在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
一个数除以小数说课稿篇一
人教版小学数学教材五年级上册第28页例4
教学目标
1.使学生理解除数是小数的除法可以转化成除数是整数的小数除法进行计算的算理,归纳出除数是小数的除法的计算法则,并能运用法则正确地进行计算。
2.在探究一个数除以小数计算方法的过程中,培养学生分析、转化和归纳的能力,进一步提高学生的计算能力和解决实际问题的能力。
3.渗透转化的数学思想及事物之间相互联系的辩证唯物主义观点,从中获得积极的价值体验。
教学重点
利用商不变性质,把除数是小数的除法转化成除数是整数的除法。
教学难点
把除数是小数的除法转化成除数是整数的除法时,正确地移动被除数的小数点。
教学准备
将本课教学内容制成ppt课件。
教学过程
一、复习旧知,铺垫新知
1.先把下面的数改成整数,再说说分别扩大了多少倍?
0.952.937.60.041
2.填表思考:被除数、除数、商每一组之间有什么关系?
(商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。)
2、创设情境,自主探究
1.同学们知道这是什么吗?(中国结)
2.奶奶是编“中国结”的高手,看,她又在忙起来了。
3.从图中你能获得哪些数学信息?根据这些信息应该怎样列式?
4.板书算式:7.65÷0.85=(就是7.65里含几个0.85,用除法计算)
5.探索计算方法
(1)这个除法和我们上节课学过的除法有什么不同?(上节课学习的除数是整数的小数除法,这道题的除数是小数。)
这节课我们就一起来研究《一个数除以小数》
(2)估算
那你们能不能先估算一下,大约能编几个中国结?
(估算的非常好,除数是整数的小数除法我们会算,那除数是小数的呢,我们该如何处理这个小数,才能计算出结果呢?)
请同学们先独立思考,在本上写出你的方法。
6.汇报
方法一:单位转换
(1).0.85米=85厘米
7.65米=765厘米
765÷85=9(个)所以7.65÷0.85=9
(利用单位转换,把米转换成厘米,也就是把0.85米扩大100倍是85厘米,把7.65米扩大100倍是765厘米。)
(2).出示课件讲解
方法二:竖式
根据商不变的性质,把被除数和除数同时扩大100倍。
(1)提问:为什么要把除数和被除数都扩大到原来的100倍呢?(引导学生说出把除数扩大到原来的100倍后,除数就变成了整数,为了使商不变,被除数也要扩大到原来的100倍。)
(2)这位同学的思路非常好,很清晰。但是书写还不是十分规范,下面请跟着老师,看一看正确的书写。
7.65÷0.85边写转化过程边讲解
把小数0.85扩大到它的100倍,就是把小数点向什么方向移动几位?(向右移动两位)把除数的小数点和没有用的“0”划去。用一个小斜线,不要画的特别长。7.65扩大100倍,把小数点向右移动两位,小数点划掉。
一定要注意除数扩大多少倍,被除数也要扩大多少倍。
765÷85会做了吗?那你们把按照老师的这种方法把这道题完成。(补全单位和答)
(3)归纳小结。
师:那我们再看这道题,做除数是小数的除法时我们要注意什么?
通过刚才的学习,我们总结一下:一个数除以小数,怎样计算?(出示课件)
三、练习巩固
1.完成课本第28页“做一做”。(同桌说一说扩大多少倍)
全体学生做,指定三名学生板演,教师巡视指导,完成后让学生说说是怎样算的。
(第三题:544÷1654.4÷16544÷160)
小结:计算小数除法时,要根据除数的小数数位进行转换。特别是当它们的小数位数不同时,要看将除数转化成整数,小数点向右移动了几位,再把被除数的小数点向右移动相同的位数。
3.解决问题
一个长方形的面积是23.52平方米,宽是2.4米,这个长方形的长是多少米?23.52÷2.4=9.8(米)
四、总结
谈谈这节课的收获?
