教案的评价指标主要包括教学目标的实现程度、教学内容的合理性和教学方法的有效性等方面。以下是小编为大家搜集整理的初二教案案例,希望对大家有所帮助。
三元一次方程组北师大版数学初二教案(热门18篇)篇一
过程与方法。
了解解二元一次方程组的消元思想,初步体现数学研究中“化未知为已知”的化归思想,从而“变陌生为熟悉”
情感态度与价值观。
利用小组合作探讨学习,使学生领会朴素的辩证唯物主义思想。
教学重点。
教学难点。
三元一次方程组北师大版数学初二教案(热门18篇)篇二
学生的知识技能基础:在学习本节之前,学生已经掌握了有理数、合并同类项、去括号等法则,能熟练的进行简单的整式的加、减法运算整式的运算,知道方程的解的意义,能熟练的求解一元一次方程,了解了二元一次方程以及解的意义、二元一次方程组及其解的意义,能通过代人消元法求解二元一次方程组.
学生活动经验基础:在相关知识的学习过程中,学生已经经历了列整式、列一元一次方程并求解,列二元一次方程组解决了一些简单的现实问题,感受到了方程是刻画现实世界数量关系的有效模型,通过解一元一次方程和用代入消元法解二元一次方程组获得了解二元一次方程的基本经验和基本技能;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.
二、教学任务分析。
教科书基于学生对前面解一元一次方程和用代入消元法解二元一次方程组基础之上,提出了本课的具体学习任务:会用加减消元法解二元一次方程组,了解解二元一次方程组的“消元”思想,初步体现数学研究中“化未知为已知”的化归思想.
《课程标准(2011年版)》把方程与方程组的重点放在解法和应用上,特别强调体会方程是刻画现实世界数量关系的有效模型,如何解方程与方程组时方程与方程组教学的主体和重点.对于二元一次方程组来讲,强调“消元”的思想和方法,应是贯穿于始终的一条主线,通过“消元”,将二元一次方程转化为一元一次方程实现求解的目的,体现了化繁为简,以简驭繁的基本策略,对促进了学生理性思维的发展具有重要意义.通过第一课时是学习,学生已经能够解一般的二元一次方程组,但对于有些方程用代人消元法解可能比较繁杂,用加减消元法要简单一些,同时加减消元法在学生将来的矩阵运算中有广泛的应用。因此这个课时就进一步学习二元一次方程组的加减消元法.
加减消元法是解二元一次方程组的基本方法之一,它要求两个方程中必须有某一个未知数的系数的绝对值相等(或利用等式的基本性质在方程两边同时乘以一个适当的不为0的数或式,使两个方程中某一个未知数的系数的绝对值相等),然后利用等式的基本性质在方程两边同时相加或相减消元.
为此,本节课的教学目标是:
本节课的教学重点是:
本节课的教学难点是:
在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想.
三、教学过程设计。
本节课设计了五个教学环节:第一环节:情境引入;第二环节:讲授新知;第三环节:巩固新知;第四环节:课堂小结;第五环节:布置作业.
第一环节:情境引入。
内容:巩固练习,在练习中发现新的解决方法。
怎样解下面的二元一次方程组呢?(学生在练习本上做,教师巡视、引导、解疑,注意发现学生在解答过程中出现的新的想法,可以让用不同方法解题的学生将他们的方法板演在黑板上,完后进行评析,并为加减消元法的出现铺路.)。
三元一次方程组北师大版数学初二教案(热门18篇)篇三
2、知道方程解的概念,会检验一个数是否是某个方程的解;。
3、会根据题意列方程,能感受方程是刻画现实世界数量关系的有效模型。
【学习流程】。
一、知识链接。
1、等式:我们以前学过1+2=3x-6=03x+2=5a+b=b+a等这样的数学式子,这些数学式子都是用_________连接,表示_________关系,我们称这样的式子为等式。
三元一次方程组北师大版数学初二教案(热门18篇)篇四
一、学生起点分析:
学生的知识技能基础:学生能够正确解方程(组),初步掌握了一次函数及其图像的基础知识,已经具备了函数的初步思想,对于数形结合的数学思想也有所接触。
学生的活动经验基础:学生能够根据已知条件准确画出一次函数图象,能够认识和接受函数解析式与二元一次方程之间的互相转换.在过去已有经验基础上能够加深对“数”和“形”间的相互转化的认识,有小组合作学习经验.
