人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
有机化合物的极性大小如何判断篇一
问题一:没有对计算结果及时约分,导致出现异分母分数相加
问题二:虽然及时对结果进行了约分,但对2/1=2的观念却很淡薄
在讲评作业时,出示12/7+1/5+2/7+1/5集体进行计算,并重点强调:中间计算结果也要及时进行约分。对于“2/1”这样的假分数应化成整数“2”。
《数学课程标准解读》有这样一段:作为学生的一般性发展的数学学习,应该更多的关注学生的情感因素。事实上,健康的富有活力的学习活动,独立思考与合作交流的学习方式,自信以及相反尊重的学习氛围非常有利于学生非智力因素与智力因素协调发展,有益于健康人格的形成。由此可见,教学中关注学生情感的重要。
本节课的情景创设的目的是为了激起全班学生的情感共鸣,通过差生比优生算得块的意外,吸引学生的注意力,激发学生的学习兴趣,积极思考发现题目特征,理解简便算法的实质是“凑整”。教育家赞可夫说“教学法一旦触及学生的情绪和意志领域,触及学生的精神需要,这种教学法就发挥高度有效的作用”。对于多数学生而言,课的设计达到了预期的效果,但是当时我看到优生那哭泣的表情,差生体现出的荣辱不惊时,我知道对他们我失败了,显然这不是他们的精神需要。
差生体现出荣辱不惊时我想到了小学数学教育网上讲的一个意义深刻的故事:一位老教师到市场上买菜,遇到当年他教育过的一个做小生意发财的学生,正在卖鸡蛋的学生热情地邀请老师去吃饭,老师说:“卖鸡蛋这样的工作你不觉得难为情吗?”学生说:“这和当年你教育我的情形相比,我觉得算不了什么”
这个故事主要讽刺了老师对待差生教育行为,是值得我们反思的,正如学生比赛赢了也不敢伸张。是啊,我们真的应该给他们更多的阳光,不仅让他们可以经受挫折,还能正常的沐浴灿烂的阳光,拥有健康的人格。
从另一个层面看:学生得益最大的竟然是老师的关照,他在无数次的挫折和打击面前变得坚强,而这种品质将使他终身受益。所以挫折教育是人生重要的一课,而学习上的一帆风顺的优生,却很少遭受挫折,所以才会在一次不正规的比赛中哭泣。有人专门研究过国外的293个著名文艺家的传记,发现其中有127人在生活中都遭受过重的的挫折。“自古英雄都是梦,从来纨绔少伟男”的说法,表面有成绩的人大多是有磨难而成的。孟子指出:“天将降大任于斯人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,”这些都表明挫折教育是儿童成长中不可缺少的营养,对于优生也是如此。
整数加法的运算定律在分数加减法中的.应用,学生已能够理解和掌握,因此对于这部分知识,教学过程中利用知识的迁移,合作交流找到规律,使学生解决问题。
1、利用已有知识迁移是学生经常解决问题的一种方法,因此,在课中,举了大部分的例子让学生发现其中的简便方法,让学生看明白整数运算定律在分数加减法中同样适用。找到了题目的简便方法。
2、合作交流,进一步探究运算规律。学生在合作交流中,让小组内的同学举例子,看哪些分数加减法能用简便方法计算,所以在在学生试做题时,将获得别人的探究策略和探究成果,修正和完善自主的探究策略和探究结果。在最后让四人小组为单位编算式时,让各位学生自主编题,并发现与他人不同的方法,体现了面向每一位学生的教学理念。在学生展示算式的过程中,又是展示学生解题方法的过程。
3、但是始终一些题目是学生学习过程中的难点:
如:5/8-(5/8-1/2)
5/9-3/7+4/9-4/7
17/8-(1/8+3/10)
如何去掉小括号,如何正确的处理加减号的关系,使学生能够正确的找到简便算法,还需要进一步理解。
有机化合物的极性大小如何判断篇二
