每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。
八年级三角形的证明教学反思篇一
让学生通过观察体会身边的民族图案和作图,观察体会全等图形的定义,自学全等图形的特征,通过练习总结和强化对应边、对应角的寻找方法。从而体会什么样的两个图形是全等三角形。
1、本节课我本着学生为主,突出重点的意图。在全等图形的定义推导中,我让学生自己动手,通过平移、翻折和旋转的作图,为体会重合的图形全等这一定义提供了分析、思考、发现的依据,把抽象问题转化为具体问题。而全等图形的特征及对应边对应角的寻找这一难点,我通过具体练习让学生总结,并带领学生寻找快速寻找对应元素的方法,练习的设计采用由易到难的手法,符合学生的思维发展,一气呵成,突破了本节课的重点和难点。而在练习中,我创设情境,展示教材上的图案和学生身边所熟悉的民族图案,引导学生读图,激发学生的兴趣,从图中去发现存在形状与大小完全相同的图形。然后我安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,直观感知全等形和全等三角形的概念。并且通过让学生找出生活中的全等图形让学生体会数学来源于生活,生活离不开数学,激起学生热爱数学。
2、我在结尾总结全等图形时让学生在生活中寻找实例,体现了数学与生活的联系;渗透美学价值。让学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。然后,通过阅读的方法让学生找出全等形和全等三角形的概念。
3、从教学流程来说:情境创设——自学概念与特征——练习与小结——变式练习,应用数学,我创造性调整了教学顺序:在学生掌握了全等图形定义和特征后,增添了书上没有的民族地区常见图形练习,为全等图形的变换奠定了基础。再通过探究实践,将想与做有机地结合起来,使学生在想与做中感受和体验,主动获取数学知识。像采用这种由易到难的手法,符合学生的思维发展,突破了本节课的重点和难点,培养学生做民族文化的传承人。
1、没有充分利用好我们身边的民族文化资源调动学生,因为我们这里的民族文化资源丰富,而学生又很熟悉,随处可见,而书上的好多图案学生感知不到的。
2、学生在用数学语言表达时说不清楚,因我们这里是少数民族地区,汉语表达环节薄弱,在今后的讲授过程中注意几何语言的表达事项。
八年级三角形的证明教学反思篇二
直角三角形的勾股定理和逆定理在北师大版八上教材中学生已通过测量,数格子,图形割补,青朱出入图等方法进行验证,并对所得结论进行过简单应用。本节再次讲到是想让学生对实验得到的结论进一步肯定,同时也感受公理化体系。因此,在教学中对勾股定理通过拼图从整体、部分两个角度描述面积得以再次验证,使学生不再怀疑;而对勾股定理逆命题的证明较为抽象,不要求学生掌握,只做了解,故在教学中重点引导学生理解证明的合理性,从学生课堂上在黑板构造直角三角形时的表现,可见作为老师的平时教学对孩子潜移默化的影响是多么大。
通过比较两个定理的条件和结论,使学生认识互逆命题和互逆定理。了解数学知识的连贯性,同时借此机会对以前所学此类内容进行梳理。
本课教学过程中我为学生创设了从事数学学习活动和交流的空间。通过观察、猜想、探究、推理、模仿、体验等方法完成本节知识的学习,学生讨论积极热烈。人常说:听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩。使他们在合作交流中增长知识,提高能力。
数学学习的核心之一是要发展学生的思维,在教学中我通过设计教学内容尽量帮助学生将所学的知识“理解”、“迁移”与“旁通”。
本节课前边师生都有点紧张,后来气氛很好完成教学任务。
八年级三角形的证明教学反思篇三
全等三角形第一课时,这节课比较简单,我采用了先学后教的教学策略。
首先,学生自学。
其次,教师多媒体展示教材上的图案以及制作的一些图案,引导学生识图,检测学生自我建构全等三角形概念的情况。
再次,教师演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式练习指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。
接下来,通过学生对全等三角形观察,得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。