二、学习任务分析:
本节课的主要内容是二元一次方程(组)与一次函数及其图像的综合应用.通过探索“方程”与“函数图像”的关系,培养学生数学转化的思想,通过学习二元一次方程方程组的解与直线交点坐标之间的关系,使学生初步建立了“数”(二元一次方程)与“形”(一次函数的图像)之间的对应关系,进一步培养了学生数形结合的意识和能力.因此确定本节课的教学目标为:
2.掌握二元一次方程组和对应的两条直线之间的关系;。
3.发展学生数形结合的意识和能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.
教学重点。
教学难点。
数形结合和数学转化的思想意识.
四、教法学法。
1.教法学法。
启发引导与自主探索相结合.
2.课前准备。
教具:多媒体课件、三角板.
学具:铅笔、直尺、练习本、坐标纸.
五、教学过程。
本节课设计了六个教学环节:第一环节设置问题情境,启发引导;第二环节自主探索,建立“方程与函数图像”的模型;第三环节典型例题,探究方程与函数的相互转化;第四环节反馈练习;第五环节课堂小结;第六环节作业布置.
三元一次方程组北师大版数学初二教案(热门18篇)篇五
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型2017年-2017学年七年级数学下册全册教案(人教版)2017年-2017学年七年级数学下册全册教案(人教版)。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
2.彻底理解题意。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
2.p38练习第1题。
p42。习题2.3a组第1题。
后记:
三元一次方程组北师大版数学初二教案(热门18篇)篇六
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型20xx年-20xx学年七年级数学下册全册教案(人教版)20xx年-20xx学年七年级数学下册全册教案(人教版)。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
2.彻底理解题意。
一、情境引入。
二、建立模型。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
三、练习。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
2.p38练习第1题。
四、小结。
五、作业。
三元一次方程组北师大版数学初二教案(热门18篇)篇七
1.有一个两位数,个位数比十位数大5,如果把这两个数的位置对换,那么所得的新数与原数的和是143.求这个两位数.
3.甲、乙两人练习跑步,如果甲让乙先跑10米,甲跑5秒就追上乙;如果甲让乙先跑2秒,那么甲跑4秒就追上乙.若设甲、乙两人每秒分别跑x、y米,列出的方程组为.
7.甲、乙两人分别从相距30千米的a、b两地同时相向而行,经过3小时后相距3千米,再经过2小时,甲到b地所剩路程是乙到a地所剩路程的2倍,求甲、乙两人的速度.
三元一次方程组北师大版数学初二教案(热门18篇)篇八
1.会列二元一次方程组解简单的应用题并能检验结果的合理性。
2.提高分析问题、解决问题的.能力。
3.体会数学的应用价值。
1.找实际问题中的相等关系。
2.彻底理解题意。
探究:1.你能画线段表示本题的数量关系吗?
2.填空:(用含s、v的代数式表示)。
设小琴速度是v千米/时,她家与外祖母家相距s千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米2017年-2017学年七年级数学下册全册教案(人教版)教案。
3.列方程组。
4.解方程组。
5.检验写出答案。
讨论:本题是否还有其它解法?
1.建立方程模型。
2.p38练习第2题。
3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。
本节课你有何收获?
三元一次方程组北师大版数学初二教案(热门18篇)篇九
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
1.列二元一次方程组解简单问题。
2.彻底理解题意
找等量关系列二元一次方程组。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
比较用一元一次方程求解,用二元一次方程组求解谁更容易?
1.根据问题建立二元一次方程组。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
是二元一次方程。求a、b的值。
2.p38练习第1题。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
p42。习题2.3a组第1题。
后记:
2.3二元一次方程组的应用(2)
三元一次方程组北师大版数学初二教案(热门18篇)篇十
1、学习什么是三元一次方程和三元一次方程组.(2)会解简单的三元一次方程组.
过程与方法。
通过三元一次方程组的解法练习,培养学生分析能力,能根据题目的特点,确定消元方法、消元对象.培养学生的计算能力、训练解题技巧.
情感态度与价值观。
让学生通过自己的探索、尝试、比较等活动去发现一些规律,体会一些数学思想,从而激发学生的求知欲望和学习兴趣.