小数加减的简便计算的方法其实是建立在整数的简便计算的基础上的,因此在简便计算的方法上可以加快节奏,学生容易疏忽的是对小数数据的观察及分析,所以可以在复习引入时把凑整练习提上来,可以先是一位小数的凑整,然后给出一列数字,两位小数、三位小数的凑整练习进一步巩固成果。给学生与老师以及学生与学生之间创设交流的机会,让他们自己总结小数凑整的注意事项:在凑整的时候还真的不能光看最后一位是不是可以凑成整数。还要看看整个小数部分的位数是不是相同才可以的。
练习中,学生由于知道整数加法的运算定律和减法的性质对于小数同样适用。因此,在本节课中学生在计算中都很自觉地采用了简便计算,学生学习上不存在什么困难,新知的学习非常顺利,练习的巩固也很顺畅。
应用加法的运算定律进行小数的简便计算,学生出错较少,但是在应用减法的性质上学生出错较多。例如:7.3-4.8+1.2和12.89-(6.89+2.3),因而在新知的教学上要多设计应用减法性质的练习题及变式练习,让学生灵活解决问题。
有机化合物的极性大小如何判断篇三
关于计算方法的教学,我始终认为不能只靠老师讲解方法,还是要通过大量的练习才能达到那种熟练程度,才能使学生形成数感、形成技巧,才能够运用自如地进行计算和解决问题。但青版教材在这部分内容的编写上更加注重一些问题的解决,而对计算的练习编写却比较单薄。
例如对于乘法分配律这部分内容的教学,教材安排了4课时的教学时间,第一课时学习乘法分配律及课后第1、2题,第二课时学习运用乘法分配律的计算方法,第三、四课时解决自主练习中的一些问题。
但在教学运用乘法分配律解决问题时,课本中的例题是12×105和135×6+65×6,学生接受起来难度不太大,但自主练习中却出现了48×25.85×199+85.98×34.56×(20-3)等几种类型,以及由它衍生出来35×99+35.101×83-83等题目,由于班级里有60多个智力不同、接受能力不等的学生,所以要想能够熟练地计算就不是一节课两节课能解决的了。
课本中的练习题数量极少,每种类型的题只有一道两道,在教学中我就针对一种类型的题目出几个同样的题目进行反复练习,用两节课时间把这几种类型题目的解决方法和学生共同探究出来以后,就开始进行一些乘法分配律混合题目的练习,练了两节课后,又把所有的简便计算混合在一起进行试做,学生一开始颇有点“葫芦搅茄子”的意思,可经过几节课的练习,情况有了明显的好转。我又针对练习题的类型编了一百多道简便计算的题目,十几道题分成一组当做每天晚上的作业,经过一段时间的课堂集中练习和课后的独立作业,终于把这些简便算法区别开来了。
简便算法学了三个星期,虽然耗费的时间比较多,但看到每天的作业错误量越来越少,也挺有成就感的。
有机化合物的极性大小如何判断篇四
乘除法两步计算解决问题是二年级下学期的重点也是一个难点,所以学生学习起来比较困难,在本册的第二单元和第四单元都涉及到了这方面的内容,我认为解决这一类型的应用题,首先要让学生通过认真读题后明白里面告了一些什么条件,紧接着学生根据已有的信息和问题理清所告条件之间的关系,这一步做好学生解决起来就容易多了,然后学生确定第一步先计算什么,这时必须让学生说清楚第一步求的是什么,只有这样在写单位的时候就不会出错了,最后第二步就解决了人家的问题了。这些对于我大人来说看起来很容易,可是对于一个二年级的学生就不是那么简单了,下面就是我在教了这部分内容后出现的一些问题:
一、学生存在一个最大的问题就是不能认真的审题,所以往往导致解题错误,针对这一情况我就利用课堂的时间,放慢讲解的速度,每道题都要求学生读两次,再找到相关的问题,根据问题想想需要那些信息,看看人家告了些什么条件,还缺什么条件,缺来的.那个条件就是自己要求的第一步,这样一段时间下来学生有所改观,对于一些极个别的学生做到稍稍一惩罚就做得很好,所以对于二年级的学生教师要把握好尺寸,才能更好的驾驭学生。
