教案不仅是给学生上课用的,还是学生学习的资料,我们需要编写详细而有针对性的教案。下面是一些经过精心编写的五年级教案参考,希望对大家的课堂教学有所帮助。
五年级数学两三步计算的应用题教案(通用13篇)篇一
素质教育目标:
1、使学生借助线段图能够理解简单应用题的数量关系,并会用两种方法解答这类应用题。
2、进一步培养学生的分析问题能力和灵活解题的能力。
3、渗透数形结合和事物相互联系的辩证唯物主义观点。
教学重点:掌握三步应用题的解题方法。
教学难点:分析并理解三步应用题的解题思路。
教学过程:
1、根据条件补充问题,使之成为一道三步计算的应用题。
(1)、请说说解题的思路和相应的算式。
(2)、这道题还可以怎样解答?
2、教学例4:
出示例题。
(1)指名读题,找出题中的已知条件和所求问题。
(2)借助线段图分析数量关系。
想一想:根据题里的条件,前面的线段图该怎样修改?所求问题在线段图上怎样表示?
讨论题:
(3)比较两种方法哪种比较简便。
3、引导概括。
解答应用题不但方法可以不一样,而且计算的步骤也不相同。有的三步题可以用两步来解答。这样使计算变得比较简便。所以解题时应该注意选择合理、简便的方法进行解答。
4、综合与应用:(课件)。
5、板书。
教学内容:教科书例5及第19页“做一做”,练习五第1、2题。
一、素质教育目标。
(一)、知识教学点。
1.理解三步计算的应用题的数量关系:掌握解题思路。
(二)能力训练点。
1.培养学生类推能力、分析比较能力。
2.培养学生理解应用题数量关系的能力。
(三)德育渗透点。
渗透事物间相互联系的思想。
(四)美育渗透点。
使学生感悟到数学知识内在联系的逻辑之美,提高审美意识。
二、学法引导。
指导学生运用已有经验,合作学习、讨论、试算,感知算理和计算方法。
三、重点、难点。
教学重点:理解应用题的数量关系。
教学难点:确定应用题的`解题步骤。
四、教具准备。
小黑板、投影片等。
五、教学步骤。
(一)、铺垫孕伏。
1.练习:(出示口算卡片)。
56×2+5678×4—78。
168—17×4100—100÷5×3。
2.复习题:
读题,分析解题思路。
学生独立解答、订正。
(二)探索新知。
1.利用投影片改复习题为例5。(课件演示)。
(抓住复习和例5的联系点,设计了复习题,为学习例5做好铺垫,有利于学生思维的发展。)。
2.读题,找出已知条件和所求问题。
讨论:你认为这道题的关键句是哪一句?
(教师在“五年级栽的比四年级总数少10棵”下面画出曲线。)。
3,怎样用线段图表示题中的数量关系呢?
引导学生画线段图。
4.根据线段图和题意,讨论思考:
要想求出五年级栽树多少棵?必须。
先知道什么?你是根据什么这样说的?为什么?
(通过线段图,从直观到抽象,帮助学生理解算理。)。
5,通过交流汇报,确定解题思路,教师板书小标题,再让学生直接在书中填空,指定一名学生板演。
形成板书:
四年级栽树多少棵?
56×2=112(棵)。
三、四年级一共栽树多少棵?
56+112=168(棵)。
五年级栽树多少棵?
168—10=158(棵)。
答:五年级栽树158棵。
6.小结:
引导学生回顾例5的解题过程,解答这类题时应注意什么?