教学重点。
使学生会解简单的三元一次方程组,经过本课教学进一步熟悉解方程组时“消元”的基本思想和灵活运用代入法、加减法等重要方法.
教学难点:
针对方程组的特点,选择最好的解法.
教学过程。
一、复习。
二、引入新课。
甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.
三元一次方程组北师大版数学初二教案(热门18篇)篇十一
2、能根据一次函数的图象求二元一次方程组的近似解.
【能力目标】通过学生的思考和操作,在力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养了学生初步的数形结合的意识和能力.
【情感目标】通过学生的自主探索,提示出方程和图象之间的对应关系,加强了新旧知识的联系,培养了学生的创新意识,激发了学生学习数学的兴趣.
2、能根据一次函数的图象求二元一次方程组的近似解。
【教学难点】方程和函数之间的对应关系即数形结合的意识和能力。
三元一次方程组北师大版数学初二教案(热门18篇)篇十二
相对前面两课内容来说,这一课的内容较为容易理解,再加上有前面两课的基础,学生应该好学习些。因此,这一课我在以下两个方面要求学生做好,图形解方程组的画图规范,利用图形进一步理解前一课的内容:“当x为何值时,y1<y2,y1=y2,y1>y2的题目类型”。
在课堂上,学生能够结合例题,总结出利用函数的图象解二元一次方程组的解题步骤:变形、画图、标交点、得结论。利用足够充分的时间让学生画图象解方程组,学生标交点的工作做得还不是很好,为此,提出了怎样才确保是实实在在可以看出是由图象得到交点坐标,得到方程组的解的,学生讨论的结果还是让我们满意的,不但由交点画垂线,在数轴上标出交的横坐标和纵坐标,而且把交点坐标在图上写出来,做到双保险。
利用函数的图象复习了上一课的学习难点,学生理解的人数更多了,在利用函数的增减性认识和理解,确实效果会更好些,需要注意的是利用函数的增减性理解须从交点出发向左或者向右变化来理解。
要动员学生议论或争论起来,这才是最有效的手段,个别辅导时,有同学在我的办公桌前进行争执,我看到了学生因相互的讨论而掌握,学生自己能够真正动起来,这是最好的,我希望学生是学习的主人,课堂上要努力让他们成为课堂的主人。
三元一次方程组北师大版数学初二教案(热门18篇)篇十三
一、精心选一选!一定能选对!(每小题3分,共30分)。
(a)(b)(c)(d)。
2.方程组解的个数有().
(a)一个(b)2个(c)3个(d)4个。
3.若方程组的解是,那么、的值是().
(a)(b)(c)(d)。
4.若、满足,则的值等于().
(a)-1(b)1(c)-2(d)2。
(a)(b)(c)(d)。
6.下列说法中正确的是().
(b)方程的解、为自然数的有无数对。
7.在等式中,当时,,当时,,则这个等式是().
(a)(b)(c)(d)。
(a)(b)(c)(d)。
9.(20宁夏)买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的`桶数是甲种水的桶数的75%,设买甲种水x桶,乙种水y桶,则所列方程组中正确的是()。
(a)(b)(c)(d)。
10.(年福建福州)如图,射线oc的端点o在直线ab上,1的度数比2的度数的2倍多10,则可列正确的方程组为().
(a)(b)(c)(d)。
二、耐心填一填!一定能填对!(每小题3分,共30分)。
11.已知方程,用含的式子表示的式子是____,用含的式子表示的式子是___________.
12.已知是方程的一个解,那么__________.
13.已知,,则________.
14.若同时满足方程和方程,则_________.
16.(2005年江苏盐城)若一个二元一次方程的一个解为,则这个方程可以是_______________(只要求写出一个)。
17.已知方程组与的解相同,那么_______.
18.若,都是方程的解,则______,________.
19.(山东潍坊)蔬菜种植专业户王先生要办一个小型蔬菜加工厂,分别向银行申请甲、乙两种贷款,共13万元,王先生每年须付利息6075元,已知甲种贷款的年利率为6%,乙种贷款的年利率为3.5%,则甲、乙两种贷款分别是________________.
20.(2005年南宁)根据下图提供的信息,求出每支网球拍的单价为。
元,每支乒乓球拍的单价为元.
