教学计划是一种系统性的组织与安排教学活动的文件,它是教师在课程目标的指导下,根据学生的实际情况和教学资源的条件,合理安排和设计教学内容、教学方法、教学过程、教学评价等的一份计划。以下是小编为大家收集的教学计划范文,供大家参考。这些范文基于不同的教学目标和学生需求,内容有所差异,但都具有一定的可操作性和实用性。希望能够对您的教学计划制定提供一些帮助和启示,让我们一起来看看吧。
2023年比例的意义和性质含义附教学设计(汇总17篇)篇一
教学目标:
2、培养学生自主参与的意识和主动探索精神;培养学生观察、分析、推理和概括的能力。
重点难点:
难点:探索比例的基本性质和应用意义,判断两个比能否组成比例。
教学过程:
1、什么是比?比各部分的名称是什么?
2、求出下面每个比的比值。﹕163/4﹕1/8/。
1、创设情境,激发兴趣。1)看课文情境图。
5)操场上国旗长与宽的比值是多少?与这面国旗有什么关系?
2、动手计算、探究比例的意义。通过计算引出什么是比例?
3、组织看书,认识名称。
4、利用新知,学以致用。还能找出哪些比来组成比例?归纳总结:
探究新知,充分验证,确定性质。
你能发现比例的内项与外项之间有什么关系吗?小组交流汇报。
1)课本做一做。
2)练习6的1.4题。
1)今天我们学习了什么?
2)你能比较“比”和“比例”有什么联系和区别吗?
教材36页练习6的2.3题。
2023年比例的意义和性质含义附教学设计(汇总17篇)篇二
2、利用比例知识解决实际问题。
3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。
我们的祖国方圆960万平方公里,幅员辽阔却能在一张小小的'地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。
1、8厘米。
出示。
6厘米。
4厘米。
3厘米。
(1)根据表中给出的数量写出有意义的比。
(2)哪些比是相关联的?
(3)根据以往经验,可将相等的两个比怎样?(用等号连接)。
教师并指出这些式子就是比例。
2、让学生任意写出比例,并让学生用自己的语言描述比例的意义。
3、教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。
4、写出比值是1/3的两个比,并组成比例。
1、比例和比有什么区别?
2、认识比例的各部分。
(1)让学生自己取。
(2)组成比例的四个数叫做比例的项,两端的两项叫做比例的。
外项,中间的两项叫做比例的内项。
板书:8:6=4:3。
内项。
外项。
(3)让学生找出自己举的比例的内外项。
()。
12。
2
()。
=
(4)找出分数形式比例的内外项位置又是怎样的?
3、出示【启迪学生思维,展开审美想象】。
(1)这个比例已知的是哪两项,要求的又是哪两项?学生试填。
(2)学生反馈,教师板书。
(3)你发现了什么?
(4)指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。
4、用比例性质验证你所写比例是否正确。
5、练习8:12=x:45。
0.5。
x
20。
32。
=
求比例中的未知项,叫做解比例。
如何证明你的解是正确的?
(三)小结:今天这堂课你有什么收获?
1、下面哪几组中的两个比可以组成比例。
4
1
12:24和18:36。
0.4:和0.4:0.15。
14:8和7:4。
5
2
2、根据18x2=9x4写出比例。【体会到数学的逻辑美,规律美】。
3、从1、8、0.6、3、7五个数中。
(1)选出四个数,组成比例。
(2)任意选出3个数,再配上另一个数,组成比例。
(3)用所学知识进行检验。
不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”
同学们,如果你是汪骏强,你准备怎么办?
2023年比例的意义和性质含义附教学设计(汇总17篇)篇三
1、教学内容:
科教版数学第十二册第74~76页。
2、教材分析:
比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的`思想,而且可以用来解决日常生活中一些具体的问题。教学内容:
教学目标:
培养学生初步的综合和概括能力。教具准备:电脑课件。教学过程:
1、同学们,你们知道吗?我国有着悠久的青铜器铸造史,先秦古籍《考工记》中就有这样记载:(请同学读)。(出示鼎和鉴的图片。)。
(一)教学意义。
1、出示3:5:40:7.5:3。你能把这几组比分分类吗?小组讨论,汇报。(有两种可能:一种是按照形式来分,一种是按照比值来分)板书按照比值来分的情况:3:5和24:40、:和7.5:3。既然它们的比值是相等的,因此我们可以用什么符号来连接呢?(等号)。
2、指出:像这样表示两个比相等的式子叫做比例。
3、那么我们怎么去判断两个比能不能组成比例呢?
4、教学例1:
根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。
第一次第二次。
买练习本的钱(元)2买的本数3。
5、出示结果。
2023年比例的意义和性质含义附教学设计(汇总17篇)篇四
比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:
比,等同于算式中等号左边的式子,是式子的一种(如:a:b);。
比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d).
所以,比和比例的联系就可以说成是:
比是比例的一部分;而比例是由至少两个比值相等的比组合而成的.
表示两个比相等的式子叫做比例,是比的意义。
2023年比例的意义和性质含义附教学设计(汇总17篇)篇五
1、使学生进一步理解比例的意义,懂得比例各部分名称。
2、经历探索比例基本性质的过程,理解并掌握比例的基本性质。
一、旧知铺垫。
1、什么叫做比例?]。
0.5:0.25和0.2:0.4:和5:2。
:和:0.2:和1:4。
3、用下面两个圆的有关数据可以组成多少个比例?
如(1)半径与直径的比:=。
(2)半径的比等于直径的比:=。
(3)半径的比等于周长的比:=。
(4)周长与直径的比:=。
二探索新知。
1.比例各部分名称。
(1)教师说明组成比例的四个数的名称。
板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的`外项,中间的两项叫做比例的内项。
例如:2.4:1.6=60:40。
内项。
外项。
(2)学生认一认,说一说比例中的外项和内项。
如::=:
外内内外。
项项项项。
你能发现比例的外项和内项有什么关系吗?
(1)学生独立探索其中的规律。
(2)与同学交流你的发现。
(3)汇报你的发现,全班交流。
板书:两个外项的积是2.4×40=96。
两个内项的积是1.6×60=96。
外项的积等于内项的积。
(4)举例说明,检验发现。
如::0.5=1.2:。
两个外项的积是×=0.6。
两个内项的积是0.5×1.2=0.6。
外项的积等于内项的积。
如果把比例改成分数形式呢?
如:=。
2、4×40=1.6×60。
等号两边的分子和分母分别交叉相乘,所得的积相等。
(5)归纳。
2023年比例的意义和性质含义附教学设计(汇总17篇)篇六
青岛版《义务教育课程标准实验教科书·数学》五年制五年级下册第66—67页。
1、理解比例的意义,认识比例各部分名称;能利用观察—猜想—验证的方法得出比例的基本性质。
3、使学生在自主探究、合作交流的活动中,进一步体验数学学习的乐趣。
1、谈话。
师:同学们,上学期我们学过有关比的知识,谁能说说学过比的哪些知识?
生1:比的意义。
生2:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
生3:比的前项除以后项,所得的商就是比值。
……。
(评析:简短的几句谈话,引起了学生对已有知识的回忆,让学生“温故”而“启新”。)。
师:今天我们继续学习有关比的知识。昨天大家预习了,谁来说说今天学习什么?
生:比例?(书:课题比例)。
师:看到这个课题你想知道什么?
