆锥体积的3倍。
生:圆锥的体积是同它等底等高的圆柱体权的1/3。
板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。
师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?
生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。
师:说得很好。那么圆锥的体积怎么算呢?
生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。
师:谁能说说圆锥的体积公式。
生:圆锥的体积公式是v=1/3sh。
师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。
师:请大家把书翻到第42页,将你认为重要的字、词、句圈圈划划,并说说理由。
生:我认为"圆锥的体积v等于和它等底等高的圆柱体积的三分之一。"这句话很重要。
生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。
师:大家说得很对,那么为什么这几个字特别重要?如果底和离不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。
师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。师:可见圆锥的体积等于圆柱体积的三分之一的关键条件是等地等高。
师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系来解决下列问题。
例l:一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?
(两名学生板演,老师巡视)
师:这位同学做的对不对?
生:对!
师:和他做的一-样的同学请举手。(绝大多数同学举手)
师:那么这位同学做错在哪里呢?(指那位做错的同学做的)
生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。
师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即v=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。
体积的认识教案篇二
美国教育心理学家奥苏伯尔说:如果我不得不把教育心理学还原为一条原理的话,影响学习的最重要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。本节课是学生在认识了圆锥特征的基础上进行学习的。圆锥高的概念仍是本节课学习的一个重要知识储备,因而有必要在复习阶段利用直观教具通过切、摸等活动,帮助学生理解透彻。学生分组操作时,肯定能借助倒水(或沙子)的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。但是他们不易发现隐藏在实验中的等底等高的这一条件,这是实验过程中的一个盲点。为凸现这一条件,可借助体积关系不是3倍的.实验器材,引导学生经历去粗取精、去伪存真、由表及里、层层逼近的过程,进行深度信息加工。
体积的认识教案篇三
使学生能正确运用长方体和立方体的体积计算公式,解答有关的实际问题。
能正确运用长方体和立方体的体积计算公式,解答有关的实际问题。
一、基本练习
运用长方体和立方体的体积计算公式,计算长方体和立方体的体积。
1、计算长方体和立方体的体积。
(1)长8米,宽6米,高5米。
(2)棱长40厘米。
学生独立完成,反馈。
v=abhv=a3
8×6×5=240(立方米)40×40×40=64000(立方厘米)
2、一根长方体木料,长2米,宽1.5分米,厚2分米。这根木料的'体积是多少?
提醒学生注意单位名称的统一,请学生说说”厚“的意思。
学生独立完成,反馈。
2米=20分米
20×1.5×2=60(立方分米)
3、一块立方体石料,棱长50厘米。这块石料的体积是多少立方厘米?
学生独立完成,反馈。
学生独立完成,反馈时交流解题思路。
24×0.5=12(立方米)
二、综合练习
1、先求体积,再求质量的练习。
一块立方体钢的棱长是2分米,如果1立方分米钢重7.8千克,这块钢重多少千克?
学生独立完成,反馈时交流解题思路。
2×2×2=8(立方分米)
7.8×8=62.4(千克)
教学过程
备注
2、已知体积、长、宽、或底面积,求高的练习。
学生独立完成,反馈时交流解题思路。
240÷8÷6=5(分米)
512÷64=8(厘米)
3、小结
三、思考题
把一个立方体的六个面都涂上油漆,如果按面上的线将它分割成27个小立方体,那么,
三面涂油漆的小立方体有()个,
两面涂油漆的小立方体有()个,
一面涂油漆的小立方体有()个,
没有涂油漆的小立方体有()个。
四、学生总结
在教学时,为了使学生透彻理解长方体所占空间的大小是由它的长、宽、高所决定的,其体积公式的推导,可让学生动手操作,通过”摆、看、想、推、说“进行。这样,通过动手操作引发思维和用数学语言表达,不仅加深了对公式的来源及公式的运用的理解,还可以检查学生掌握新知识的情况,同时也培养发展了学生的逻辑思维能力。
体积的认识教案篇四
教学目标:1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,解决一些简单的实际问题。
2、在观察、操作、探索过程中,提高动手操作能力,进一步发展空间观念。
教学重点:使同学探索并掌握长方体的体积公式,能正确计算。
教学难点:动手实验、发现长方体的体积公式。
教学准备:长方体实物模型;24个1立方厘米的小正方体;教学课件。
【教学过程】
一、创设情境发现问题
1、出示长方体
提问:这是什么形体?你用什么方法丈量出长方体的体积?有
引发同学进行考虑,
同学通过观察、分析,找出丈量方法
(用水丈量,或把它分割成小正方体)
师:假如是较大的物体再去这样丈量是不是比较麻烦,我们能不能研讨出适用于任何长方体体积的计算方法?板题(长方体的体积)
师:长方形的面积和长和宽有关,长方体的体积可能与什么有关?
同学通过观察、分析,发现长方体体积与长、宽高的关系。
同学体会“长、宽相等的时候,越高体积会怎样?”
体会“长、高相等时候,越宽,体积会怎样?”
体会“宽、高相等的时候,越长,体积会有什么变化?”
同学体会说出长宽高越大,体积就越大
小组合作:动手操作,实践验证
用小正方体摆三个任意的长方体把相关的数字填入下表:
长方体
长/cm
宽/cm
高/cm
小正方体数量/(个)
体积/cm3
一
二
三
四
讨论:长方体的'体积,与它的长、宽、高有什么关系?
