无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
表面涂色的正方体教学设计篇一
第二单元《长方体和正方体》的整理复习,第十单元第20—24题及第30题。
组织学生根据提供的表格,自己整理、复习长方体和正方体的相关知识,掌握长、正方体的基本特征;正确计算长方体、正方体的棱长总和、底面积、表面积、不完全表面积和体积、容积;解决生活中的实际问题。进一步认识长方体和正方体之间的联系,会用底面积乘高计算体积,认识侧面积,会用侧面积加底面积计算表面积,并适当延伸推广到常见的圆柱体、多面柱体等。通过媒体演示,让学生感受点的运动形成线、线的运动形成面、面的运动形成体,初步感知点线面体等几何要素之间的联系,培养学生空间观念、空间想象能力。
1、学生应用表格法整理长方体正方体相关知识,掌握长正方体的基本特征。
2、正确进行长正方体的有关面积和体积的计算。
3、沟通长正方体之间的联系,适当延伸推广到各种柱体。
4、初步感知点线面体等几何要素之间的联系,培养学生空间观念、空间想象能力。
整理掌握长正方体的特征,正确应用。
沟通长正方体的联系及推广延伸。
ppt课件
1、出示:“xxx”一个点,问:同学们猜猜,这个“点”运动以后会留下什么?
2、动画演示:点运动的过程和留下的痕迹。(直线、曲线、折线等)点运动成线。想象生活中点动成线的例子。(看到的喷气式飞机飞过留下的痕迹,流星、礼炮等的痕迹。)
3、问:点运动成线,线运动成什么呢?请看动画演示:线运动的过程和留下的痕迹。(长方形、正方形、平行四边形、梯形、圆形等)线运动成面。想象生活中线动成面的例子。(用粉笔擦擦黑板就是线运动形成面、甩动竹杆、甩动系着球的短线)小球这个点运动得到一条曲线—圆周,这条短线运动得到一个面——圆面。(动画演示)
问:面的`运动又该成什么呢?猜猜看。
生猜,师说,(长方体、正方体、圆柱体、圆锥体等)动画演示:面运动的过程和留下的痕迹。面运动成体。想象生活中面动成体的例子。(一枚硬币在桌子上竖起旋转形成一个球等)
4、师:点动成线,线动成面,面动成体,这就是数学知识之间的联系。我们要善于发现知识之间的联系,融会贯通地学习掌握知识。这学期我们主要学习了长方体、正方体的有关知识,今天我们一起来复习一下,(板书:长方体正方体的复习)。希望大家能把这部分知识和前面学习过的相关知识联系,也能和我们虽然没学过但生活中见到过的现象联系起来,梳理知识,把握联系,解决实际问题。
师:前面大家学的都不错,你能按照下面的表格把长方体正方体的知识梳理一下吗?(出示表格)
学生可独立完成或者分组完成,小组交流,核对答案。
指名汇报,自由订正。
师:看得出来,同学们掌握的很好,我想运用这些知识解决生活中的一些应用也一定是小菜一碟吧。
第一层次:练习课本第117页第20—22题
学生独立完成,指名说出算式。核对答案。有错订正。
层次:讨论
提问:刚才这2个同学做得非常好,你能告诉大家在计算表面积和体积的时候有什么需要提醒大家的吗?可以结合我们当时学习时的具体题目对大家说说。
讨论1:分清楚是计算表面积还是体积。
提问:你认为怎么分清楚?根据题目意思或者问题单位来分清楚。(举例见前面第二单元中第32页第8、9题和第34页第5—7题。)
讨论2:是计算底面积还是计算表面积。
讨论3:如果是计算表面积还要注意是算几个面及计算哪几个面。
教师小结:是的,计算表面积有时是算6个面的,我们通常称为计算表面积;对于没有6个面的,我们通常说不完全表面积,在计算的时候要注意是哪几个面,分别该怎样算。(第二单元第17 页第6题和第p18页第7、8题。)
谈话:看来很多同学关于长方体和正方体表面积计算掌握得不错,对下面这个实际问题你准备怎么解决呢?第118页第23、24题。
学生先独立思考,写出方案或者算式,组内交流。
加强联系。
提问:现在再回头看这张表格,从这份表格你还能发现长方体正方体之间有什么联系吗?