最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。
1.学生动手活动少,应该在课前就要求学生自制一对全等三角形。这样课堂上好操作,学生体验也深刻了,活而不乱,时间上也是可控的。
2.题目变形应该突出全等三角形的性质这一重点,所练习题的综合度和变化还是不够多。
3.多媒体演示如能配合学生手工制作的三角板同时进行,效果会更好。但是要安排好观察次序和图形的变化次序。
八年级三角形的证明教学反思篇四
一开始我分配给不同的组的学生给定不同的直角边和斜边动手画直角三角形,然后让同组的学生把自己画出的图剪下来跟别的同学生比较,让他们把发现的结果口述出来。再把不同组的三角形作个对比,让他们把发现的情况说出来。然后通过提出问题,为什么不同组的三角形不管是大小还是形状都不一样,而同组的却又一样。让学生讨论明白也即是只要有一条直角边一样,斜边也一样这样的三角形画出来的结果是能够完全互相重合的。从而引入了“hl”定理。从授课过程中学生的参与热情很高,这样做一是可以让学生探究在给定了一条直角边和斜边以后,怎样把一个三角形画出来,强化了他们的动手能力同时也增强了他们的团结合作能力,二是可以让他们经历了知识的从感性认识到理性认识这么个过程。
从学生作业反馈的情况来看,主要存在以下的问题:一是学生在证明直角三角形全等时,个别学生出现了以角代边的现象,也即是用一对直角相等加一对斜边相等来代替了“hl”。二是不少的学生利用所学的知识来解决简单的问题能力欠缺。这同时也说明了,在上课过程中存在了这或那的不足,如分组讨论时,可能有些学生不是在讨论问题,而是在聊天或者是做其他的事。或者是我在讲解时讲得不够透要么对于学困生的关注不够,以致学生对于定理的理解不够清楚。
1.课后多布置专题练习,针对不同类型的学生布置不同的作业。
2、在上课过程中多关注学困生。
3、课后多与学生交流,以了解他们的接受程度以便改进自己的授课速度,适当调整知识拓展的难易度。
八年级三角形的证明教学反思篇五
回顾本节课,虽然我花费了很多的心思合理设计了本课,但在实际教学的环节中,还是出现了一些问题:
1、教学中不能把学生的'大脑看做“空瓶子”。我发现按照自己的意愿在往这些“空瓶子”里“灌输数学”,结果肯定会导致陷入误区,因为师生之间在数学知识、数学活动经验等方面存在很大的差异,这些差异使得他们对同一个教学活动的感觉通常是不一样的,所以是不是应该在教学过程中尽可能多的把学生的思维过程暴露出来,头脑中的问题“挤”出来,在碰撞中产生智慧的火花,这样才能找出症结所在,让学生理解的更加到位。
2、教学中应注重学生思维多样性的培养。数学教学的探究过程中,对于问题的结果应是一个从“求异”逐步走向“求同”的过程,而不是在一开始就让学生沿着教师预先设定好方向去思考,这样感觉像是整个课堂仅在我的掌握之中,每个环节步步指导,层层点拔,惟恐有所纰漏,实际上却是控制了学生思维的发展。再加上我是急性子,看到学生一道题目要思考很久才能探究出答案,我就每次都忍不住在他们即将做出答案的时候将方法告诉他们。这样容易造成学生对老师的依赖,不利于学生独立思考和新方法的形成。其实我也忽视了,教学时相长的,学生的思维本身就是一个资源库,他们说不定就会想出出人意料的好方法来。
另外,这一节课对我的启发是很大的。教学过程不是单一的引导的过程,是一个双向交流的过程。在教学设计中,教师有一个主线,即课堂教学的教学目标,学生可以通过教师的教学设计的思路达到,也可以通过教师的引导,以他们自己的方式来达到,而且效果甚至会更好。因为只有“想学才学得好,只有用自己喜欢的方式学才学的好”。因此,本人通过这次教学体会到,教师在备课时,不仅要“备教材、备学生”,还要针对教学目标整理思路,考虑到课堂上师生的双向交流;在教学过程中,要留出“交流”的空间,让学生自由发挥,要真正给他们“做课堂主人”的机会。
无论是对学生还是教师,每一个教学活动的开展都是有收获的,尤其是作为“引导学生在知识海洋里畅游”的教师,一个教学活动的结束,也意味着新的挑战的开始。
总之,这一堂公开课,让我既收获了经验,又接受了教训,我想这些都将会是我今后教学的一笔宝贵财富。
八年级三角形的证明教学反思篇六
本节内容课标要求为:探索并掌握判定直角三角形全等的“斜边、直角边”定理,会用基本作图作三角形:已知一直角边和斜边作直角三角形.