一个数除以小数说课稿篇二
本节课的学习自认为有一下几点做得比较好:
第一,学习时我重视知识间的联系,引导学生将新知识转化成旧知识(将一个数除以小数转化成小数除以整数)进行学习,注重“转化”的数学思想方法。
第二,课堂上注意给学生充分独立思考的时间和机会。比如,列出算式7.6÷0.85后,问学生“这个算式和我们以前学的除法算式有什么不一样?你会算吗?自己先试试。”
尊重学生原有的知识结构,让学生有一个独立思考的时间,通过思考出现认知冲突,从而激起学生的学习兴趣。
当然也有许多不足之处,首先,我对一些细节处理得不够明确,比如:给0.544÷0.16列竖式时,当除数和被除数扩大到它的100倍时,原来的0和小数点没用了就应该划去,课堂上的板书这一点做到了但没有强调,结果一部分学生在练习时没有划掉0.
一个数除以小数说课稿篇三
经过听课与讨论发现,探究一个数除以小数的计算方法并能正确计算,学生需要具备三方面的基础知识。一是理解并灵活运用商不变的性质;二是能正确地把小数或整数的小数点向右移动按要求移动;三是能熟练地计算除数是整数的小数除法。
因学生刚刚接触除数是整数的小数除法学生需要具备的技能——除数的小数点向右移动几位,被除数的小数也向右移动几位,是结合了上面的第一与第二个知识点,也是本课的难点。分析难点难在这里思维层次比较多。
第一层次:把除数变为整数,去掉除数的小数点即可;——这一层次思维含量比较低。
第二层次:除数变成了整数,小数点隐掉或省略了。需要思考:划掉除数的小数点相当于把它的小数点向右移动几位。
第三层次:被除数的小数向右移动相同的位数时,有时小数位数够,如果不够还需要考虑添几个0,怎样添的问题。
因学生刚刚接触除数是整数的小数除法,计算不太熟练,更达不到半自动化(借用《给教师的建议》中的提法),再加上一个数除以小数的思维层次比较多,这部分的内容对于学生来说是比较难的。所以课前如果设计专门的准备课,再进行新知的探究也许能提高的教学效率,正所谓“磨刀不误砍柴功”嘛。
因为这节内容比较难,自己总怕学生自己学不好,所以我和王霞老师都采用了“半扶半放”的教学方式进行教学,而苗洁老师是完全放手让学生自主探究,然后收集各种问题进行分析。于是思考:自己不放手的原因是什么?是不相信学生的能力?还是怕一节课的时间不够用?(可能太拘于常规时间的限制)
大家都认为苗老师的方法好,但在处理学生不同的计算方法的顺序上有分歧。一方的意见是先展示正确的方法,再分析错误的方法;另一方的意见是先处理有明显小错误的方法,再逐步地处理有大问题的方法,最后确定正确方法。经过讨论,大家多数同意第一种意见,先引导学生分析正确方法的算理,再用其中的道理分析错误方法的问题所在,这样不仅可以促使学生从另一个侧面理解算理,还可以帮助出错的学生弄清自己错在何处。这样学生“知其然也知其所以然”,才能更加灵活地解决综合在一起的各种计算题。
一个数除以小数教材上的第一个例子是“7。65÷0.85”,经过分析这是一个特例,特殊在被除数与除数的小数位数相同,紧跟着的“做一做”中前两个例子的被除数与除数的小数位数也相同,最后一个是三位小数除以两位小数的计算。这样安排会给学生造成“一个数除以小数,把被除数与除数都变成整数(或去掉小数点)”的表面印象。所以我将例子改为“1.296÷0.72”,这样的例子更为一般,也不会让学生形成上面不太严谨的印象。我的想法是“从一般到特殊”地引导学生进行探究。而苗老师与吕老师认为“7.65÷0.85”比较简单,应该按“从简单到复杂”的顺序引导学生展开探究。最终没有形成统一看法,认为在以后的教学中进行对比实验,看究竟哪一种方式的教学效率更好。
一个数除以小数说课稿篇四
我认为教学成功的关键在于让学生主动参与学习数学,获得成功的体验,取得预设的教学目标,为以后的学习打好基础。这节课我努力做到以下几点:
一、情境教学培养数学兴趣。
数学来源于生活,创设生活情境,列举生活中的问题,更能唤起学生的生活经验,产生很想解决生活问题的冲动。这种生活味的数学带来的现实感和亲切感更能激发学生学习数学的兴趣。使枯燥的计算生活性、生动性、趣味性,让学生愿算、会算、算准、算活!