学生交流:正方体是特殊的长方体。(增加一行,填写在特征栏目)体积等于底面积乘高。(写在体积栏目)
1、出示第120页第30题。
引导学生思考并理解“利用率”后再解答。
引导学生分析要求小正方体的体积必须先求出它的棱长,要求小正方体的棱长又可以根据大正方体的表面积来求。
引导学生分析根据正方体的棱长可以先求出水的体积,再求水面的高度。
1、课内作业:第117、118页第23、24题、第120页第30题。
2、课外作业:补充相关练习
表面涂色的正方体教学设计篇二
1、让学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。
2、让学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。
3、让学生进一步感受立体图形的学习价值,增强学习数学的兴趣。
长方体和正方体表面积的含义及其计算方法的推导过程。
长方体、正方体模型。
一、猜测导入
出示两个纸盒(一个长方体、一个正方体)。
提问:长方体和正方体有哪些特征?
谈话:这两个纸盒,看起来大小差不多,请你猜一猜,做哪个纸盒用的硬纸板多?
有什么方法可以证明你的猜测是否正确?(引导可以计算它们所用的硬纸板的面积,然后再比较)
二、探究新知
1、引导探究长方体表面积的.计算方法。
教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积。
(2)学生独立列式,指名汇报,并根据学生回答进行板书。
解法一:6×5×2+6×4×2+5×4×2=60+48+40=148(平方厘米)
解法二:(6×5+6×4+5×4)×2=(30+24+20)×2=74×2=148(平方厘米)
答:至少要用148平方厘米的硬纸板。
2、自主探究正方体表面积的计算方法。
(2)学生独立尝试解答,提醒学生根据正方体的特征进行思考。
(3)组织交流反馈。
3、揭示表面积的含义。
揭示:长方体或正方体6个面的总面积,叫做它的表面积。
(板书课题:长方体和正方体的表面积)
三、练习巩固
完成课本“练一练”以及练习四第一、二、五题。
四、全课小结
五、布置作业
1、做练习四第三、四题。
表面涂色的正方体教学设计篇三
结合具体情境,经历自主探索长方体、正方体表面积计算方法的过程。
知道表面积的概念,掌握长方体、正方体表面积的计算方法,会计算长方体、正方体的表面积。
3、在自主解决现实问题的活动中,获得成功的体验,增强学习数学的信心。
1、长方体、正方体表面积的意义和计算方法。
2、确定长方体每一个面的长和宽。
1、长方体、正方体表面积的意义和计算方法。
2、确定长方体每一个面的长和宽。
教具:长方体、正方体纸盒(可展开)、投影片、电脑动画软件。
学具:长方体、正方体纸盒、剪刀。
一、复习准备。
(一)口答填空。
1、长方体有()个面,一般都是(),相对的面的()相等;
2、正方体有()个面,它们都是(),正方形各面的()相等;
4、这是一个(),它的棱长是()厘米,它的`棱长之和是()厘米。
(二)说一说长方体和正方体的区别?
教师:我们已经掌握了长方体和正方体的特征,它们的表面都有6个面,今天就来研究它们表面的大小。(板书课题:长方体和正方体的表面积)
二、学习新课。
(一)长方体和正方体表面积的意义。
1、教师提问:什么叫做面积?
长方体有几个面?正方体有几个面?
(用手按前、后,上、下,左、右的顺序摸一遍)
2、教师明确:这六个面的总面积叫做它的表面积。
3、学生两人一组相互说一说什么是长方体的表面积,什么是正方体的表面积。
4、教师板书:长方体或正方体6个面的总面积,叫做它的表面积。
(二)长方体表面积的计算方法
1、学生归纳:
上下两个面大小相等,它是由长方体的长和宽作为长和宽的;
前后两个面大小相等,它是由长方体的长和高作为长和宽的;
左右两个面大小相等,它是由长方体的高和宽作为长和宽的。
2、教师提问:想一想,长方体的表面积如何计算?(学生讨论)
老师板书:
上下面:长×宽×2
前后面:长×高×2
左右面:高×宽×2
3、练习解答。
做一个长6厘米、宽5厘米、高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
4、巩固练习。
一个长方体长4米,宽3米,高2.5米、它的表面积是多少平方米?