抓住关键句理解数量关系,依据关键句确定数量关系,确定先算什么,再算什么,最后算什么,并分步解答。
引导学生观察:在解题过程中,56这个已知条件用到了几次?分别是在求什么时候用的?通过讨论,使学生明确:解答应用题时,有的已知条件不止用一次,具体怎样用,要根据题目内容确定。
7.反馈练习:教材第19页“做一做”第1题。
同桌讨论,关键句是哪一句,再根据题意确定先求什么,再求什么,最后求确定2—3名学生汇报讨论结果。然后再让学生分步独立解答,集体订正。
(三)、巩固发展1、“做一做”第2、3题。
同桌每人选一题,互相说一下这道题的关键句是什么,应该先求什么,再求什么,最后求什么。然后独立完成。
2、练习五第1题。
先画图表示数量关系。
(四)、课堂小结。
回顾本课学习内容,指出这类应用题是三步计算应用题,还是两步。
计算的应用题。
板书课题:
进一步明确:解答此类应用题,要抓住关键语句,明确数量关系,通过分析关键语句确定的数量关系,明确解题步骤。
提示同学:有的已知条件在解题时不止用一次。
六、布置作业。
练习五第2题。
七、板书设计。
五年级数学两三步计算的应用题教案(通用13篇)篇二
(一)使学生初步学会解答比较容易的两步应用题,理解数量关系,掌握解答方法,两步计算的应用题(二)。
(二)培养学生分析问题和解答问题的能力。
(三)培养学生认真审题的良好学习习惯。
重点:分析数量关系。
难点:理解数量关系。
(一)复习准备
补充问题,再解答
1.商店里有24个皮球,卖出20个,________?
24-20=4(个)
答:还剩4个。
2.商店里有4盒皮球,每盒6个,________?
6×4=24(个)
答:一共有24个皮球。
生答:商店里有4盒皮球,每盒6个,卖出20个,还剩多少个?
(二)学习新课
1.出示例2
例2商店里有4盒皮球,每盒6个,卖出20个,还剩多少个?
问:解答两步计算的应用题先干什么?
生答:读懂题意。
师说:请同学们自由读题,读懂题意的同学就坐好。(指名一同学读题)
问:读懂题意再干吗?
生答:划出已知、求。
师问:谁来说说这道题的已知、求?
生答:第1个已知条件是:商店里有4盒皮球。第2个已知条件是:每盒6个。第3个已知条件是:卖出20个。所求问题是:还剩多少个?(同时打出相应的`投影图或p7实物图)
教师问:明确了这道题的已知、求,接下来要做什么工作?(分析数量关系)
教师问:这个工作非常重要,只有正确分析数量关系,才能正确解答。请同桌同学讨论一下这道题要先算什么,再算什么。
集体讨论,教师板书:
(1)商店一共有多少个皮球?
6×4=24(个)
(2)还剩多少个?
24-20=4(个)
答:还剩4个。
教师总结:解答两步计算的应用题,要先认真读题,找准已知、求,再想好先算什么,再算什么,一定能正确解答出应用题。
(三)巩固反馈
1.做一做
小明有6套画片,每套3张。送给同学5张,现在有多少张画片?
(1)先读题。
(2)划出已知、求,小学数学教案《两步计算的应用题(二)》。
(3)想想先求什么,再求什么。
学生说解题思路:根据小明有6套画片,每套3张,可以先求出一共有多少张画片,再根据送给同学5张,可以求出现在有多少张。自己在课堂练习本上解答。教师巡视检查。注意要把相同加数写在前面。
2.改一改
问:能不能将第3个已知条件改一改,变成另一道两步计算的应用题。
小明有6套画片,每套3张。又买来4张,现在有多少张?
独立在课堂练习本上解答。
3.两步计算
84-19+6 76-(28+20)
52-4×6 81-36÷6
说说先算什么,再算什么。
4.说说下面的应用题先算什么
(1)工厂先盖了5排房,每排9间。又盖了15间,一共盖了多少间房?
(3)食堂买来60棵白菜,吃了56棵。又买来30棵,现在有多少棵?
(4)商店里有9袋乒乓球,每袋5个。卖了28个,现在还有多少个乒乓球?
5.判断哪个列式正确
学校有5盒乒乓球,每盒9个,又买来1盒乒乓球,现在有多少个?
(1)9×5+1 (2)9×5+9
(3)5+1×9 (4)5×9+9×1
如果学生判断不出,可用红笔圈出1盒,如果有同学判断正确,要大力表扬,告诉学生做应用题一定要认真审题。
6.比赛
看谁算得又正确,又迅速。
(1)同学们做了40朵花,送给托儿所30朵,还剩多少朵?
(2)同学们分5组做纸花,每组做8朵。送给托儿所30朵,还剩多少朵?
(3)老师出了20道乘法算式,16道除法算式。小华算了32道,还有几道没算?
(4)老师出了4栏算式,每栏9道。小明算了34道,还有几道没算?
(5)同学们做了16只红风车,20只花风车。送给幼儿园18只,还有多少只?
(6)同学们分4组做风车,每组做9只。送给幼儿园18只,还有多少只?