(预设:1、什么叫比例?2、比例各部分名称?3、比例的基本性质?4、比和比例有什么区别?)。
生:什么叫比例呢?
生:(书)表示两个比相等的式子叫做比例。
师:你怎样理解这句话的意思?可以举例说明。(如果学生举不出例子,我就从比例的意义上去引导,表示两个比相等,你能写出两个比吗?怎样知道这两个比是否相等呢?指着学生举的例子说,像这样的两个比相等的式子就是比例)。
(老师巡视时可以提示学生有的孩子写出了小数、分数形式的比例很好。生汇报)师板书。
师:通过以上练习,你认为这句话中哪些词最重要?为什么?
生1:两个比,不是一个比。
生2:相等,这个比必须相等。
生3:式子,不是两个等式是式子。
师:(投影出示)请你利用比例的意义,判断下面的比能否组成比例?
(1)0、8:0、3和40:15。
(2)2/5:1/5和0、8:0、4。
(3)8:2和15/2:15。
(4)3/18和4/24。
(学生独立判断,师巡视指导,然后汇报)。
师:先说能否组成比例,再说明理由,
生:0、8:0、3和40:15能组成比例,因为0、8:0、3和40:15的比值都是8/3,所以0、8:0、3和40:15能组成比例。
同理教学:(2)2/5:1/5和0、8:0、4。
(3)8:2和15/2:15不能组成比例,因为8:2和15/2:15的比值不相等,所以8:2和15/2:15不能组成比例。
师:怎样改能使它组成比例呢?
生:4:8=15/2:15或8:2=15:15/4。
同理教学(4)3/18和4/24。
师:像3/18和4/24是比例吗?
2、认识比例各部分的名称。
生:组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。(师板书)。
师:请你指出在这个比例中(16:2=32:4),哪是它的内项?哪是它的外项?
生:2和32是它的内项,16和4是它的外项。
师:请同学们快速抢答老师指的数是比例的外向还是内项。
生:(激烈抢答):外项、、、、、、
师:同学们反应真快,分数的形式中哪些是比例的项呢?
生:2和32是内项,16和4是外项。
师:老师指分数比例学生抢答。
师:同学们学得真不错,敢不敢和老师来个比赛?
生:(兴趣高涨):敢!
师:好,请两位同学们各说一个比,我们共同来判断能否组成比例,看谁判断的快?
师:谁来。
生1:4:5,生2:8:9不能组成比例。
生:对。
师:服气吗?不服气咱们再来一次,
生1:1、2:1、8,生2:3:5。
师:不能。对吗?
生:对。
师:老师又赢了,这回服气了吧。(学生点头)。
生:想。
师:其实秘密就藏在比例的两个内项和两个外项之中,就请你以16:2和32:4为例,研究一下,试试能不能发现这个秘密!老师给你们两个温馨提示:(课件出示:温馨提示:
1、可以通过观察、算一算的方法进行研究。
2、你能得出什么结论?)。
师:现在请将你的发现在小组里交流一下,看看大家是否同意。
(学生讨论)。
师:哪个小组愿意将你们的发现与大家分享?
生1:我们组发现16和32是倍数关系,2和4也是倍数关系,所以我们想,在比例里,一个外项和一个内项之间都存在倍数关系。
师:有道理,不错,还有其他发现吗?
生2:我们组发现16×4=6432×2=64,也就是两个外项的.积等于两个内项的积。
师:你能把这个计算过程写在黑板上吗?(学生板书:16×4=64)。
师:这是两个外项的积,(师板书:两个外项的积)。
(学生板书:16×4=64)。
师:这是两个内项的积,(师板书:两个内项的积)。
师:你的意思是:两个外项的积等于两个内项的积(师板书:=)是吗?
师:其他组的同学同意他们这个结论吗?
生:同意。
(以上环节,灵活掌握,如果有的学生能直接用比例的基本性质判断,就直接问:你怎么算得那么快?生:我用两个外项的积=两个内项的积,判断它们能组成比例。是不是所有的比例两个外项的积=两个内项的积呢?怎么验证?)。
师:真的所有的比例都是这样吗?怎么验证?
生:可以多举几个例子看看。
师:这是个好建议,那快点行动吧。(学生独立验证)。
师:有没有同学举得例子不符合这个结论呢?那也就是说,所有的比例都是两个外项的积等于两个内项的积。其实这也正是比例的基本性质。同学们太厉害了。能通过举例来验证自己的发现。
师:我们以前学习的比,和今天学习的比例有什么不同呢?请六人小组说一说。(师巡视)。
师:哪一组的代表来说一说。
生:比和比例的意义不同?两个数相除又叫做两个数的比。表示两个比相等的式子叫做比例。
生:比和比例形式不同。比是一个比,比例是两个比。
生:性质不同。比的前项和后项同时乘以或除以同一个数(0除外)比值不变。在比例里,两外项的积等于两内项的积。
5、总结:今天学习了什么?学生看着板书说,请同学们默记两遍。
1、下面每组比能组成比例吗?
(1)6:3和8:5(2)20:5和1:4。
(3)3/4:1/8和18:3(4)18:12和30:20。
生1:第(1)个不能组成比例,因为6×5=30,3×8=24,不相等。
生2:第(2)个不能组成比例,因为20×4=100,5×1=5,不相等。
师:怎样改一下使它们能组成比例?
生3:把20:5改成5:20,这样5×4=20,20×1=20,能组成比例。
生4:还可以把1:4改成4:1,也能组成比例。
生5:第(3)个可以组成比例,因为3/4×3=1/8×18。
生6:第(4)个可以组成比例,因为18×20=360,12×30=360。
师:看来要判断两个比能否组成比例,除了可以根据两个比的比值是否相等外,还可以根据比例的基本性质来进行判断。
2、填一填。
2:1=4:()1、4:2=():3。
3/5:1/2=6:()5:()=():6。
师:最后一题还有没有别的填法?
生1:5:(1)=(30):6。
生2:5:(30)=(1):6。
生3:5:(2)=(15):6。
生4:5:(15)=(2):6。
师:怎么会有这么多种不同的填法?
生:两个外项的积是30,根据比例的基本性质,只要两个内项的积也是30就可以了。
3、用2、8、5、20四个数组成比例。
师:你能用这四个数组成比例吗?
师:最多可以写出几种?怎样写能够做到既不重复也不遗漏?
生:2和20做外项,8和5做内项时有4种:
2:8=5:202:5=8:20。
20:8=5:220:5=8:2。
8和5做外项,2和20做内项时也有4种:
8:2=20:58:20=2:5。
5:2=20:85:20=2:8。
师:说一说,这节课你有哪些收获?
生3:我知道了要判断两个比能否组成比例可以根据意义判断,也可以根据比例的基本性质判断。
师:这节课哪个地方给你留下的印象最深刻?
2023年比例的意义和性质含义附教学设计(汇总17篇)篇七
2、了解比和比例的区别与联系。
2、在已有知识的基础上,结合实例引出新的知识。
情景图、多媒体课件、习题卡。
出示课题:比例。
看到课题你想到了以前学过的什么知识?(生1,生2等回答)。
我们已经了解了比的这些知识,请做下面练习。
求下面各比的比值。
18:453:52.7:4.5。
求完比值你觉得哪些比有联系?
师:相机板书:3:5=2.7=4.5?
今天我们将深入学习比例的意义,看到课题你想了解什么知识呢?