教师:如此题改为同样尺寸的无盖塑料盒求表面积如何办?
学生:应该少算上边的一面。
列式:4×3+4×2.5×2+3×2.5×2
(三)正方体表面积的计算方法
1、教师提问:正方体的表面积如何求吗?
学生:棱长×棱长×6
2、试解例2。
一个正方体纸盒,棱长3厘米,求它的表面积。
32×6
=9×6
=54(平方厘米)
答:它的表面积是54平方厘米。
教师:如果这个盒子没有盖子,做这个盒子要用多少纸板该如何列式?
学生:少一个面。列式:32×5
教师明确:说表面积是指六个面,实际问题中有的不是求长方体、正方体的表面积,审题时要分清求的是哪几个面的和。
3、巩固练习:一个正方体的面积是1.2分米,求它的表面积。
三、巩固反馈。
2、一个正方体的棱长是5厘米,它的表面积是多少平方厘米?
3、判断正误,并说明理由。
(1)长方体的三条棱分别叫它的长、宽、高。()
(2)一个棱长4分米的正方体,它的表面积是:42×6=48(平方分米)()
(3)用四个同样大的正方体小木块拼成一个长方体,这个长方体的表面积,比原来四个正方体表面积的和小。()
四、课堂总结。
什么是长、正方体的表面积?长、正方体的表面积如何计算?
表面涂色的正方体教学设计篇四
(三维)
1、根据正方体的特征,推导出正方体表面积的计算方法。
2、学会解决实际生活中有关正方体表面积的计算问题,培养思维的灵活性。
3、感受数学与生活的密切联系,体会数学学习的价值。
教学
教学重点:正方体表面积的计算方法。
教学难点:解决生活中有关长方体、正方体表面积的计算问题。
教学
教学方法:观察法、演示法。
教学手段: 迁移类推-自己发现-总结方法。计算正方体的表面积是在计算长方体表面积的基础上进行教学的。所以把迁移类推的机会留给学生,让学生自己去发现,类推出正方体表面积的计算方法,以培养学生的逻辑思维能力和再创造能力。
使用教材的构想
在操作与观察中,将知识的思考与实物模型的演示和操作有机的结合起来,在学生头脑中形成正方体表面积的表象,建立概念,以动促思,引导学生在探索中发现和总结出计算正方体的方法,让学生充分发表自己的见解,在多种算法的交流中,选择适合自己的算法,培养创新意识。
第二课时:正方体表面积的计算
教学内容:教材第35页例2及练习六的相关题目。
教学准备:正方体展开图。生:正方体纸盒。
一、复习引入
1、什么是长方体的表面积?
2、计算下图长方体的表面积。(图略。长5分米,宽4分米,高3分米)
3、什么是正方体的表面积?正方体6个面有什么关系?每个面的面积怎样算?
二、实践探索
1、教学例2
看看昨天自己剪开的正方体表面展开图,大家能说出正方体的表面积如何求吗?
要想知道包装这个礼盒至少要多少包装纸,也就是求什么?
“至少”是什么意思?
学生列式计算,并说说第一步算出的是什么?第二步算出的是什么?(指名板演,集体订正)
2、p35页做一做
让学生独立完成,教师巡视,了解学生的解答情况,看学生是否注意到鱼缸上面没有盖,适时提醒。最后组织学生汇报答案,集体订正,订正。
作业设计:
p36第6题
p37第7题
p36第4、5、6题。
表面涂色的正方体教学设计篇五
1、通过操作观察,使学生知道长方体和正方体表面积的含义、
2、初步学会长方体和正方体表面积的计算方法、
3、培养学生的动手操作能力和空间观念、
建立表面积概念,初步学会计算长方体和正方体的表面积、
正确建立表面积的概念、
一、铺垫孕伏、
1、长方体的特征是什么?
2、正方体的特征是什么?
指出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?