做得快的同学可以思考下题。
课堂教学设计说明
(1)读懂题意;
(2)找准已知、求;
(3)分析数量关系即想想先求什么,再求什么;
(4)解答这四步来学习。在巩固反馈过程中,先做一道练一练,完全仿照例2来解答,再让学生把练一练改一改,进一步理解数量关系,接着通过两步计算式题,找中间问题、判断、比赛等大量练习,巩固新知,最后给做题快的同学出一道虽然是3个已知条件,但用一步计算的应用题用以检查学生是否真正理解了数量关系。
板书设计
五年级数学两三步计算的应用题教案(通用13篇)篇三
(1)理解梯形面积公式的推导过程,会应用公式正确计算梯形的面积。
(2)培养学生合作学习的能力。
(3)继续渗透旋转、平移的数学思想。
一、复习旧知。
1.求出下面图形的面积。
2.回忆三角形面积公式推导过程(演示课件:拼摆三角形 下载)。
二、设疑引入。
三、指导探索。
第一部分:梯形面积公式的推导。
1.小组合作推导公式。
提纲:
2.(演示课件:拼摆梯形 下载)。
电脑演示转化推导的全过程。
五年级数学两三步计算的应用题教案(通用13篇)篇四
教学目标:
(1)理解梯形面积公式的推导过程,会应用公式正确计算梯形的面积。
(2)培养学生合作学习的能力。
(3)继续渗透旋转、平移的数学思想。
教学过程:
一、复习旧知。
1.求出下面图形的面积。
2.回忆三角形面积公式推导过程(演示课件:拼摆三角形)。
二、设疑引入。
三、指导探索。
第一部分:梯形面积公式的推导。
1.小组合作推导公式。
提纲:
2.(演示课件:拼摆梯形)。
电脑演示转化推导的全过程。
五年级数学两三步计算的应用题教案(通用13篇)篇五
课题:
两步计算的应用题、用画图法解应用题。
知识点。
1、用数学的方法解决在生活和工作中的实际问题——解应用题。
2、用画图来表示题目中的条件,帮助理解题意,正确解答。
教学目标。
1、分析思考题目所包含的数量关系,锻炼思维的灵活性。
2、让学生在学习数学的过程中,感学与日常生活的密切联系,体验数学的价值,增强受数应用数学的意识。
3、在探索问题解决方法的过程中,发展学生的数学思考能力,培养主动探索的意识。
教学内容。
第一课时:【典型例题】。
解题策略:问题求的是“小明原来最多有多少钱”。由题意已知小明原来的钱不到5元,但加上5角后就超过5元,且能被6整除。假设每枝笔8角钱,6枝则是48角,不到5元,所以不能;如果每枝9角,6枝就是54角,再减去少5角,原来最多49角。算式:6×9-5=49。
【画龙点睛】。
解答两步计算的.应用题,如果不认真思考,提笔就做,很容易出错。所以应该先从条件或问题入手,仔细分析,找出正确的解题方法。
第二课时。
【举一反三】。
第二课时:【典型例题】。
解题策略:我们用图来表示已知条件:
小明:
小红:
从图中我们可以清楚地看到,小明比小红多6枝铅笔,把多出来的6枝铅笔平均分成两份,即6÷2=3,所以小明给小红3枝铅笔后,两人的枝数相同。
【画龙点睛】。
用画图法解应用题,特别是解技巧性较强的题,能形象直观地揭示数量关系,使抽象思维与形象思维协同发挥作用,从而构建出解题思维的模式。
第三课时【举一反三】。
1、小明给小红3枝铅笔后,两人的枝数相同。问:小明比小红多几枝铅笔?
2、小红有4枝铅笔,小明给小红3枝铅笔后,两人的枝数相同,小明有几支铅笔?
3、一根12米长的木条,锯3次,每段几米?
6、二(1)班同学做早操,每行人数相等,小李的位置从左边数是第3个,从右边数是第4个,从前边数是第4个,从后边数是第2个。
问:二(1)班有多少同学在做早操?
五年级数学两三步计算的应用题教案(通用13篇)篇六
教学目标:
1、通过练习使学生能比较熟练地比较万以内数的大小。
2、会进行简单的估计,发展学生的`估计意识和能力。
教学重难点:
万以内数的大小比较。
教具准备:
卡片、挂图。
教学过程:
一、复习:
1、比较下面数的大小,并说说你是怎么想的?