板书完整课题:比例的意义。
(师趁机板书在黑板右上角)。
本节课我们就来完成这两个目标:
【设计意图:对学生同时进行思想品德教育和爱国教育】。
生各抒己见。
你知道下面这些国旗的长和宽是多少吗?它们有大有小,都符合要求吗?今天我们一起来探讨。
自学指导:
1、请每位同学任选两面国旗,分别计算出它们长与宽的比值和宽与长的比值。
2、发现了什么有趣的现象?
3、把你的发现尝试用算式写下来。
(5分钟后,期待你精彩的分享)。
(二)自学。
学生认真看书自学,教师巡视,督促人人都在认真地思考。
(三)汇报分享。
谁愿意把你的结果和大家分享?师相机板书。
(1)15:2.4=10:1.6(2)60:15=40:10(3)…(4)…。
原来在国旗中有这么多的相等关系。国旗的缩放是按比例进行的。
我们把比值相等的两个比用等号连起来。这样的式子就是比例。请同学读数学课本,40页,用笔勾画出重点词句,并读一读。
师:你还能写出两个比组成的比例吗?先自己选,再在小组里说一说。
生:…。
师:你能根据自己的理解说说什么叫做比例吗?先同桌互说,再小组内互相说一说,再指名汇报。
擦去开始板书中的“?”并把比例可用分数形式表示板书出来。
师:你能说一说组成比例要具备哪些条件吗?
生:…。
生:…。
下面各比能组成比例吗?你是怎样判断的?请写出计算过程。
(1)3:7和9:21。
(2)15∶3和60∶12。
1、把下面的式子进行归类:
(5)72:8=3x3(6)3.6:6=0.6。
比:
比例:()。
思考:你快速做出判断的原因是什么?明白了比和比例有什么区别?
2、判断:
(1)、有两个比组成的式子叫做比例。()。
(2)、如果两个比可以组成比例,那么这两个比。
的比值一定相等。()。
(3)、比值相等的两个比可以组成比例。()。
(4)、0.1∶0.3与2∶6能组成比例。()。
(5)、组成比例的两个比一定是最简的整数比.()。
1、写出比值是7的两个比,并组成比例。
2、12的因数有(),从12的因数中挑选4个数组成比例是()。
今天这节课你有什么收获?
第43页第2、3题。
判断下面每组中的两个比能不能组成比例。
30:5和48:812:0.4和3:5。
表示两个比相等的式子叫做比例。
比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
本节课属于概念教学,分五个环节设计教学,利用十五个问题贯穿整节课,以问导学,以问导疑,以问导思,以问导获,注重培养了学生的各种能力,全课体现了以下几个特点:。
1.关注了学生已有的知识与经验。课的开始从引导学生复习比的知识入手,通过求比值相等的两个比,可以用“=”连起来,自然而然的`引出比例,这样的设计符合学生的认知规律。
2.注重数学知识与生活的联系。数学来源于生活,更应用与生活,本节课从从学生熟悉的国旗引入比例,在求大小不同的国旗的长与宽的比值中学习比例的意义,通过观察、探讨大大小小的国旗的长与宽、宽与长、长与长、宽与宽的比值关系中,加深学生对比和比例的关系,比例意义的理解和掌握。最后通过照片,让学生感受到数学知识离不开生活,生活中处处有数学知识。
3.课堂采用以问导学的策略,用十五个问题贯穿了整节课,以问题引导学生思考,促进学生思考,用问题激发学生的兴趣,用问题控制学生的注意力,用问题拓展学生的思路,用提问强化学生的认知,用问题促进师生之间的交往互动。培养了学生的问题意识,培养学生的自学能力、思维能力、观察能力、表达能力等,从而提高学生解决问题的能力。
4.采用探究式的学习方式。对新课的教学,教师不是把现成的答案强加于学生,而是让学生通过观察、计算、思考、阅读等方式初步感知新知,再进一步提问“你能根据自己的理解说说什么叫做比例吗,”、“你能说一说组成比例要具备哪些条件吗,”、“你还能找出那些比组成比例,”等引导学生思考、探究,学生在合作交流中产生思维碰撞,这样,学生的体验和感受都很深刻。
5.设计了多种形式的练习,升华了学生的思维。练习是巩固新知、发展思维的有效手段。思维目标的实现需要通过一定的练习来完成,本节课设计了六种不同层次、不同功能的练习,有利于学生对比例意义的巩固,有利于提高学生思维的敏捷性,有利于培养学生解决生活中实际问题的能力和习惯。
2023年比例的意义和性质含义附教学设计(汇总17篇)篇八
【教学内容】课程标准苏教版小学数学六年级(下)第40页“比例的意义”、练一练及练习九的3----7题。
【教材分析】:
它是在学生认识了比的意义和初步理解了图形的放大和缩小的基础上进行教学的。通过第一课时的教学,学生理解了“图形的放大和缩小”的意思,形象地感受“图形的放大和缩小”这种变化能直观形象地显示比例的本质内涵。教材是继续联系图形的放大和缩小理解比例的意义,让学生在认识比例、判断比例、应用比例的过程中进一步体会数学领域不同内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。为学习比例的基本性质奠定基础。
例3呈现了放大前后两张照片,让学生分别写出放大前后每张照片长与宽的比,比较两个比之间的关系,借此说明比例的意义;“练一练”让学生运用比例的意义,判断给出的四组比中哪几组比可以组成比例,帮助学生巩固对比例意义的认识。
练习九的第3题要求学生先写出比,再判断能否组成比例,巩固对比例意义的理解;第4-6题由写出比,计算比值,再选择比组成比例;第5题要求学生先画图,再写出不同的比,各自组成比例;继续要求学生根据比例的意义判断相应的两个比能否组成比例;第7题与第3题有联系,可以看做一个板块,也是判断相相关联的两个量中对应数的比能否组成比例,既利于加深对比例意义的理解,又能为以后学习成正比例的量作一些准备。
【教学目标】:
1.联系图形的放大和缩小理解比例的意义,通过练习使学生进一步理解、掌握比例的意义。
2.理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
3.通过多样化教学,使学生自主获取知识,全面参与教学活动,培养学生分析、概括能力、和数学的思维能力。
4.学生在认识比例的过程中,联系列表策略,初步体会数学领域不同内容的内在联系,建构知识网络,促进有效学习,培养学生对数学的积极情感。
【教学难点】:应用比例的意义判断两个比能否组成比例,并能正确地组成比例。
【教学过程】。
一.谈话导入,提供先行组织者。
启发:那我们就回顾一下比的知识,看看我们已经掌握的知识有哪些?
(出示:1.化简下面的比。36:83.2:21/4:1/12。
2.求下面比的比值。9:328.26:91/5:2/5。
【设计说明:1.上学期,学生已经理解了比的意义,会化简比和求比值,但比的后续知识是什么,他不知道。教师为学生提供先行组织者(把将要学习的知识放在过去课时背景下),告诉他们将要学习的知识是较大的知识单元的一部分,构建学习数学的知识网络,课开始,谈话导入引起学生的注意,激起学生学习新知识的欲望,自然的引出比并且复习有关知识,为新授铺垫。
2.设计中有意渗透一些特殊的比,如圆的周长、直径之比,构建知识的网络。】。
二.呈现新知,赋以结构。
(一)教学例3。
(1).谈话:(课件出示例题中的两幅图)同学们,老师拍了了一张风景照,现在我把这张照片放大,这是放大前后的两张照片。你能用比的有关知识处理以上信息吗?试试看!