二、其次学生存在的问题就是第一步算出来不明白写什么单位,比如王老师买7元一枝的钢笔花了63元,那么买5枝要花多少钱?学生知道第一步是63÷7=9(枝),而一部分学生却只看问题里的单位所以经常写成了“元”,针对这一问题我要求学生说出自己第一步所求的问题,这样学生就明白什么单位了,就如上例学生只要说出第一步是求:每支钢笔需要多少钱?就知道应该写“元”了。
三、最后就是大部分只能列分步算式,在列综合算式的时候就不是那么得心应手了,尤其是有了()的就往往丢了(),比如妈妈用100元买一件46元的上衣,和一条29元的裤子,应找回多少?学生分步是45+29=74元,100-74=26元,在写综合算式时就写成了100-45+29=26元,这是他忘了应该先算加法要加()了,不过这对于二年级的学生不必做硬性要求,所以我只是随时提醒学生应注意,或者就用分步。
总之这部分的内容很广泛,但只要让学生掌握了其中的道理,举一反三就容易多了,教会学生学习的方法比什么都重要。
有机化合物的极性大小如何判断篇五
在本节课中,我有意识地强化了“根据算式特点灵活运用除法运算性质进行简便计算。”连除简便计算是在学生学习了加法、乘法运算定律和减法性质的基础上进行教学的,理解并掌握“一个数连续除以两个数,可以用这个数除以两个除数的积。”是重点,学生能利用它更简便灵活地进行计算,是难点。为了突破重难点,我在设计时作了这样的处理:
1、教学中渗透学习方法的指导
因为有减法性质的基础,我认为学生应用类比迁移能够比较自然地想到除法的运算性质,所以我依托“类比迁移”的数学思想,以“猜想——验证——应用”的教学思想引导学生展开自主探究。让学生理解“一个数连续除以两个数,可以用这个数除以两个除数的'积”虽然是重点,但不是难点。采用这种教学思路的更多意义在于渗透一种“学习方法”,这对培养学生的可持续发展能力应该是有帮助的。有句话说得好,“让学生在游泳中学会游泳”,这也是我在平时课堂教学中想努力追求的。
2、放手让学生尝试计算
给学生独立思考和解决问题的机会,使每一种计算方法都成为源于学生独立判断后的一种自我选择,是学生自己领悟出的,而不是来自于教师的讲解和指导。在算法交流、比较的基础上,让更多的学生体验和感悟到运用除法运算的规律可以使计算更简便,从而提高了学生的计算能力。
3、加强连减和连除的简便运算的比较
让学生明白减法的逆运算是加法,而除法的逆运算是乘法。这样简便运算时也便于区分。
本课是有遗憾的,对教材和学生的理解比较到位和准确,教学环节的设计比较合理,但课堂节奏的把握欠佳,至少有这样几个环节可以让时间更加紧凑:
1、在第一个环节,男女生比赛计算的时候,我本来的预想是女生计算的快一点,然后再观察算式的特点,他们的结果相同、数据相同,运算的顺序和符号不同,男生是一个数连续除以两个数,女生是除以这两个数的积。在男同学出来2000÷25÷4=2000÷(25×4)、1280÷16÷8=1280÷(16×8)简便计算的情况时,没有处理好,在这里,应该有第二套方案,请男生说说理由是什么,为什么可以这样写呢?重点要抓住这里,可以把结论先板书出来:一个数连续除以两个数,可以除以这两个数的积。然后再让学生举例等等进行验证。
2、巩固练习,举一反三,讲评学生作业1280÷(16×8)=1280÷128=10,不变成连除,按原来的运算顺序算,你认为可以吗?完全可以解决“要根据数据特点灵活选择计算方法”这一数学思维,简洁、紧凑、实效。比展示不同方法进行比较可以省时得多?一节原本可以上得很轻松自如的课却出乎意料地变成紧张急促,着实值得自己反思。
有遗憾就会有收获,“追求课堂实效,重视课堂节奏。”还需要在平时不断历练。
《简便计算》
将本文的word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
搜索文档