汇报自身的发现得出长方体体积公式
长方体的体积=长×宽×高
口答:求各长方体的体积。(动态地出现下面的学习资料)
体积的认识教案篇五
1、理解和掌握圆锥体体积的计算方法,并能运用公式求圆锥体的体积,并能解决简单的实际问题。
2、通过动手实践,自主探求圆锥体积的计算方法,培养学生初步的逻辑推理能力和创新意识,发展空间观念。
3、激发学生热爱生活,勇于探索、乐于与人合作的情趣。
体积的认识教案篇六
1.说出圆柱的体积计算公式。
2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)
体积的认识教案篇七
1、掌握长方体和正方体体积公式的推导,理解长方体和正方体体积都能用底面积乘以高来计算,能应用公式进行计算,并初步解决一些简单的实际问题。
2、在公式的推导过程中培养学生动手操作、抽象概括、归纳推理的能力,并进一步发展空间观念。
3、在教学中渗透知识来源于实践的,培养学生学习数学,发现数学的兴趣。
长方体、正方体体积公式的推导。
1、引导学生积极地去实验、发现长方体的体积公式。
2、理解长方体、正方体的体积为何都能用底面积乘以高来计算。
一、创设情境
填空:
1、叫做物体的体积。
2、常用的体积单位有:______。
3、计量一个物体的体积,要看这个物体含有多少个。
师:我们已经知道计量一个物体的体积,要看这个物体含有多少个体积单位,那么怎样计算任意一个长方体、正方体的体积?这节课我们就来学习长方体、正方体体积的计算方法。(板书课题)
二、实践探索
1、长方体体积的计算。
出示:一块长4厘米、宽3厘米、高2厘米的长方体橡皮泥,用刀将它切成一些棱长1厘米的小正方体。
提问:请你数一数,它的体积是多少?有许多物体不能切开,怎样计算它的体积?
实验:师生都拿出准备好的12个1立方厘米的'小正方块,按第32页的第(1)题摆好。
观察结果:
(1)摆成了一个什么?
(2)它的长、宽、高各是多少?
板书:长方体:长、宽、高(单位:厘米)
431
含体积单位数:4×3×1=12(个)
体积:4×3×1=12(立方厘米)
(3)它含有多少个1立方厘米?
(4)它的体积是多少?
同桌的同学可将你们的小正方体合起来,照上面的方法一起摆2层,再看:
(1)摆成了一个什么?
这节课在公式的推导过程中培养学生动手操作、抽象概括、归纳推理的能力,并进一步发展空间观念。在教学中渗透了知识来源于实践的,培养学生学习数学,发现数学的兴趣,所以学生的学习积极性很高。
(2)它的长、宽、高各是多少?
(3)它含有多少个1立方厘米?
(4)它的体积是多少?(同上板书)
通过上面的实验,你发现了什么?(可让学生分小组讨论)
结论:长方体的体积=长×宽×高。
用字母表示:v=a×b×h=abh
应用:出示例1,让学生独立解答。
2、立方体体积的计算。
思考并回答:长方体和立方体有什么关系?立方体的体积该怎样计算呢?
结论:立方体的体积=棱长×棱长×棱长
用字母表示为:v=a3
说明:a×a×a可以写成a3,读作:a的立方。
应用:出示例2,让学生独立做后订正。
3、探索长方体与立方体的通用体积公式
观察:
(1)长方体体积公式中的”长×宽“和正方体体积公式中的”棱长×棱长“各表示什么?
结论:长方体的体积=底面积×高
正方体的体积=底面积×棱长
思考:
(1)这条棱长实际上是特殊的什么?
(2)正方体的体积公式又可以写成什么?
结论:长方体(或正方体)的体积=底面积×高,用字母表示:
v=sh
三、课堂实践
1.做”做一做“的第1题。
(1)先让学生说出每个长方体的长、宽、高。
(2)再根据公式算出它们各自的体积。
(3)集体订正。
2、做”做一做“的第2、3、4题。
四、课堂
五、作业《作业本》
本节内容是在学生已掌握了体积的概念和体积单位的基础上进行的。教学过程中通过学生操作、探究、合作、讨论等多种方式,调动学生积极参与长方体体积公式的推导,最后的结论,都由学生得出,老师只起”导“的作用。
体积的认识教案篇八
运用迁移规律,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2、过程方法
让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3、情感态度价值观
通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
体积的认识教案篇九
1、引导学生通过观察长方体的长、宽、高和正方体的棱长,再应用公式计算,解决生活中的.实际问题。
2、通过练习,提高学生解决问题的能力。
应用长方体体积公式计算长方体、正方体的体积。
正确理解体积
一、复习引入
1、复习上一节课学过的知识。
提问:长方体、正方体的体积计算公式是什么?
2、应用公式计算体积
(1)一个长方体,长8厘米,宽6厘米,高4厘米,求体积是多少?
(2)一个正方体,棱长是9厘米,体积是多少?
二、练习(教材43页练习题)
1、第5题要求学生认真读题,注意最后的问题是需要多少升水?计算出来的体积单位是立方分米,要换算成升。
2、第6题要求独立思考练习,与同伴交流,说一说你是怎么想的。
3、第7题教师指导练习,结合书上的图想一想,再说一说,最后算一算。提示,正方体的每一条棱长都相等,先确定棱长。
4、第9题
实践活动(见教材)
三、作业练习
完成配套练习
体积的认识教案篇十
教学内容:教材第20页例2、练一练。
教学要求:使学生进-步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积公式解决-些简单的实际问题:
教学重点:进-步掌握圆锥的体积计算方法。
教学难点:根据不同的条件计算圆锥的体积。