(2).引导、交流。照片放大前后长的比是9.6:6.4,宽的比是6:4,两个比化简后都是3:2,它们的比值都是二分之三。这两个比相等,因此可以写成下面的等式:板书:9.6:6.4=6:4(在9.6:6.4,6:4之间用红笔写上“=”)。
比还可以写成什么形式?(比还能写成分数的形式,谁能把这个比例换一种形式写出来吗?)。
=(板书)。
(3).揭示定义:(板书)像这样表示两个比相等的式子叫做比例。
讨论:(出示问题)“分别写出每张照片长和宽的比。这两个比也能组成比例吗?”
6.4:4=9.6:6或=。
3.判断两个比是否能组成比例。
谈话:请同学们想一想,刚才我们是怎样判断两个比是否能组成比例的?
小结:如果两个比化简后的比相同或它们的比值相等,那么这两个比就能组成比例。
4.学生自主写比例。
引导:既然知道了比例的意义,那你能很快写出一个比例吗?
生尝试。
交流:你怎么能写这么快,请你介绍一下方法。
(二).教学比与比例的联系。
激趣:比表示两个数相除,有两项(前项和后项),比例表示两个比相等的式子,有四项,这四项也有名字,它们分别叫什么呢?有兴趣的同学可以在课后先自学。
三.巩固练习,促成有效教学。
谈话:你会判断两个比能否组成比例了吗?下面我们来检验一下。
1.完成“练一练”
出示题目,学生板演,
交流叙述:为什么第1组和第4组中的两个比能组成比例?
注意提醒叙述的条理“因为…所以…能(不能)...”
2、完成练习九第4题。
学生独立在练习本上完成,教师个别指导(注意长方形有横放与竖放)。选择其中的两个比组成一个比例。
3、完成练习九第5题。
先完成上半题。学生在课本42页的方格纸上画出缩小后的长方形。
然后出示缩小后的长方形和下半部分的两个问题,学生在练习本上完成这两个问题。
4、完成练习九第6题。
先读题,然后自己判断,小组交流。
重点说说是怎么判断的?注意叙述的条理。
5、完成练习九第3题(1、2)。
6、完成练习九第3题(3)。
思考:这两个比能组成比例吗?为什么?把你的想法和你的同桌交流一下。
7、联系列表解决问题感受比例应用。
谈话:同学们在读这题的时候是否感到似曾相识?你能说说在哪见过?
出示:解决问题的策略——列表。
320千米。
240千米(?千米)。
4小时。
3小时。
320千米。
240千米。
4小时。
小时。
四、布置作业。
完成课本p42第7题。
要求:读一读题目要求。想一想,这题中什么是“相对应的两个量”?你能举例说一说吗?
五、全课总结,体验收获。
【设计说明:1、在总结得出概念之后,学生都能说出根据两个比且比值或化简比来判断能否组成比例,但一般只会简单叙述,完成“练一练”时让学生板演,然后对照板演加上“因为…所以…能(不能)...”指导学生叙述。注重了对学生思维条理化和语言概括能力的培养。从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。
附:板书。
长的比9.6:6.49.6:6.4=6:4或=。
宽的比6.4:46.4:4=9.6:6或=。
表示两个比相等的式子叫做比例。
2023年比例的意义和性质含义附教学设计(汇总17篇)篇九
教学目标:
1.使学生进一步理解比例的意义,懂得比例各部分名称。
2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。
3.能运用比例的基本性质判断两个比能否组成比例。
教学重点:比例的基本质性。
教学难点:发现并概括出比例的基本质性。
教学过程:
一、旧知铺垫。
1.什么叫做比例?
2.应用比例的意义,判断下面的比能否组成比例。
2.4:1.6和60:40。
二、探索新知。
1.比例各部分名称。
(1)教师说明组成比例的四个数的名称。
板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2.4:1.6=60:40。
内项。
外项。
(2)学生认一认,说一说比例中的外项和内项。
如::=:
外内内外。
项项项项。
2.比例的基本性质。
你能发现比例的外项和内项有什么关系吗?
(1)学生独立探索其中的规律。
(2)与同学交流你的发现。
(3)汇报你的发现,全班交流。
板书:两个外项的积是2.4×40=96。
两个内项的积是1.6×60=96。
外项的积等于内项的积。
(4)举例说明,检验发现。
如::0.5=1.2:。
两个外项的积是×=0.6。
两个内项的积是0.5×1.2=0.6。
外项的积等于内项的积。
如果把比例改成分数形式呢?
如:=。
2.4×40=1.6×60。
等号两边的分子和分母分别交叉相乘,所得的积相等。
(5)归纳。
在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。
3.填一填。
(1)=。
()×()=()×()。
(2)0.8:1.2=4:6。
()×()=()×()。
(3)4×5=2×10。
4:()=():()。
=
4.做一做。
完成课文中的“做一做”。
5.课堂小结。
(1)说一说比例的基本性质。
(2)你可以用什么方法来判断两个比能否组成比例?
三、作业。
完成课文练习六第4~6题。
课后记:
2023年比例的意义和性质含义附教学设计(汇总17篇)篇十
1.使学生初步理解单位“1”和分数单位的含义,进一步理解分数的意义;探索并理解分数与除法的关系,会用分数表示计量单位换算的结果,会求一个数是另一个数的几分之几的实际问题‘认识真分数和假分数,知道带分数是整数和真分数合成的数,会把假分数化成整数或带分数,会进行分数与小数的互化。
2.使学生探索并理解分数的基本性质,知道最简分数的含义,掌握约分和通分的方法,能正确进行约分和通分,会进行分数的大小比较。
3.使学生经历分数意义的抽象、概括过程以及分数与除法的关系、假分数化成整数或带分数、分数与小数互化的探索过程,进一步发展数感,培养观察、比较、抽象、概括等能力。
4.使学生初步了解分数在日常生活中的应用,增强自主探索与合作交流的意识,树立学好数学的信心。
1.教学分数的含义,重点是建立单位“1”的概念。
2.以分数单位为新知识的生长点,教学真分数和假分数。
3.用分数表示同类两个数量的关系,扩展对分数意义的理解。
4.通过操作活动感受分数与除法的关系。
5.先特殊后一般,通过改写假分数,教学带分数。
6.优化小数与分数相互改写的教学。
教材第52页例1和“练一练”,第58页练习八的第1~4题。
1.使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义,能根据具体情境表示出相应的分数,联系实际情境解释或说明分数的具体意义;认识分数单位,能说明分数的组成。
2.使学生经历有具体到抽象的认识、理解分数意义的过程,感受分数的来源与形成,体会数的发展,培养观察、比较、分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。
认识和理解单位“1”。
探究合作法、讲解分析法、练习法等。
ppt。
一、谈话导入,唤醒已知。
在三年级,我们曾经分两次认识分数,今天这节课,我们要在以前学习的基础上,进一步认识分数。
二、合作探索,理解意义。
1.教学例1。
出示例1中的一组图。
请大家根据每幅图的意思,用分数表示每个图中的涂色部分。写出分数后,再想一想:每个分数各表示什么?在小组内交流。
学生汇报所填写的分数,你认为这些图中分别是把什么平均分的?
一个饼可以称为一个物体,一个长方形是一个图形,“1米”是一个计量单位,而左起第四个图形是把6个圆看成一个整体。
左起第四个图形与前三个图形有什么不同?
一个物体,一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。
(1)在这几个图形中,分别把什么看成单位“1”的?