200元160元。
三、用心想一想!一定能做对!(共60分)。
21.(本小题8分)(2005年江苏苏州)解方程组:
26.(本小题12分)(,黄冈)已知某电脑公司有a型、b型、c型三种型号的电脑,其价格分别为a型每台6000元,b型每台4000元,c型每台2500元.我市东坡中学计划将100500元钱全部用于从该公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由.
参考答案:
一、1~10daaacdbcbb。
二、11.,;12.0;13.-42;14.4;15.加减消元,;16.等;17.1.5;18.2,1;19.6.1万元,6.9万元;20.80,20.
三、
21.;22.;23.;24.54人挖土,18人运土;。
25.解:设这种矿泉水在甲、乙两处每桶的价格分别为元,根据题意,得。
解这个方程组,得。
因为.
所以到甲供水点购买便宜一些.
26.解:设从该电脑公司购进a型电脑x台,购进b型电脑y台,购进c型电脑z台.则可分以下三种情况考虑:
(1)只购进a型电脑和b型电脑,依题意可列方程组解得不合题意,应该舍去;。
(2)只购进a型电脑和c型电脑,依题意可列方程组解得。
(3)只购进b型电脑和c型电脑,依题意可列方程组。
解得。
三元一次方程组北师大版数学初二教案(热门18篇)篇十四
含有两个未知数,并且所含未知数的项的次数都是1的.整式方程叫做二元一次方程。
含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
(1)代入(消元)法(2)加减(消元)法。
直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx-y+b=0的解。
当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。
初中数学平行线知识点。
平行线及其判定。
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的性质。
性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
1要重视计算。
做数学题就是要注重计算,很多孩子成绩丢分在计算上,解题步骤没有错,但是计算的过程中出现失误,导致丢分,影响整体成绩,所以要重视计算的作用,初一阶段刚开学就会学到有理数,绝对值,倒数,相反数,一元一次方程,单项式和多项式等基本的计算问题,每一个知识点都脱离不了计算的考察。整式,方程,不等式等后续重要知识点都基于有理数的计算。后续的分式计算更凸显了孩子的计算问题。所以要想提高数学成绩,一定要重视计算。
2细节决定成败。
我们在考试以后会发现有很多不应该做错的题,因为大意失了分数,所以要想提高数学成绩,一定要注意细节,在考试的过程中不该丢的不能丢,分分计较,做到颗粒归仓。解题时即使思路正确,不注意细节也能丢分。考试分分比较,每一分都代表了一个人的素质和水平。这就是细节决定成败。
3善于发现数学规律。
要想提高数学成绩,在做数学题的过程中要善于发现规律。不要总是硬套公式,可以尝试一下思维的转换,这样可能给自己带了不一样的转机,其实数学和其他的科目是一样,就比如语文一样的话,可以用其他的话代替,但是意思并没有转变,数学的公式也是一样,最终的答案是一个,不过你可以用其他的方法进行解答,所以善于发现数学的解题规律,转变思路也是提高数学成绩的一条有效途径。
4高水平复习很重要。
要想提高数学成绩,在考试前一定要有高水平高效率的复习。一道题,刚开始你不熟悉,那么,你需要做十遍甚至更多遍,把整个题目做到滚瓜烂熟。这个时候,如果你还在不断地重复做这道题,那么就是低水平重复,高手们会当这道题熟悉了,他就开始放弃了,把大把时间拿来,去攻克自己不熟悉的题目,不断地把陌生转化为熟悉。他们也在重复,但是,是高水平重复。
三元一次方程组北师大版数学初二教案(热门18篇)篇十五
知识与技能。
(2)掌握二元一次方程组和对应的两条直线之间的关系;
(2)通过“做一做”引入例1,进一步发展学生数形结合的意识和能力。
(1)在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。
(2)在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。
数形结合和数学转化的思想意识。
教具:多媒体课件、三角板。
学具:铅笔、直尺、练习本、坐标纸。
第一环节:设置问题情境,启发引导(5分钟,学生回答问题回顾知识)。
内容:
1、方程x+y=5的解有多少个?是这个方程的解吗?
2、点(0,5),(5,0),(2,3)在一次函数y=的图像上吗?
3、在一次函数y=的图像上任取一点,它的坐标适合方程x+y=5吗?
4、以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=的图像相同吗?