对教科书相关内容进行了适当整编重组形成具有一定层次的问题序列,并通过“我回顾,我思考”“我探索,我发现”“我掌握,我应用”“我收获,我总结”“我实践,我提高”这五项活动既暗示本节教学思路,又体现“我学习我做主”。
具体体现如下:
教师适时引导总结属于添加的是:“两条直角边分别相等”、“一锐角和一直角边别相等”,还是“一锐角和斜边分别相等”,至此,教师适时抛出问题:既然直角三角形是特殊的三角形,那它有没有特殊的判定方法就是这节课要探讨的课题,显得的水到渠成。
二是在诱导尝试,探索发现环节。通过学生独立画图、裁剪、比较、总结、归纳的过程,体会判定两个直角三角形全等的简便方法——“斜边、直角边”的形成过程。
教师便直接给出答案,代替学生回答。这一处理,显得很是急躁,急于得出结果。另一方面,体现出教师教学机智不灵活,就是担心上不完而急于推进。事实上,追求高效的同时,有时候让课堂慢下来特别重要。
三是在变式练习的处理过程中,发现变式题的设置有重复现象,备课需要再细致。
四是小结环节,学生简单小结以后,教师针对本节课出现的问题进行了提示就收场,并没有进行条理性的总结。
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档
八年级三角形的证明教学反思篇七
本节课主要是让学生了解等腰三角形的.概念,掌握等腰三角形的性质,以及运用等腰三角形的概念及性质解决相关问题。在教学方面,主要按以下步骤进行教学,教学效果比较好。
1、课前先复习等腰三角形的概念,等腰三角形各部分的名称。这样做对后面学习等腰三角形性质的时候,才能使学生非常容易的知道:哪个角是底角,哪个角是顶角,哪条边是底边,能使教师的教学做到事半功倍的效果。
2、在学习等腰三角形的性质的时候,一定要使学生自己剪出等腰三角形,自己来折贴,通过分组讨论,从而得出等腰三角形的2条性质。这样做培养了学生的动手能力,团结合作的能力,以及探究的能力,动口的能力。这样的课堂比单纯教师说出来的效果要好很多,也使学生对等腰三角形性质的掌握更深刻得多。另外,在得出等腰三角形的2条性质以后,还要问学生怎样用数学语言来表示,这样才能使学生在做题时,书写格式更流畅。
3、在做练习时,对比较简单的题目,就让学生先做,然后老师点评;对比较难的题目,教师和学生先一起来分析解题思路,再让学生做,或者先让学生讨论,再让学生上来板书,然后教师点评。这样做的目的,是把学习的主动权还给学生,激发学生学习的积极性和创造性,从而使数学课堂充满活力。
1.充分利用教材,在练习题与例题的编排上打破常规,让学生学生自己来折贴剪出等腰三角形,通过质疑—猜想—类比—探索—归纳—总结出等腰三角形的2条性质,再让学生用等腰三角形的2条性质来解决不同类型的题目,适时地参透了类比的数学思想,并深刻地体现了新教材的课改理念。
2.在授课过程中,教师给学生留下了很大的思维空间,通过自己的亲自操作,运用探索发现法,让学生积极参与自主探究,合作交流,把主体地位返还给学生。无论是等腰三角形性质的推导,还是等腰三角形性质的应用,都是在教师的引导下,学生自己完成的,教师这样做,重视了知识的形成过程,在应用中又开拓了学生的视野,使学生的发散思维与应用技巧得到了锻炼。
八年级三角形的证明教学反思篇八