(2)分别把单位“1”平均分成了几份?用分数表示这样的几份?
(3)从这些例子看,怎样的数叫作分数?
拿12根小棒自已创造一个分数。
说说你是怎么做的?
如果老师要表示6根小棒可以用什么分数表示?
2.完成“练一练”
第1题各图中的涂色部分怎样用分数表示?请大家在书上填空。说说是怎样想的。
每个分数的分数单位是多少?各有几个这样的分数单位?
第2题,观察直线上是把哪个部分看作“1”的?直线上表示是怎样想的?
引导:分数也可以在直线上表示。这里从0起到1是1个单位,同样地从1到2也是1个单位,这1个单位就是把单位1平均分成若干份,就可以用直线上的点表示分数。
让学生在()里填上合适的分数。
交流:你是怎样填的?为什么这样填?
三、巧妙联系,深化理解。
1.做练习八的第1题。
先让学生在每个图里涂色表示三分之二,再说说是怎样涂的、怎样想的。
同样是三分之二,为什么涂色桃子的个数不同?
2.做练习第2、3、4题。
第2题先读出每个分数,再说说每个分数的分数单位。
第3题让学生填,交流时说说是怎样填的。
第4题在研究分数时,把哪个数量平均分成若干份,这样的数量就是单位“1”
四、全可。
总结。
延伸拓展。
这节课学习了哪些内容?
2023年比例的意义和性质含义附教学设计(汇总17篇)篇十一
一、引入新课干净利落。
上课伊始,教师提问什么叫“比”,并举例,然后出示几组比,提生算出比值,观察这两个比,你有什么发现?生:比值一样,可以用等号连接。在数学。
教学。
中,知识的引入时机不同,得到的教学效果也不同。引入得过早可能使教学显得过于急促、突兀,过晚又可能使教学显得过于拖拉、罗嗦。这节课教师通过几个简短地师生对话,应用新旧知识间的迁移引入新知,干脆利落。
二、教学设计层次分明。
从比例的意义,探究比例的基本性质,再到比例的各部分名称,各环节的连接都是在师生默契的对话中顺利进行。我们知道,在数学教学中,每个教学内容一般都以活动的形式表现出来。由于每次活动的目的与要求、内容与形式不尽相同,就可能造成活动板块之间的割裂。教师一般通过设计过度语言或采用前呼后应等手法来弥补这种“裂痕”,使各个环节融会贯通、浑然一体。但在具体操作上难免有生硬预设嫌疑,汪老师注重联系点的有效生成,所以自然、流利。
三、
指导练习的方法有趣易记。
这节课的巩固练习有这样的一道题,根据一个乘法算式写出比例式,怎样写不重复不遗漏,每位老师都会和学生探讨一定的方法,老师在这节课上揭示的方法比较实用。
1、两节课思路清晰,环环相扣,师生互动性良好。
2、在数学教学中,知识的引入时机不同,得到的教学效果也不同。这节课李波通过主题图的发散认识,简单明了的开始探究活动,王英芳则是在教室的引导中让学生发现每组的特点,条理清晰。
3、在数学教学中,教师都会特别强调一些关键性知识、易混淆知识和易疏忽知识时,常会采用加重语气、改变字样、运用比较或反复训练等方法,让学生特别重视这些注意点,防患于未然。而这节课两位老师采取放手让学生去判断,形成认知冲突。通过这节课我体会到:其实强调一些关键性知识、易混淆知识和易疏忽知识,也可以采用先让学生“吃一垫”来加深体验,然后“长一智”而自觉引起注意,成熟于已然。
4、从探究比例的意义到比例的各部分名称,再到探究比例的基本性质。各环节的连接都是在师生默契的对话中顺利进行。
5、我们知道,在数学教学中,每个教学内容一般都以活动的形式表现出来。由于每次活动的目的与要求、内容与形式不尽相同,就可能造成活动板块之间的割裂。教师一般通过设计过度语言或采用前呼后应等手法来弥补这种“裂痕”,使各个环节融会贯通、浑然一体。但在具体操作上难免有生硬预设嫌疑,两位老师都能注重联系点的有效生成,所以自然、流利。
这节课美中不足的是:学生的合作能力没有得到培养,学生的互动只停留在一般问题的反馈与补充的层面,数学味的问题答辩的浓度不大,可见学生真正数学探究的素养还没有得到深层次的挖掘与开发。
比例的意义是在前面学习比的意义和比的基本性质的基础上进行教学的。在这节课上孔石磊老师通过播放歌曲《五星红旗》,潜移默化地对学生进行了爱国旗、爱祖国的思想品德教育,学生沉浸在美妙的歌声中,不知不觉地走进新知的学习中。
亮点:
1、利用不同场景中的`国旗引入,让学生体会国旗中隐含的数学知识。教学中教师首先通过化简比和求比值,让学生发现其中的规律,即这三面国旗长与宽的比值相等,化简比相同,也就是长与宽的比都相等;然后介绍国旗法,让学生知晓国旗的长与宽的比就是3:2,从而发现隐藏在国旗中的秘密。
2、整体教学设计紧凑,教学内容丰富。在整节课中教师不仅教学了比例的意义、比例的各部分名称,还教学了比例的基本性质、比和比例的区别,在知识的拓展中,还进行了知识链接,渗透数学文化和数学思想。教学知识点比较多,利于学生整体建构知识之间的联系,学生既可以利用比例的意义判断两个比是否能组成比例,还可以利用比例的基本性质来判断,学生可以有不同的选择。另外,教师在教学比例和比的区别中,可以从意义、组成和性质三方面完整地辨析比和比例。
建议:
1、在国旗的教育方面,通过国旗法,教师还可以有一个点睛之笔,就是正因为不同大小的国旗,它们长与宽的比都是3:2,这也正是国旗的魅力所在。
2、教学知识点多,容易导致学生疲于走马观花式的听讲,学生静心思考、反思消化明显存在不足。对于比例意义和比例的基本性质的理解处于浅层知识状态。
3、用字母表示分数形式的比例,还应让学生加强练习,巩固分数形式的比例的书写格式。
4、对于概念教学中比例的意义和比例的基本性质,应注重从多个具体事例抽象出概念的核心,进而。
总结。
2023年比例的意义和性质含义附教学设计(汇总17篇)篇十二
第3课时(总第22课时)。
一、教材内容。
【复习内容】。
教科书第12册第112页“整理与反思”和第115页“练习与实践”第5、6题。
【知识要点】。
1.中位数、众数、平均数有什么不同。
2.怎样求一组数据的平均数。
3.体会有关统计量在表示数据特征方面的特点和作用。
4.掌握简单统计量的计算方法。
【教学目标】。
1.让这生进一步体会数据与现实生活的的密切关系。
2.进一步明确各种统计图在描述数据方面的特点及作用,
3.进一步体会有关“平均数、众数、中位数”在表示数据特征方面的特点和作用。
4.进一步掌握简单统计量的基本计算方法。
二、教学建议。
众数和中位数是根据《标准》的要求新增加的教学内容,众数和中位数都是统计量,在平均数不能有效地反映出一组数据的基本特点时,往往选用众数或中位数来表达数据的特点,在复习时应通过对“整理与反思”中第三个问题的讨论,不仅要让学生进一步明确中位数、众数和平均数的求法,而且要让学生体会到:中位数、众数和平均数都是表示一组数据特征的统计量,但由于数据自身特点不同,这几种统计量在表示数据特征时所具有的代表性也就有所区别。
三、知识链接。
统计、众数、中位数(六上p79、80例2、例3)。
四、教学过程。
集体讨论复习:
1.什么是“中位数、众数与平均数”?并说说它们有什么不同?