由此得到本节课的第一个知识点:
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
第二环节自主探索方程组的解与图像之间的关系(10分钟,教师引导学生解决)。
内容:
1、解方程组。
2、上述方程移项变形转化为两个一次函数y=和y=2x,在同一直角坐标系内分别作出这两个函数的图像。
(1)求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2)求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。
(3)解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。
第三环节典型例题(10分钟,学生独立解决)。
探究方程与函数的相互转化。
内容:例1用作图像的方法解方程组。
例2如图,直线与的交点坐标是。
第四环节反馈练习(10分钟,学生解决全班交流)。
内容:
1、已知一次函数与的图像的交点为,则。
2、已知一次函数与的图像都经过点a(—2,0),且与轴分别交于b,c两点,则的面积为()。
(a)4(b)5(c)6(d)7。
3、求两条直线与和轴所围成的三角形面积。
4、如图,两条直线与的交点坐标可以看作哪个方程组的解?
第五环节课堂小结(5分钟,师生共同总结)。
内容:以“问题串”的形式,要求学生自主总结有关知识、方法:
1、二元一次方程和一次函数的图像的'关系;
(1)以二元一次方程的解为坐标的点都在相应的函数图像上;
(2)一次函数图像上的点的坐标都适合相应的二元一次方程。
2、方程组和对应的两条直线的关系:
(1)方程组的解是对应的两条直线的交点坐标;
(2)两条直线的交点坐标是对应的方程组的解;
(1)代入消元法;
(2)加减消元法;
(3)图像法,要强调的是由于作图的不准确性,由图像法求得的解是近似解。
第六环节作业布置。
习题7.7a组(优等生)1、2、3b组(中等生)1、2c组1、2。
附:板书设计。
三元一次方程组北师大版数学初二教案(热门18篇)篇十六
3、培养分析问题、解决问题的能力,进一步体会二元一次方程组的应用价值。
借助列表分问题中所蕴含的数量关系。
用列表的方式分析题目中的各个量的关系。
(师生活动)设计理念。
创设情境最近几年,全国各地普遍出现了夏季用电紧张的局面,为疏导电价矛盾,促进居民节约用电、合理用电,各地出台了峰谷电价试点方案。
学生独立思考,容易解答,以一道生活热点问题引入,具有现实意义,激发学生学习兴趣,同时培养学生节约、合理用电的意识。
理解题意是关健,通过该题,旨在培养学生的读题能力和收集信息能力。
(图见教材115页,图8.3-2)。
学生自主探索、合作交流。
设问1.如何设未知数?
销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关,因此设产品重x吨,原料重y吨。
设问2.如何确定题中数量关系?
列表分析。
产品x吨。
原料y吨。
合计。
公路运费(元)。
铁路运费(元)。
价值(元)。
由上表可列方程组。
解这个方程组,得。
因为毛利润-销售款-原料费-运输费。
所以这批产品的销售款比原料费与运输的和多1887800元。
引导学生讨论以上列方程组解决实际问题的。
学生讨论、分析:合理设定未知数,找出相等关系。本例所涉及的数据较多,数量关系较为复杂,具有一定挑战性,能激发学生探索的热情。
通过讨论让学生认识到合理设定未知数的愈义。
借助表格辅助分析题中较复杂的数量关系,不失为一种好方法。
课堂练习。
购到这种水果140吨,准备加工后上市销售,该公司的加工能力是:每天可以精加工6吨或者粗加工16吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须将这批水果全部销售或加工完毕,为此公司研制二种可行的方案:
方案一:将这批水果全部进行粗加工;
方案二:尽可能多对水果进行精加工,没来得及加工的水果在市场上销售;
方案三:将部分水果进行精加工,其余进行粗加工,并恰好15天完成。
你认为选择哪种方案获利最多?为什么?