456054604560()4460。
4560()64504560()4520。
2、把下面的数按从大到小的顺序排列。
1240214012042104。
二、练习:
1、老师出示四个数字,请同学先组成大小不同的数,然后两个两个进行比较。
8、6、0、5。
2、学生先独立进行组数练习,然后同桌两人分别拿出一个数进行比较。
3、你能把这些数按照从大到小的顺序,排一排吗?
4、做书上“想想做做”的第7题。
你能根据下面的统计回答问题吗?先说给同桌听,再在班级里进行交流。
5、做书上“想想做做”的第8题。
请同学们按照五岳的高度从高到低排一排?
西岳华山米北岳恒山米。
中岳嵩山1440米东岳泰山1524米。
南岳衡山1290米。
6、根据这些天所学的内容,你能也来出几道题目考考你的同学吗?
(同学之间相互出题、做题)。
三、小结:今天这节课我们学习了什么内容?你有什么收获?
四、作业:完成“想想做做”的第7、8两题。
五、教学后记:
五年级数学两三步计算的应用题教案(通用13篇)篇七
1.使学生初步学会分析稍复杂的两步计算的应用题的数量关系,正确列出方程.。
2.学生会找出应用题中相等的数量关系.。
教学重点。
训练学生用方程解“已知比一个数的几倍多(少)几是多少,求这个数”的应用题.。
教学难点。
分析应用题等量关系,并会列出方程.。
教学过程。
一、复习准备。
(一)写出下面各题的式子.。
1.比的3倍多15。
2.比的4倍少2。
3.2个与34的和。
4.5个与0.6的3倍的差。
(二)解答复习题。
少年宫舞蹈队有23人,合唱队的人数比舞蹈队的3倍多15人.合唱队有多少人?
(学生独立解答)。
23×3+15。
=69+15。
=84(人)。
答:合唱队有84人.。
二、新授教学。
(一)导入新课(改复习为例4)。
少年宫合唱队有84人,合唱队的人数比舞蹈队的3倍多15人.舞蹈队有多少人?
1.比较:例4与复习题有什么相同点和不同点?
相同点:“合唱队的人数比舞蹈队的3倍多15人”这句话没有变;
不同点:复习题已知舞蹈队人数求合唱队人数,
例4是已知合唱队人数求舞蹈队人数.。
(二)教学例4。
1.画线段图分析题意。
2.看图思考:舞蹈队人数和合唱队人数有什么关系?
3.学生汇报讨论结果:舞蹈队人数的3倍加上15正好等于合唱队人数.。
(根据:合唱队人数比舞蹈队人数的3倍多15人)。
4.列方程解答。
教师板书:
解:设舞蹈队有人.。
答:舞蹈队有23人.。
5.思考:还可以怎样列方程?(或)。
引导:例题的方法最简单,解题时要用简单的方法解.。
(三)变式练习。
少年宫合唱队有84人,合唱队的人数比舞蹈队的人数的4倍少8人,舞蹈队有多少人?
三、课堂小结。
今天这节课你学到了什么知识?在学习中你有什么感想?
四、巩固练习。
(一)只列式不计算.。
1.图书室有文艺书180本,比科技书的2倍多20本,科技书本.。
2.养鸡厂养母鸡400只,比公鸡的2倍少40只,公鸡只.。
(二)学校饲养小组今年养兔25只,比去年养的只数的3倍少8只.去年养兔多少只?
(三)一个等腰三角形的周长是86厘米,底是38厘米.它的腰是多少厘米?
五、课后作业。
六、板书设计。
例4.少年宫合唱队有84人,合唱队的人数比舞蹈队的3倍多15人.舞蹈队有多少人?