二、探究新知、
教师节,笑笑为老师准备了一个小礼物,她想给它进行包装,到底要买多大的包装纸才够而且又最省纸呢?这实际上就是求什么?(就是求长方体6个面的面积一共是多少。)
师:那么怎样求这6个面的面积呢?
拿出你准备的纸盒,剪一剪,看一看,能发现什么?(可以分别求出每个面的面积,再加起来;发现相对面的面积相等;发现6个面的总面积就是包装纸的面积。)学生操作,师巡视。
老师沿着棱把这个纸盒剪开,请大家帮老师算算,看你能算出它哪个免得面积?是多少?(指名汇报)
同学们说的真好。你能把下面表格填上吗?看谁又快又对。
师:长方体6个面的面积和又叫长方体的表面积。
那么怎样求长方体的`表面积呢?小组内讨论以下。(师出示课件)
什么叫表面积呢?
1、教师明确:长方体或正方体六个面的总面积叫做它的表面积、
2、学生两人一组相互说一说什么是长方体的表面积、
(二)长方体表面积的计算方法、【演示课件“长方体的表面积”】
1、学生归纳:
上下两个面大小相等,面积用长方体的长乘宽;
前后两个面大小相等,面积用长方体的长乘高;
左右两个面大小相等面积用长方体的高乘宽、
2、教学例1、
做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?
表面涂色的正方体教学设计篇六
教学目标:
1、通过观察、猜想、操作、想象、推理、探索等数学活动,自主探索长方体、正方体关于面、棱、顶点的特征,理解长方体长、宽、高的含义。
2、立足想象与操作,自主探索并发现长方体顶点、棱、面之间的关系,理解长方体和正方体的关系。
3、在自主探索长方体和正方体特征的过程中,培养学生的空间观念和推理能力。
教学重点:
把握特征,培养空间观念。
教学难点:
空间观念的培养。
教学准备:
课件、模型、搭长方体的材料等。
教学过程:
一、导入
师:同学们,今天老师给大家带来了很多的数学图形,你认识它们吗?(认识)
师:那这个图形叫什么?这个呢?这个……
师:在这些图形里,你能分辨哪些是平面图形,哪些是立体图形吗?(能)
师:你上来试一试。请将是平面图形的拖到左边,是立体图形的拖到右边。
师:同学们,他做的对吗?(对)
师:很好,今天,我们就一起进入立体图形的世界,更深入的认识一下长方体和正方体。(板书课题:长方体和正方体的认识)
二、新授
1.说一说生活中的`长方体和正方体
师:同学们,你们在生活中见过哪些物体的形状是长方体或正方体的?
师:我们周围许多物体的形状都是长方体或正方体(正方体也叫立方体)。
2.认识长方体
师:我们先来认识一下长方体。请同学们看,在长方体中,老师手摸得这些平平的地方叫做长方体的面,然后面与面相交的这条线就叫做长方体的棱,三条棱相交的这个点叫做长方体的顶点。
师:同学们的桌上都有一个长方体的物体。接下来,请同学们带着下面这些问题摸一摸你的长方体。
(1)长方体有()个面。
(2)每个面是什么形状的?
(3)哪些面是完全相同的?
(4)长方体有()条棱。
(5)哪些棱长度相等?
(6)长方体有()个顶点。
师:你们有答案了吗?我们一起来看一下。
师:通过刚刚的活动我们知道了:长方体一般是由6个长方形(特殊情况下有两个相对的面是正方形)围成的立体图形。在一个长方体中,相对的面完全相同,相对的棱长度相等。
3.制作长方体,认识长、宽、高
交流:
师:同学们,刚刚我们初步认识了长方体,你们想亲自动手用小棒做一个长方体吗?(想)
师:那想要搭成一个长方体,需要几根小棒呢?(12根)
师:为什么是12根?
师:给你12根一定能搭成吗?
学生思考并回答
操作:
师:同学们想好了吗?我们一起来试一试。
出示任务要求:
(1)选择其中的一种方案,小组合作搭一个长方体。
(2)进一步思考其他方案可不可以搭成,为什么?
(3)思考在搭长方体的过程中自己的发现。