2.举例说说怎样求平均数、众数和中位数?
(一)出示龙城超市上个星期售出的甲、乙两种品牌的饮料箱数如下图。
(1)在这个星期中,两种品牌饮料的销售量在哪一天相差最大?
(2)甲饮料周日的销售量比周一多百分之几?
(3)甲饮料这个星期平均每天销售多少箱?乙饮料呢?
(二)出示生物小组的同学每次用10粒绿豆做发芽试验,下面是他们经过整理的10次发芽情况。
发芽粒数0578910。
次数124111。
(1)这10次试验中,发芽的绿豆一共有多少粒?总的发芽率是多少?
(2)这10次试验中,发芽粒数的众数是多少粒?
(三)出示教材中115页第5题。
1、先让学生把图中每个直条所表示的人数标出来。
3、从整体上比较两个年级学生牙齿健康情况。
4、指导一年级学生龋齿颗数的众数。
一年级共有50个学生,那么就有50个反映每个人龋齿颗灵敏的数据,而这50个数据中,龋齿是1颗的共有19个,所以一年级龋齿颗数的众数是“1颗”
5、引导回答,六年级龋齿颗数的众数。
6、学生独立计算第(3)个问题。
(四)出示第6题,引导观察表格。
1、指导学生用计算器计算平均数。
2、指导学生计算每组数据的中位数,组织学生讨论计算中位数要注意什么?
(先把数据按从大到小或从小到大的顺序进行排列)。
3、表示这组男生体重的一般情况,平均数和众数哪个更合适?
(用中位数代表男生体重的一般情况比较合适,因为男生体重的数据中,有8个低于平均数,只有两个高于平均数,平均数的位置明显偏离这组数据的中心。)。
习题精编。
一、基础训练。
1.在47、25、36、18、47、58、25、47中,众数是(),中位数是(),平均数是()。
每人销售件数1800540250210150120。
人数113532。
2.某公司销售部人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量,如下表:
这15人销售件数的众数是()。
二、综合应用。
1.某超市工作人员月工资如下表:
经理副经理员工a员工b员工c员工d员工e员工。
f员工g员工h员工。
i
(1)这个超市人员工资的平均数是(),众数是(),中位数是()。
(2)哪个数据表示这个超市人员的月工资水平比较合适?为什么?
2.在海陵2007年青年歌手大奖赛中,11位评委给一位歌手的打分如下。
9.79.79.89.69.59.69.49.19.49.69.6。
(1)这组数据的平均数、中位数、众数各是多少?
3.某鞋店上个月女鞋进货和销售的情况如下表:
尺码353637383940。
进货数量/双30100150905020。
销售数量/双1794120833715。
(1)你认为这样进货合理吗?为什么?
(2)鞋店在确定进货量时利用了哪些统计知识?
第4课时(总第23课时)。
一、教材分析。
【复习内容】。
【教学目标】。
1、使学生通过复习,进一步体会事件发生的可能性的含义,知道可能性是有大小的,会用分数表示一些简单事件发生的可能性大小。
2、进一步体会游戏规则的公平性,能判断简单游戏规则是否公平,能设计简单的公平游戏规则。
3、使学生通过复习,进一步体会可能性与现实生活的密切联系,感受到生活中很多现象都具有随机性,培养简单的推理能力,增强学习数学的兴趣。
【内容分析】。
原来我国小学数学教材中只有统计而没有概率,并且只占很小篇幅。这可能与我国传统文化重整合轻分析,重人伦轻自然,重义轻利,重道轻器有关;另一方面,在计划经济时期人们遇到更多的是确定的现象,没有感受到统计与概率的必需。而在《标准》中“统计与概率”却受到了前所未有的重视。
苏教版的这一套新教材共安排了四次概率知识的教学。一次安排在二年级上册,主要让学生感受确定现象与不确定现象,初步体会可能性的含义。第二次安排在三年级上册,主要是让学生能用“可能”、“不可能”、“一定”等词语描述生活中一些事件发生的可能性,让学生体会事件中的各种情况发生的可能性有时相等,有时不相等,学会用经常、偶尔等词语来描述生活中一些事情发生的可能性。第三次安排在四年级上册,进一步体会事件发生的可能性有大有小,可能性不相等会影响游戏规则的公平性,从而修改或设计简单的公平游戏规则。最后一次安排在六年级上册,主要是让学生学会用分数来表示事件发生的可能性,能设计一个方案,符合指定的要求,并能对简单事件发生的可能性作出预测,阐述自己的理由。
概率是一个既难教又难学的内容,因为概率有其固有的思想方法,有别于讲究因果关系的逻辑思维和确定性思维。特别是学生在正式开始学概率之前就已经形成了一些错误概念,我们的教学即便是基于对错误概念了解之上,某些错误还是顽固得难以消除。因此,教师在复习中一方面要特别注意创设情境,鼓励学生用真实的数据、活动以及直观的模拟实验去检查、修正或改正自己对概率的认识。另一方面,教师也要注意将统计与概率、分数与百分数等知识相结合,进一步沟通知识间的内存联系,体会数学学习的价值。
二、教学建议。
【容易出错之处】。
1、对于随机事件发生的可能性,由于学生头脑中固有的错误认识的影响,学生对于“不可能、一定、可能”等可能性含义仍会发生混淆,教师在复习中要注意引导学生通过具体、现实性的例子来说明事件发生的可能性。
2、让学生独立设计一些游戏规则,这一方面有利于学生加深对游戏规则公平性的认识,另一方面也要让学生在交流设计方案的过程中,逐步形成一定的思路,教师要引导学生根据自己的规则进行适当的检验,以确认选择的方法是否符合指定的要求。
【策略提示】。
1、练习与实践的第1题要让学生说说连线的思考过程,突出有些事件的发生是确定的,有些事件的发生是不确定的,而不确定中,有些结果出现的可能性会大一些,而有些结果出现的可能性会小一些。
2、第2题(2)要突出判断的理由。交流后教师可再引导学生思考,任意摸1个球,球上的数是素数的可能性大,还是合数的可能性大?还可以让学生说说球上的数是大于3的可能性大,还是小于3的可能性大?充分利用教材中的素材,加深对可能性含义的认识。
3、第3题要先让学生说说对“明天的降水概率是80%”的理解,然后再进行判断。
4、第4题学生对做“石头、剪刀、布”游戏,来判断谁先套圈的方法,理解上会有一定的困难,六年级上册教材关于这个问题,书上出示了游戏产生的所有结果,再让学生进行判断。教学中如果学生理解有困难,也可以让学生统计出游戏的所有结果,再作出判断。关于第(3)题设计游戏规则,教师要提醒学生,设计的方法应该有可能出现三种结果,而且每种结果出现的可能性要相等。
5、第5题(2)可以鼓励学生根据指定的可能性设计不同的选法,以培养学生思维的灵活性和开放性,也要提醒学生在每次选择后及时进行验算,以确认选择的方法是否符合指定的要求。教师也可以同桌互相出题,设计选法,让学生积极主动地参与学习的过程。
三、知识链接。
1、三年级上册p95.