解:设舞蹈队有人.。
答:舞蹈队有23人.。
教案点评:
分析数量之间的等量关系,学生已有一定的基础,本节主要训练学生掌握根据题目所给的不同条件,找等量关系的方法。
首先引导学生用多种方法解答,并通过观察、比较、分析,从众多的等量关系中找出最佳思路,使学生学会从多种角度思考问题,培养学生思维的灵活性。
五年级数学两三步计算的应用题教案(通用13篇)篇八
1.使学生学会根据两个未知量之间的关系,列方程解答求含有两个未知数的应用题。
2.使学生能根据应用题的具体情况灵活选择解题方法,培养学生主动获取知识的能力和习惯。
3.使学生学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力。
列方程解答数量关系稍复杂的两、三步应用题。
形如:ax+bx=c的数量关系
培养学生自主探究、合作交流的'学习方式。提高学生的检验能力。
学生活动过程 备注
1练习二十一t1
学生回答
2根据条件说出数量关系式:
果园里的桃树和梨树一共有168棵。
果园里的桃树比梨数多84棵。
桃树棵数是梨树的3倍。
学生回答数量关系式
3你能选择其中两个条件,提出问题,编成一道应用题吗?试试看!
学生自主编题,口头说题
4依据学生回答,教师出示题目。
b.根据条件(1)、(3)编题:果园里梨树和桃树一共有168棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(例1)
c.根据条件(2)、(3)编题:果园里的桃树比梨树多84棵,桃树的棵数是梨树的3倍。梨树和桃树各有多少棵?(想一想)
教师巡视,了解情况。
1.学生尝试例1
引导学生画出线段图
集中反馈:生说师画图
2.教师组织学生汇报
学生介绍算术解法时,教师引导学生画线段图理解数量间的关系。
学生介绍方程解法时,注重让学生说出怎样找数量间的相等关系。
3.小组讨论。
解这道题,你认为算术方法和列方程解哪一种比较容易找到解题的数量关系,为什么?
用方程解,设哪个数量为x比较合适?用什么数量关系式来列式呢?
4.学生独立完成想一想。
这一题与例1有什么相同的地方?有什么不同的地方?
明确三点:1、一般设一倍数为x 。2、把几倍数用含有x的式子表示。3、通过列式计算,可以检验两个得数的和(差)及倍数关系是否符合已知条件。
5完成课本94页练一练
指名板演,其余集体练习,评讲时让学生说说是怎样想的,怎样检验?
本课学习了什么内容?你有哪些收获?
五年级数学两三步计算的应用题教案(通用13篇)篇九
1、直接写出得数。
0.4×5=。
4.2÷0.2=。
4.2-1.6=。
21.7÷0.07=。
1.6×7=。
25.25÷5=。
1.25×8=。
60×0.9=。
0.8×0.1=。
0÷7.05=。
0.4×2.5=。
1.7+3.3×0.2=。
2、用竖式计算:
56.5×0.24=。
93.6÷0.052=。
1.24×0.15=。
0.39÷7.8=。
3、递等式计算,能简便的用简便方法计算。
3.26×10.1-0.1×3.26。
0.125×9.8×8。
102×4.8。
2.4×2.5。
(27.8-15.6)×0.8。
9.12÷57+4.84。
12.6×99。
90÷25÷4。
五年级数学两三步计算的应用题教案(通用13篇)篇十
教材第94页例1、“练一练”,练习二十—第1—4题。
使学生学会用方程解答数量关系稍复杂的求两个数的(和倍、差倍)应用题,能正确说出数量之间的相等关系;学会用检验答案是否符合已知条件来检验列方程解应用题的方法,提高学生列方程解应用题和检验的能力。
1、复习:果园里有梨树42棵,桃树的棵数是梨树的3倍。梨树和桃树一共有多少棵?(板演)
2、根据下列句子说出数量之间的相等关系。
杨树和柳树一共120棵
杨树比柳树多120棵
杨树比柳树少120棵
3、出示线段图:梨树:
桃树:
从图上你可以知道什么?如果梨树的棵树用x表示,桃树的棵数怎样表示?
4、出示条件:母鸡的只数是公鸡的5倍。
5、在括号里填上含有字母的式子。(练习二十一第1题)
6、交流:板演,你是根据怎样的数量关系来解答的?
7、导入:在四年级时我们学习了列方程解应用题,谁来说一说列方程解应用题的步骤是怎样的?今天这节课,我们继续来学习列方程解应用题。(出示课题)
(1)齐读。
(2)这道题已知什么条件,要求什么问题?边问边画出线段图。
(3)“梨树和桃树各有多少棵”是什么意思?
这道题要求的数量有两个,你认为用什么方法做比较简便?
(4)下面我们就以小小组为单位进行讨论:这道题用方程来做,学生讨论。
(5)交流。
(6)通过讨论和同学们的交流,你们会解这道题了吗?请做在自己的作业本上。一生板演,其余齐练。
校对板演。还可以怎样求桃树的棵树?