二、计算方法学生自主探索。
课前,教师出示问题,简便快速地引出这节课的问题----如何计算除数是小数的除法。因为之前学生已经掌握了相关的知识及小数除以整数的除法,所以学生可以利用这些知识经验探索一个数除以小数的计算方法。之所以能放手让学生在自主探索、反馈校正中获得经验,得出计算方法,关键在于我对计算教学有了新的认识:着眼学生可持续发展能力的培养。计算教学的目标不仅仅是让学生学会计算,还要对学生探究能力、知识迁移、合作交流能力进行培养。为以后的数学学习积累经验,打下基础。
三、学生自主优化计算方法。
《数学课程标准》非常强调:计算教学时,要鼓励算法多样化,要避免繁杂的运算,避免将运算与应用割裂开来。课堂上,我引导学生呈现各种方法,学生在理解各种方法的过程中,不仅思维得到锻炼,而且提高了自己对方法的优化。教师不强求学生用一种固定的方法,这会局限学生的思维,同时应该引导学生掌握好的方法。教学时我也注意到了不能一味地追求算法的多样化,而是让学生积极、主动地去探索众多算法中更简便的方法。学生在选择合理方法进行计算时,处理了算法的多样化与一般化之间的关系,渗透策略优化的思想。
四、实践应用感受数学价值。
过去的.解决问题,总是一些数学模式化后的习题。学生按照模式能很快地找到解决问题的方法。可以说,这些数学化的习题,降低了学生分析问题的能力。而本节课的实践应用,较真实地呈现给学生各种方案,学生在进行了比较的时候,自然地发现要运用今天所学的知识解题。这样的习题设计,一方面巩固了学生知识技能的掌握,另一方面也培养了学生学习数学的兴趣。
文档为doc格式
一个数除以小数说课稿篇五
教学目标:
1.初步理解并掌握除数是小数的除法的计算法则,并能正确地进行计算。
2.掌握将小数的除法转化成除数是整数的除法的推导过程,初步培养学生转化的思想。
教学重点:
理解除数是小数的`除法的计算法则和算理。
教学难点:
掌握被除数的小数点向右移动时,如果位数不够,要在被除数末尾用“0”补足的方法。
教学工具:
课件,实物投影。
教学过程:
1、复习除数是整数的小数除法。
5.04÷6=50.4÷60=
(1)竖式计算5.04÷6=
(2)不计算说出50.4÷60的商。(根据被除数和除数变化相同,商不变)
2、新课引入
(1)列式。
(2)与前面两题比较有何不同。(板书:一个数除以小数)
(3)能转化成除数是整数的除法来算吗?为什么?
(4)怎样列竖式?
小结:一个数除以小数,根据“被除数和除数的变化相同,商不变”,可通过把除数和被除数的小数点同时向右移动相同的位数,转化为除数是整数的除法来计算。
3、基本练习一
竖式计算下列各题
62.4÷2.6=0.544÷0.16=12.6÷0.28=
(1)说一说,怎样以上各式转化成除数是整数的除法。
(2)竖式计算,学生1号本上演算,三位学生板演。
(3)集体评讲。注意第三题,被除数的小数位数不够时,怎么办?(用“0”补足)
基本练习二
1.8÷0.24=21÷1.4=
小结:当被除数的小数位数不够足时,用“0”补足。
4、基本练习三
独立完成书22页“做一做”的第2题,先判断对错,说明错在哪里并且改正。
5、总结:通过今天的学习,说一说一个数除以小数的计算方法是什么?