2、四年级上册p81。
四、教学过程。
一、复习可能性的含义以及可能性的大小。
1.出示下列四个图形。
3.师小结:有些事情的发生是确定的,有些事情的发生是不确定的,这些都是事件发生的可能性。
4.用分数来表示图3、4的口袋中摸到黑球和白球的可能性大小.
二、完成后进行交流。
三、完成练习与实践的1-3题。
1、完成第1题,要让学生连线后,说说连线时的思考过程。
2、第2题在学生独立判断的基础上,再说说思考的方法。
3、第3题,要抓住怎样理解“明天的降水概率是80%”这句话的?再让学生按要求进行判断。
四、复习游戏规则的公平性。
1、创设游戏情境,让学生判断游戏是否公平,为什么?
2、启发学生思考,要使游戏规则公平,你认为口袋里可以怎样放球,为什么?
3、小结:不管怎样放球,只要使参加游戏的小朋友摸到指定的球的可能性大小相等,这样的游戏规则就是公平的。
五、指导完成练习与实践的4-5题。
1、让学生交流对题目的理解。
2、让学生各自判断第(1)题中的三种方法是否公平,再交流思考的过程。
3、交流时可让学生排一排“石头、剪刀、布”的游戏,可能有几种不同的结果。
4、完成第5题。着重要让学生说说每个分数的思考过程,注意让学生从不同的角度进行思考。
六、全课小结。
通过这节课的复习,你对可能性又有了哪些新的认识?课后再收集一些有关可能性的例子,从中提出一些问题进行解答。
习题精编。
1、判断。
(1)我扔硬币4次,正面朝上的一定有2次。()。
(2)浙江的夏天温度可能超过30℃。()。
(3)明天我遇到的第一个人一定是我班的同学。()。
(4)不遵守交通规则,发生事故的可能性很大。()。
2、连线。
4、利用下边的空白转盘设计一个实验,转盘上设计红色、黄色和绿色三块区域,使指针停在红色区域的可能性分别是停在绿色区域和黄色区域的2倍。
5、在一个书包里放3只黄乒乓球和5只白乒乓球,让你每次任意摸出1只球,这样摸100次。
(1)摸出黄乒乓球的次数大约占总次数的几分之几?
(2)摸出的黄球大约会有多少次?
球队。
比分。
场次甲队乙队。
第一场20。
第二场21。
第三场11。
第四场12。
第五场23。
过关测试。
1、某班40名同学在一次体育课上跳高的成绩如下:(单位:厘米)。
9499911149210910710592103。
9592100951061001081099795。
106105104107102114100949799。
99103104959810410810296102。
根据上面的成绩填写下表,并回答下面的问题。
某班同学跳高成绩统计表4月3日。
人数。
占总人数的百分数。
(1)跳高100厘米及以上的同学有()人,占全班同学的()%。
(2)这组数据的平均数、中位数、众数各是多少?哪一个统计量最能反映这个班跳高成绩。
(3)制成条线统计图。
2、画一画。
(1)摸出的一定是(2)摸出的不可能是。
3、看图回答问题。
2006年成才出版社两套六年级辅导用书销售情况统计图。
2007年1月。
(1)《数学二级跳》第二季度销量比《数学一点通》多()%。
(2)《数学一点通》2006年全年销售()万册。
(3)()2006年开始销量大一些,()的销量全年一直呈上升趋势。
(4)该出版社准备2007年保留其中一套,应该保留哪一套?为什么?
4、7月份,小华家缴当月水费40元,当月电费90元,当月煤气费70元。三种费用各占水、电、气总支出的百分之几?利用下面的图形制成扇形统计图。
6、有两个圆形转盘,任意转动指针,要使a盘指针停在红色区域的可能性为,使b盘指针停在红色区域的可能性为,请你设计各转盘颜色区域。把你的设计画出来,并涂上颜色。
ab。
编写单位:泰州师专泰兴附属实验小学。
责任编辑:严红梅。
编写人员:朱国华翁桃严红梅。
文档为doc格式。
2023年比例的意义和性质含义附教学设计(汇总17篇)篇十三
教学目标:
1、使学生理解并掌握比例的意义和基本性质,学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。
2、认识比例的各部分的名称。
3、培养学生的观察能力、判断能力。
学法引导:
引导学生观察、讨论、试算,探究比例的意义和比例的性质。
教学重点:
教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。
教学步骤:
一、铺垫孕伏。
师:同学们,今天我们数学课上有很多有趣的问题等你来解决,希望大家努力。我们首先来解决两个问题。
(二)反馈:(1)谁买的本子便宜些?能简单地说说你的理由。
(2)还有别的方法吗?
(3)这两个比可以用一个什么符号将它们连起来?为什么?
(三)(出示):2、3月10日下午2点,学校8米高的旗杆影子长5米,旁边一棵高120厘米的香樟树影子长75厘米,说出旗杆和香樟树与各自影长的比。(8:5120:75)。
这两个比能用一个等号连接起来吗?为什么?
二、探究新知。
(一)比例的意义。
2、得出结论:表示两个比相等的式子,叫做比例。(板书课题:比例的意义)。
3、完成“做一做”。
下面哪组中的两个比可以组成比例?把组成的比例写出来。(见书上“做一做)。
5、反馈:(1)你给5:8找的朋友是(),组成的比例是(),向大家介绍你用了什么方法找到的。
6、师生小结:如果判断两个比能否组成比例,最关键是看什么?
1、认识比例各部分的名称。
(1)自学课本。
前几节课上,我们已经知道,比中两个数分别叫做比的前项和后项。今天学习的比例中的四个数也有新名字,想知道吗?请看课本第二页是怎样给它们取名的。
(2)反馈:让学生看下面这些比例,说出它的外项和内项各是多少。
45:27=10:66:10=9:15。
:=6:406:02=:
2、探究比例的基本性质。
(2)学生汇报:
我发现在这两个比例里,两个外项的积都等于两个内项的积。
(3)查一查:你随便找几个比例,看一看这些比例中有没有这个有趣的现象?
(学生合作学习,汇报交流,得出结论)。
在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
(板书课题:加上“和基本性质”,使课题完整。)。
3、练一练。
(1)小游戏:下面我们轻松一下,由你出题考老师,规则是:请你说出10以内4个不同的自然数,看老师能为能马上告诉你,它们是否能组成比例?(学生报数,老师回答)。
谁能说出老师的秘诀?
(2)现在轮到我考你:4、3、6、86、9、4、7。
(学生回答后让他说出判断理由)。
(3)请你独立用4、3、6、8写比例,然后小组交流讨论,把最好的办法推荐给大家。
(4)阅读教科书第1——2页的内容并填空。
三、全课小结。
这节课我们学会了什么?
四、随堂练习。
1、说一说比和比例有什么区别。
2、练习一第2、3题。
2023年比例的意义和性质含义附教学设计(汇总17篇)篇十四
2、知道每个数位上的计数单位和相邻两个计数单位间的进率是十,初步认识一个小数的小数部分各数位上有几个这样的单位。
3、通过了解小数的产生和发展过程,提高数学学习的兴趣,增强热爱数学的情感。
会用小数表示计量单位换算的结果。
多媒体课件、米尺。
一、导入新授。
师:生活中你在哪些地方见到过小数?你能说说吗?(出示课件)学生回答。
师:生活中这么多的地方用到小数,说明小数的应用十分广泛,无处不在。请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按“整米数”和“非整米数”两类板书)。
师:这些不够整米数的部分,如果仍然要用“米”作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读教材第32页的内容。
师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。但是,小数的意义又是什么呢?这节课,我们继续深入学习小数的知识。
二、探索发现。
1、认识一位小数。
(1)课件出示教材第32页例1米尺图。
把1m平均分成10份,每份长多少分米?1分米是1米的几分之几?