(7)方程解好了,下面要做什么了?你准备怎样检验?(把问题作为已知数进行检验,)生说,师板书,齐答。
2、教学想一想。
现在我们把第一个条件改一下,变成“果园里的桃树比梨树多84棵”,你能列方程解答吗?(出示改编题)
一生板演,其余齐练。
集体订正。提问:设未知数时你是怎样想的?你是根据什么来列方程的?
3、请同学们比较这两道题,在解答上有什么相同的地方?又有什么不同的地方?为什么会不同?因此,你认为列方程解应用题的`关键是什么?(找出数量之间的相等关系。)
4、小结。
从刚才的两道题可以看出,如果两个数量有倍数关系,就可以把1份的数看做x,几份的数就是几x;把两部分相加就是它们的和,两部分相减就是它们的差。我们可以根据数量之间的相等关系,列方程来解答。
1、练一练。校对:你是根据哪个条件说出数量之间的相等关系的?
2、只列式不计算。
一个自然保护区天鹅的只数是丹顶鹤的2.2倍。
(1)已知天鹅和丹顶鹤一共有96只,天鹅和丹顶鹤各有多少只?
(2)已知天鹅的只数比丹顶鹤多36只,天鹅和丹顶鹤各有多少只?
3、选择正确的解法。
明明家鸡的只数是鸭的3倍,鸡和鸭一共56只,鸡和鸭各有多少只?
(1)解:设鸡和鸭各有x只。 x+3x=56
(2)解:设鸡有x只,鸭有3x只。 x+3x=56
(3)解:设鸭有x只,鸡有3x只。 x+3x=56
商店里苹果的重量是梨的3.6倍,苹果比梨多26千克。苹果和梨各有多少千克?
(1)解:设梨有x千克,苹果有3.6x千克。 3.6x-x=26
(2)解:设梨有x千克,苹果有3.6x千克。 3.6x+x=26
老师有个疑问,想请你们帮我解决:为什么今天学的应用题用方程来做比较好,而复习题用算术方法做比较好呢?说明同学们掌握得不错。
练习二十一/2—5
五年级数学两三步计算的应用题教案(通用13篇)篇十一
梯形面积的计算是在学生学会计算平行四边形、三角形面积计算的基础上教学的。教材先复习梯形的有关知识,然后引导学生想,怎样把梯形转化为已学过的图形,从而推导出梯形的面积计算公式。其中理解梯形面积计算公式的推导过程是本节课教学的难点。
下面就从以下几个方面进行剖析:
(一)以旧促新,探究新知。
1、出示梯形请学生找出梯形的上底、下底和高,然后请学生想一想:我们在推导平行四边形、三角形面积计算公式的时候,都用到了什么方法?带领学生回顾以前知识,(把一个平行四边形进行割补转化成一个长方形,推导出平行四边形的面积计算公式;把两个完全一样的三角形拼成一个平行四边形推导出三角形的面积计算公式。)使学生明确都用到了转化的方法。然后教师启发:我们能否也用转化的方法来推导梯形面积的计算公式呢?下面我们就来共同研究、探讨。本环节的设计,善于抓住新旧知识的内在联系,数学思想方法的类比迁移,用循序渐进的启发性提问,培养学生的发散思维。促进学生将梯形面积计算公式与已有认知结构中的平行四边形、三角形面积计算公式建立非人为的实质性联系,为学生对梯形面积公式的探究、研讨,促进知识方法的有效迁移创造条件。
在引导学生进行操作时,我先课件显示操作提纲:1、拿出两个完全一样的梯形动手拼一拼。2、你拼成了什么图形?怎样拼的?3、你发现拼成的平行四边形和梯形之间有什么关系?让学生带着教师提出的问题一边思考,一边动手,防止出现学生不知道做什么的现象。然后学生示范拼图,用两个完全一样的梯形拼成一个平行四边形。由于学生操作的两个完全相等的梯形是等腰梯形,因此未出现异常现象,学生都兴奋地说拼成了平行四边形。为了加深学生对书本图示的理解,我故意剪了两个完全相等的任意梯形,结果问题就出现了,一名学生没有按照书本上的拼法,结果自然没有拼成平行四边形,学生都感到惊讶。我见时机成熟,叫学生再打开书本,仔细观察书上的拼法,使学生明确拼的步骤:即先要重合,再向左旋转,最后沿着梯形的一条边向上平移,直至两条底成一条直线,才能拼成。学生这才明白过来。通过动手操作,同学们都明确了两个完全相同的梯形能拼成一个平行四边形。
接下来根据拼成的平行四边形,请学生一边看图一边找关系,先找出平行四边形的底与梯形的底之间的关系,即拼成的平行四边形底是梯形上底和下底之和,再找出梯形的高与拼成的平行四边形的高的关系,即拼成的平行四边形的高是梯形的高,然后得出梯形面积与拼成的平行四边形面积之间的关系,即梯形面积是拼成的平行四边形面积的一半,最后得出梯形的面积计算公式及字母公式。