学生合作讨论完成。
选择经济领城问题让学生展开讨论,增强市场经济意识和决策能力,同时巩固二元一次方程组的应用。
小结与作业。
小结提高。
2、小组讨论,试用框图概括“用一元一次方程组分析和解决实际问题”的基本过程。
学生思考、讨论、整理。
这是第一次比较完整地用框图反映实际问题与二元一次方程组的关系。
让学生结合自己的解题过。
程概括整理,帮助理解,培养模。
型化的思想和应用数学于现实。
生活的意识。
布置作业16、必做题:教科书116页习题8.3第2、6题。
17、选做题:教科书117页习题8.3第9题。
18、备19、选题:
(1)一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车,已知过去两次租用这两种货车的记录如下表所示。
甲种货车(辆)乙种货车(辆)总量(吨)。
第1次。
4528.5。
第2次。
3627。
本课教育评注(课堂设计理念,实际教学效果及改进设想)。
本课探究的问题信息量大,数量关系复杂,未知数不容易设定,对学生来说是一种挑战,因此安排学生合作学习,学生先独立思考,自主探索,然后在小组讨论中合理设定未知数,借助表格分析题中的数量关系,列出方程组求得问题的解,在本节的小结中,让学生结合自己的解题过程概括整理实际问题与二元一次方程组的关系,并比较完整地用框图反映,培养模型化的思想。
同时本节向学生提供了社会热点问题、经济问题等现实、具有挑战性的、富有数学意义的学习素材,让学生展开数学探究,合作交流,树立数学服务于生活、应用于生活的意识。
三元一次方程组北师大版数学初二教案(热门18篇)篇十七
本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。
2、理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想。
2、难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。
(1)复习引入。
设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。
(2)探究新知。
此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。
一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的`解释,怎么变化而来。
播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。接着完成配套的3个习题,强化训练。
(3)例题讲解。
让学生尝试解答。
设计意图:让学生通过例1和例2的对比,引出如何选择变化有利于计算的问题。
预想大部分学生例2会存在这样的问题到底选择哪个方程变形,当学生做出例1,犹豫例2时,提出这样两个问题:
(1)在解二元一次方程组的步骤中变形的过程我们应当如何变形?把一个方程变形为用含x的式子表示y(或含y的式子表示x)。
(2)选择哪个方程变形比较简便呢?
再一次激起学生的学习兴趣,接着播放洋葱视频继续代入消元法片段视频,让学生清楚的知道在不同的二元一次方程组中在变形的过程选择那一个方程,选择那一个未知数变形能简便的进行运算。
1、这节课你学到了哪些知识和方法?
2、你还有什么问题或想法需要和大家交流分享?
xxx。
通过洋葱视频辅助教学,使得学生容易体会到“消元”思想的渗透,学生能够学会规范解题。通过视频的讲解能够准确的选择要变形的方程,如果是传统的教学方式可能会出现很多学生不理解的地方,但通过洋葱数学短小精辟的视频讲解一下子让学生理解透!
三元一次方程组北师大版数学初二教案(热门18篇)篇十八
在2月21日的xx区教学常规互检协调会上,作为课改核心校的我们,向其他兄弟学校的教务主任和分管教学的副校长提出:教学开放周举行校际间同课异构的设想,这一个设想得到了大家的一致赞同,并在xx中学的课堂开放周中开始实行,在这次活动中,我校两个xx市校际组成员安排到xx中学进行授课,我是其中之一。
在接到这个任务时,我就先向xx中学的同课异构教师——xx老师了解他们的教学进度及学生的学习情况,得知该校学生的整体数学基础比较低。针对这一种情况,我采取导学案的形式来进行总复习,围绕着二元一次方程组解法及其应用展开,首先,我通过二元一次方程、二元一次方程组、方程组的解、二元一次方程组的解题方法的类型、解应用题的步骤等概念入手,帮助学生回顾旧知识。然后,通过两道二元一次方程组的解法让学生进行练习,再来,利用方程组的同解原理,了解二元一次方程组解的意义,最后,我引出xx年中考的那道数学应用题,让学生及时与中考题目进行对接,提高学生的实际解题能力。
在上完课之后,我与xx中学的数学教研组一起进行教研交流,首先,xx中学的同行们非常赞同我的教学设计及教学思路,觉得这样的教学设计学生很容易掌握,思路很清晰。但是,在帮助学生回顾旧知识的时间花得太多,导致后面的综合题没办法展开,应该淡化概念的'教学,强调学生的实际应用能力,同时,也应该通过二元一次方程组的一题多解的形式让学生选择方程组两种解法来比较出方法的优劣,提高学生对于“代入消元法”和“加减消元法”的选择依据。
听了xx中学同行们的建议之后,我也自己反思了一下,觉得现在作为初三年的总复习,应该重视的是学生的理解能力和综合应用能力的提升,而不是纠结于概念的记忆,作为概念的东西只要让学生了解就可以了,重点应放在应用题的分析以及对于二元一次方程组与一次函数之间的关系上,提高学生的综合水平和应用能力。