作为一名老师,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。那么教案应该怎么制定才合适呢?下面是我给大家整理的教案范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。
有理数比大小教案篇一
通过本节课的教学,我感触很深。初一的学生,刚从小学生变成一个中学生,对于知识的理解和接受大多还停留在小学生的水平上,他们善于思考,但是却把握不好思考的方向,而我们新教师很容易犯的一个错误就是对于知识的深浅拿捏不好,一不小心就又把知识讲深了,但是我一直又在不断重复的一个错误就是明知有些知识讲的时候不够十分的科学,十分的确切却又迫于无法让学生完全的掌握,而只好“舍卒保車”了,我不知道这算不算是初一数学老师的一点悲哀。另外,我对新课程理念所提倡的以学生为主体,充分发挥学生的主动性这一点贯彻的有些不到位。一节课的时间,只有45分钟,除去课前准备,上课的板演时间,上课的时候提问学生,提问成绩好的学生,起不到什么作用。
提问成绩不好的学生,等半天还是回答不上来,有时等不及学生说出答案就自己把答案说出来了,有时一节课学生动手动口的机会真的不多。唉,我也不断反思,想办法,希望以后这样的事件在我的课堂上能越来越少!
有理数比大小教案篇二
关于有理数加法,本人通过教学,以为要注意以下几点:
一要认真复习绝对值的内容,必须让每一个学生快而准确的说出一个数的绝对值。这是进行有理数加法的基础,因为有理数的加法在确定符号后,都要转化为其绝对值相加或相减。
其二突出难点“绝对值不等的异号两数相加”。要引导学生反复理解和体会数的符号是怎么定的——与绝对值较大的加数的符号相同。即正数的绝对值大,和为正数,负数的绝对值大,和为负数。定了和的符号后,再怎样定和的绝对值呢?——用较大的绝对值减去较小的绝对值。如(-7) 9= (9-7)=2,(-7) 3=-(7-3)=-4,其中(-7) 9也可写成-7 9,此时要特别防止学生得-16。
其三,注重利用对比来帮助理解和强化记忆。这里所说的对比包括两方面。一个是同号两数相加,绝对值是相加的,而异号两数相加绝对值是相减的。另一个是两数为正和两数为负的对比。两正数相加得正,两负数相加得负;绝对值较大的正数加绝对值较小的负数得正,绝对值较小的正数加绝对值较大的负数得负。
其四,要让学生明白转化的思想,负数参与加法运算后,先判断是否得零(只有互为相反数的两数相加得零)。和不得零,则先定符号,再定绝对值。而定了符号后,在算绝对值,实际上就转化为小学里学过的正数加正数,或大的正数减小的正数了。让学生明白,转化是一种非常重要的又经常用到的数学思想。
我们老师要特别注意培养学生的符号意识,特别是负号意识。强调学生写负数时必须写出负号。通过这一知识的教学,我更深刻地体会到,在新课改的新理念下,数学教学要尽可能地让学生去做一做从中探索规律和发现规律,通过小组讨论达到学习经验共享,培养合作意识、培养交流的能力、提高表达能力。
有理数加法是一节重点课,也是一节难点课。引入负有理数后,有理数的加法变得复杂得多了。有的结果为正数,有的结果为负数,有的为零。在数的绝对值的计算上,有的要相加,有的要相减,这对一个初学者来说,确实有一定的难度。除了在教学上注意这些,还要在后面的课内外中,多进行一些练习。
有理数比大小教案篇三
本节课从实际问题出发,创设教学情境,有效调动学生学习的兴趣和积极性。学生通过实例计算,激发学生的探索精神,又通过大量的数学练习,使学生在计算中发现,在小组交流中体验,在教师的指导下自形归纳运算法则,亲身体验知识的形成过程,感悟数学的转化思想。本课体现了学生是学习的主体,教师是教学活动的组织者,指导者,参与者。本课改变了以往学生被动学习,被动接受知识的局面。但学生的认知水平毕竟存在差异,从学生的练习来看,大部分学生都掌握了有理数的运算法则,但还有些学生在将减法转化为加法时,总弄不清该减去哪个数的相反数,有的甚至把被减数也改变符号,特别是减去一个正数时,往往又再加上该正数,如误解——=—+。因此,教学还需要不断的探索,不断完善。
本次学习,内容丰富,有专家对新课程的专题分析讲座;对课例的讲解;也有课堂实录,通过学习,收获不少,受益多多。
有理数比大小教案篇四
虽然两节课都是设置一定的教学情景,但是两堂课唤起学生对知识的回忆的深度、挖掘度不同:前一节课是在教师设想上设置问题;而后一节课是从学生的生活实际中引出话题,进而进行问题设置,学生有切身的体验——从而让学生产生情绪高昂和智力振奋的内心状态。因此在课堂教学中,不仅要确立问题为新课服务的意识,而且应始终关注学生对问题的不同认识,根据课堂上的具体情况,根据学生上课反映上做出相应的变动,而不是演事先准备好的教案剧。
2、以新课程理念为指导,创造性地使用教材
新课程标准指出:教师可以不必拘泥于教材形式,可以不完全按教材教学,只要以新课程为依据,达到新课程规定的整体性理论和目标就可以了。同时指出教师要有独立性,要能根据自己教学实际情况去创造性地运用教材。特别是后一节课的整个教学引入与教材都有明显的差异,这样开放性的处理使学生思维始终处于积极思考之中,更能激发学生的学习积极性,学习效果必然更好。
有理数比大小教案篇五
七年级新生一开始面对的就是有理数的认识与有理数的运算。有理数的认识,只需通过例举生活中相反意义的量,便可以很快认识负数,进而较为全面认识有理数。而有理数的运算却不是一蹴而就的,其中包括五种运算:加、减、乘、除、乘方。这几种运算中,又以加减法最为基础,最难掌握。
首先,有理数的加减法,是建立在一定法则之上,但仅靠盲目的背法则来应对加减法,是不可取的。数学的学习不是文史类的机械背诵,应是在法则制约下,依靠灵动思维解决问题。
因此,个人认为,在学习加减法之前,就应顾及到将来加减法这一拦路虎来势之凶猛,为扫除这一路障先做好充分准备。这个准备就是:
一:让学生深刻认识正数、负数、零。长期以来,学生局限于正有理数的运算,对负数的参与会很不适,对负数认知的程度直接影响以后学习有理数的加减法。
二:数轴的教学。数轴是新生面临的又一新概念。它是许多解决数学问题赖以依靠的工具,也是数形结合思维的最初体现。有了数轴,有理数的加减变得“可视化”。
三:相反数、绝对值、两个重要概念的掌握。尤其是绝对值,相对较难理解,却是做加减法的重要理论。
有了以上知识的准备,在套用加减法法则时,不再是简单条文的背诵,学生对枯燥的数学语言和记忆有关法则不再缺乏兴趣,学习便变得是件非常惬意的事情。
当然,我不主张只要学生生硬依照法则行事,在法则熟透余心后,更应启发学生用自己的思维方法理解加减法法则的内在意义。比如:3+(-5)的值可理解为3与-5正负抵消后的结果,甚至3-5的值也可以理解为3与-5正负抵消的结果。其实掌握了加减中的本质意义,于自然而然当中便得到了结果,至于用了哪条法则,不必去管了!