本环节的设计,从学生实际出发,设计了相应的填空题,使研究的要求清楚,目的明确,有利于学生有效、有序地进行思维。
(二)学以致用。
在例题的教学中,由于有前面平行四边形、三角形面积计算的基础,因此我没有花很多的精力,而是先出示例题,让学生自己尝试解答,充分发挥了学生的主观能动性。在练习的设计中,我也能从学生实际出发,选择学生中有可能出现错误的列式,让学生选择正确答案,从而杜绝错误现象。为了让学有余力的学生能吃得饱,我又布置了一些拓展题,。让学生尝试用不同的方法得出梯形面积的推导公式。(用一个梯形拼一个平行四边形,然后推导梯形面积的计算公式)。
总之,本堂课能以全体学生为本,从教学形式和教学方法上有了较大的更新。通过让学生操作、思考、观察、讨论、说理、计算、看书和概括等多种形式,注意了变"教师讲授"为"研究交流",变"灌输"为"引导",较好地处理了"主体"和"主导"的关系,有利于培养学生学会学习,学会创造的良好素质。
五年级数学两三步计算的应用题教案(通用13篇)篇十二
1、知道求组合图形的面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。
2、注重对组合图形的分析方法与计算技巧,有利于提高学生的识图能力、分析综合能力与空间想象能力。
讲解法、演示法。
这类方法一般是从组合图形中分割成几种不同的基本图形,这类图形的阴影部分面积就是求几个基本图形面积之和(或者差)。
ppt演示变化过程,并出示解题过程。
这类方法是将题中的条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。
ppt演示变化过程,并出示解题过程。
这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图。
ppt演示变化过程,并出示解题过程。
1、弄清组合图形所求的是哪些部分的面积。
2、根据图中条件联想各种简单图形的特征,看组合图形可以分成几块什么样的图形,能否通过割补、等积变形、旋转等方法使图形化繁为简。
五年级数学两三步计算的应用题教案(通用13篇)篇十三
教学目标:
知识与技能:会解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。
过程与方法:引导学生用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。
情感与态度:在学习中使学生明白时间的宝贵,养成珍惜时间的好品质。
教学重点:
用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。(加法计算)。
教学难点:
学生对于题意的理解。
教学过程:
一、导入阶段。
出示。
小丁丁和同学约好上午9时15分在动物园门口集合,小丁丁早晨7时48分出门,路上用了1小时23分。
(1)在这段文字叙述中你获得了哪些信息。
上午9时15分在动物园门口集合;
早晨7时48分出门;
路上用了1小时23分。
(2)9时15分、7时48分、1小时23分各表示什么,有什么不同?
9时15分、7时48分表示时刻,是指某一事件发生的`时候。
1小时23分表示时间,是指某一事件经过了多久。
(3)出示问题“小丁丁几时几分到达动物园门口”这是求时间还是求时刻?
是求时刻。
(4)今天我们就要来讨论关于时间的计算的问题。(出示课题)。
二、中心阶段。
1、请学生试着计算。
2、汇报。
(1)画图。
(2)竖式算。
注意:这步计算,“分”的计算满60要向“时”进1,因为分与时之间的进率是60。
答:小丁丁9时11分到达动物园门口。
3、比较2种方法得出2种方法都很好,都很直观、很简洁。
4、小结。
我们可以利用时间线段图和竖式来解决某一时刻经过多少时间会到哪一个时刻的计算问题。
三、练习阶段。
7时50分+45分=时()分。
8时26分+2小时37分=()时()分。
15分18秒+3分52秒=()分()秒。