6、作业布置。
一个数除以小数说课稿篇六
听了冯老师执教的《一个数除以小数》一课,收获颇多。总的认为这一课设计巧妙、思路清晰,流畅,重点突出,充分体现教师主导,学生主体作用。具体评议如下:
1.加强知识之间的联系,由旧引新。在课堂开始,采用复习的方法。出示三组算式,复习了一个数除以整数的计算,在最后一组算式中很自然的引出了今天所要学习的知识《一个数除以小数》。
2.充分发挥学生主动性,引导学生积极探索。教师通过让学生自己去观察每组算式中被除数、除数、商的变化,探索总结出了商不变原理。并在随后探索一个数除以小数出现被除数位数不够时,都是先由学生自己去观察思考总结,教师知识对学生的`表达做出规范。
3.教师点拨及时到位,做好总结。当学生板演出现问题时,教师耐心纠正他们的错误,让学生对错误有深刻的认识。课堂上教师注重知识的条理性,适时对学法进行总结。有商不变原理的总结,还有在进行一个数除以小数时,让学生注意:商的小数点要和被除数移动后的小数点对齐。这是在计算一个数除以小数时,特别要注意的地方。
4.题型设计多样,富有梯度性。题目有填空乐园、神医诊断、列竖式计算等,题目由易到难,符合学生的认知水平和接受能力。
建议:
1.在观察三组算式时,教师应给出每个算式的结果。那样更便于学生理解商不变的原理。
2.1.19/0.17当学生进行板演后,教师应在黑板上呈现正确的书写过程,因为这毕竟是学生第一次计算一个数除以小数,教师应给学生最标准的示范。
3.上的字和背景的颜色不太合适,学生看起来比较费劲。
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
一个数除以小数说课稿篇七
本课是在学习了“除数是整数的小数除法”地基础上,重点学习“除数是小数的小数除法”。通过作业情况的反馈来看,学生对于一个数除以小数错误的地方表现在以下几个方面:
一、不能顺利的移动小数点。通过移动小数点把除数变成整数,所有的学生都知道,也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。
二、在完成竖式的过程中,数位对不齐。这也是部分学生错误的原因之一。
三、商的小数点位置不对。
采取的措施:探究算理,“循理入法,以理驭法”,以“用”引“算”,“以算促用,以算强用”
总结列竖式的过程进行细化:1.“一看”——移动除数的小数点,移动几次变成整数。2.“二移”——被除数也移动同样的次数。位数不够的,在被除数的末尾用0补足。3.“三算”——用整数的除法法则进行计算。商的小数点和被除数的小数点要对齐。如果除到被除数的末尾仍有余数,就在被除数末尾添0继续除。突出除到哪位,商那位,不够商1时要在商的位置上写0占位。
一个数除以小数说课稿篇八
教后反思:在教学过程中发现,学生都能够想到用转化的方法把除数变成整数再进行计算。学生出现了两种方法:一种是根据商不变的性质把7.650.85转化为76585来计算,这正是我们要引导的方法;还有一种是利用商的变化性质只把除数0.85化为整数85,即计算7.6585,这样除得的商就会缩小1/100,再扩大100倍就会得到正确的商。这种方法说明了学生知识迁移能力比较好,但不是我们提倡的。所以我没再做过多引导。现在反思当时应当学生对这两种方法进行比较,使学生明白哪种做法更简便,更易理解。学生算理得较好,但在计算的过程中,除数和被除数小数点位置的确定是一个难点,部分学生容易出现错误。
在教学除法竖式时,必须规范。在明确算理的基础上,即运用商不变的方法把小数除法转化成整数除法后,怎么书写才能使计算准确率更高一点?事先我虽然也进行了考虑,但在实际教学时忽视了书写格式的强调。结果反馈练习时出现了很多同学书写格式不正确,有以下几种情况:小数点不划去;除数和被除数只划一个;只划小数点,但前面的0不划等等。实际上除数是小数的除法是难点,难就难在不但要理解算理,更难在竖式的书写上,既要先把除数的小数点画去,又要同时移动被除数的小数点,还要把原来的小数点打上小叉,向右移动后再点上。这是我考虑不周全的地方,只注重了算理,而忽视了格式。
在作业反馈中,我发现学生计算错误较多。主要表现在以下几个方面:
通过移动小数点把除数变成整数,所有的学生都知道,也都能顺利完成,关键是后进生总是忘了同样移动被除数的小数点。或者移动得次数与除数不一致。虽然他们知道除数与被除数的小数点移动是根据商不变的性质来的,但是他们在做作业的时候,就忘记了。
除到哪位商那位,不够时忘记在商的位置上写0,再落下一个数。
现在反思其中的问题,觉得教学中在商的小数点的处理上没有具体的细化分析和引导,学生的理解也没有真正到位。这样,看似简单的问题却出现了错误也就再所难免了。因此,只有站在学生学习的角度去思考设计教学,不能以为一些问题能很简单的生成。教学从学生的新知生长点上去展开重点引导,在学生的迷茫处给与及时地指点,这样效果会更好。