教师介绍出示:“十分之一”米还可以写成0.1米。
那2分米、3分米呢?学生试着完成填空。
学生在小组内交流后再全班交流,交流时说说每个分数表示的意义。
教师根据学生的回答板书。
(2)观察上面的等式你能发现分数和小数之间的联系吗?
学生观察并在小组内讨论。
师生交流后小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。
2、认识两位、三位小数。
我们知道了一位小数表示的是十分之几的数,那么两位、三位小数应该表示什么呢?下面请同学们以这些两位小数为材料,继续研究。
(1)教师继续出示米尺的放大图。
学生思考、小组交流后进行反馈。
把1米平均分成100份,这样的一份或者是几份表示百分之几米,可以用像0.04、0.01这种两位小数来表示。
1米有1000毫米,就是把1米平均分成1000份,1毫米就是新人教版数学四年下第四单元小数的意义和性质教案(一)米,用小数表示就是0.001米。
(2)小结。
分母是100的分数,可以写成两位小数。两位小数表示百分之几。
分母是1000的分数,可以写成三位小数。三位小数表示千分之几。
学生交流说说对小数的理解。
师生共同归纳得出结论:一位小数表示十分之几,十分之几的计数单位是十分之一,那么一位小数的计数单位就是0.1。同理两位小数、三位小数的计数单位就是0.01、0.001。每相邻两个计数单位间的进率是10。
4、阅读“你知道吗?”。
师:同学们已经知道小数是怎么产生的及小数的意义,那你们知道小数的历史吗?
学生自学教材第33页“你知道吗?”。
师生交流时,让学生说说小数的发展史。
三、巩固发散。
1、指导学生完成教材第33页“做一做”。
让学生独立填写,集体订正时,让学生说说是如何用分数和小数来表示的。
2、在括号内填上合适的小数。
()元()千克()厘米。
四、评价反馈。
通过今天这节课的学习,你有哪些收获?
师生交流后总结:认识了小数,知道了小数就是用来表示十分之几、百分之几、千分之几……的数。还认识了小数的计数单位,知道了相邻的计数单位之间的进率是10。
板书设计:
分母是10、100、1000……的分数可以用小数表示。
每相邻两个计数单位间的进率是10。
2023年比例的意义和性质含义附教学设计(汇总17篇)篇十五
教学内容:课本第1~2页例1、例2,练习一第1、2、3题。
教学目的:
2.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。
3.使学生进一步受到“实践出真知”的辩证唯物主义观点的启蒙教育。
2023年比例的意义和性质含义附教学设计(汇总17篇)篇十六
2.真分数与假分数。
4.最大公因数与约分。
5.最小公倍数与通分。
6.分数与小数的互化。
1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。
2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。
3.理解和掌握分数的基本性质,会比较分数的大小。
4.理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数的最大公因数与最小公倍数,能比较熟练地进行约分和通分。
5.会进行分数与小数的互化。
1.多侧面地展现了分数的来源。
现实需要和数学需要。
2.把因数、倍数的`有关知识与分数的相关知识结合起来教学。
3.关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。
4.部分内容作了适当的精简处理或编排调整。
1.充分利用教材资源,用好直观手段。
2.及时抽象,在适当的抽象水平上,建构数学概念的意义。
3.揭示知识与方法的内在联系,在理解的基础上掌握方法。
2023年比例的意义和性质含义附教学设计(汇总17篇)篇十七
教材第66页的例3及做一做。
1、使学生掌握分数与除法的关系。
2,培养学生的应用意识。
1、理解、归纳分数与除法的关系。
2、用除法的意义理解分数的意义。
圆片。
(一)引入。
老师:5除以9,商是多少?(板书:5÷9=)如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。
板书课题:分数与除法的关系。
(二)教学实施。
1、学习例3。
(1)板书例题。
小新家养鹅7只,养鸭10只。养鹅的只数是鸭的几分之几?
(2)指名读题,理解题意并列出算式。板书:7÷10。
(3)利用除法和分数的关系得出结果。
7÷10=。
所以养鹅的只数是鸭的。
(三)思维训练。
1、把8米长的绳子平均分成13段,每段长多少米?
2、把一个5平方米的圆形花坛分成大小相同的6块,每一块是多少平方米?(用分数表示)。
(四)课堂小结。
通过今天这节课的观察、操作,同学们发现了分数与除法之间的关系。分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数的分数线。
2、真分数和假分数。
第一课时。
一教学内容。
真分数和假分数。
教材第69页的例1、例2及第70页的“做一做”。
二教学目标。
1、使学生理解真分数和假分数的意义及特征,并能辨别真分数和假分数。
2、培养学生观察、比较、概括的能力。
3、培养学生数形结合的数学思想。
三重点难点。
四教具准备。
例1及例2中图形的教具。
五教学过程。
(一)导入。
1、复习:什么叫分数?
2、用分数表示出下面各图的涂色部分。(出示教具)。
请学生分别说出每个分数的意义。
(二)教学实施。
1、提问:比较上面三个分数的分子与分母的大小?这些分数比1大还是比1小?并说明理由。
2、学生观察后,试着回答。
学生:(第一个圆)平均分成了3份,这样的3份也就是一个整圆,表示1,而阴影部分只有1份,所以比1小。
再请学生分别说出另外两个分数。
4、让学生独立思考后,与同桌交流一下,再指名回答。
5、小结:分子比分母小的分数叫做真分数。真分数小于1。
6、老师再出示例2中图形的教具。
7、请学生分别用分数表示每组图形中的阴影部分。
提问:第一幅图中,把一个圆平均分成几份?表示有这样的几份?怎样用分数表示?
老师强调:第二组图和第三组图中每个圆都表示“1”。
8、比较,,的分子和分母的大小,再与1比较。学生观察图,试着进行比较,与同桌交流。老师指名回答:所表示的阴影部分占据了整个圆,所以等于1;所表示的阴影部分占据了1个圆还多,所表示的阴影部分占据了2个圆还多,所以和都比1大。
9、老师指出:像,,这样的分数,叫做假分数。假分数大于1或等于1。
请学生举出一些假分数的例子,引导学生多举一些分子和分母相等的假分数。
10、引导学生完成教材第70页的“做一做”。
(1)学生先独立完成第1题,然后订正。
(四)思维训练。
1、在分数中,当a小于()时,它是真分数;当a大于或等于()时,它是假分数。
2、在分数(a0)中,当a小于或等于()时,它是假分数;当a大于()时,它是真分数。
3、分数单位是的最小真分数是(),最小假分数是()。
4、写出两个大于的真分数()和()。
(五)课堂小结。
通过本节课的学习,我们认识了真分数和假分数的特征,真分数的分子比分母小,真分数小于1;假分数的分子比分母大或分子和分数相等,假分数大于或等于1。通过学习,要会正确区分哪个分数是真分数,哪个分数是假分数,并会正确应用概念灵活解题。
第二课时。
一教学内容。
假分数。
教材第70页的例3。
二教学目标。
1、使学生认识带分数,学会把假分数化成整数或带分数的方法。
2、进一步培养学生的数感。
三重点难点。
掌握把假分数化成整数或带分数的方法。
四教具准备。