1、根据本节课内容特点和八年级学生思维活动的特点,采用了探究教学法,通过实验操作、设疑思考、巩固掌握等腰三角形的性质,等腰三角形“等边对等角”、“等腰三线合一”特征,等腰三角形的判定方法。
2、巩固运用等腰三角形的性质,判定方法,思考解决问题的方法和策略.在教学中应注重训练学生的正确表达数学文字语言和符号语言的转化。
4、通过对问题的分析及实际问题的解决,注重培养学生之间的合作、交流意识与语言表达能力,增强小组合作意识。进一步提高学生说理和逻辑思维的能力,逐步培养用数学的意识。主动探求新知的动机。获得研究的乐趣,久而久之甚至发展为志趣。
5、存在的问题:
(1)对腰三角形性质,判定应用及知识的拓展方面较薄弱,显得深度不够。
(2)课堂中虽有学生自主探索活动。但放得还不够,仅局限于教材中的一些知识探索显得平淡无奇。
(3)在时间安排上,过于注重了学生知识形成过程,而对知识应用及拓展部分时间仓促,未能达到理想效果。
八年级三角形的证明教学反思篇九
本节课是一节复习课,内容是关于解直角三角形的知识的应用复习。在教学设计中,我针对学生对三角函数及对直角三角形的边角关系认识的模糊,计算能力薄弱等特点,我决定把教学的重、难点放在了解决有关实际问题的建构数学模型上。通过对知识点的回顾、基础知识的练习,例题的解题思路、例题变式练习及巩固练习等教学,绝大部分学生能很好地掌握了如何建构模型的解决方法,很好地达到了本节课的教学目的。
当然由于自己在如何上好一节复习课上还处在摸索阶段,所以在设计与安排上还存在很多不足,如本节课设计容量较大,有4个实际应用问题,学生对每个问题逐个探究解答,时间感觉比较紧。有时就有越俎代庖的感觉;本节课的教学内容是解直角三角形的应用问题。对一部分学生来说,他们从作辅助线构建直角三角形模型,到利用方程解答题目,直至描述答案都显得轻松自如;但对另外一部分学生来说,他们基础较弱,对数学的应用不是那么得心应手,不会合理构造直角三角形,也不能列出合理的方程进行解答。在课堂教学中,如何面向全体学生,如何培优与转差,这是值得思考的一个问题。
八年级三角形的证明教学反思篇十
这堂课既是一堂新课,同时也是对轴对称图形的一种深化。为使几何课上得有趣、生动、高效,结合本节课内容和学生的实际水平,采用学生实验发现法为主,直观演示法、设疑诱导法为辅的教学方法。在教学过程中,通过设置带有启发性和思考性的问题,创设问题情景,诱导学生思考、操作,让学生亲身体验知识的产生过程,激发学生探求知识的欲望,使学生始终处于主动探索问题的积极状态,使获取新知识水到渠成。叶圣陶说“教是为了不教”,也就是我们传授给学生的不只是知识内容,更重要的是指导学生一些数学的学习方法。
在学习等腰三角形概念过程中,让学生认识事物总是互相联系的,应该做到温故而知新。而通过“等腰三角形的轴对称性”的.探索,让学生认识事物的结论必须通过大胆猜测、判断和归纳。在分析理解等腰三角形的轴对称性的过程中,加强师生的双边活动,提高学生分析问题、解决问题的能力。书本利用轴对称来证明习题,但在这个方面我们进行了比较大的改动,基本还是利用全等三角形来证明,利用轴对称证明较难掌握,也不容易写.通过例题、练习,让学生总结解决问题的方法,以培养学生良好的学习习惯。