在五年级教案中,教师需要选择合适的教学资源,如教材、课件和多媒体资料,以便提高教学效果。以下是一些五年级教案的实例,供大家参考和借鉴,以提高教学质量。
体积单位间的进率五年级数学教案(实用15篇)篇一
这节课的内容包括有两个例题及其随后的试一试。例6通过三个层次的操作活动引导学生初步认识体积的意义。有了这三个层次的活动,学生不仅能体会到物体总是占有一定的空间,而且能够体会物体所占的空间是有大小的,物体所占的空间的大小是可以比较的,在此基础上,建立体积的概念。例7通过让学生比较两个大小不同书盒所装的书的体积,形象而直观地揭示了容积的概念。随后的“试一试”让学生想办法比较两个玻璃杯的容积,引导学生在实际操作中进一步体会玻璃杯所能容纳物体的体积,也就是玻璃杯的容积,同时使学生认识到容积的大小是可以比较的。体积与容积意义的学习是后面学习体积(容积)单位、体积计算方法等知识的基础,也是发展学生空间观念的重要载体。
学情分析。
学生在日常的生活中,不仅能接触到大小各异的物体,还感受到不同的杯子、不同的纸盒所能装的东西有多、有少,这些都是在生活中找到的体积与容积的'原型。现在要把这些生活原型概念化,对于学生来说是比较抽象的。小学生的思维以形象思维为主,可能会受到表面积的影响,认为物体形状发生了变化,体积也会发生变化,对于体积与容积的概念,也可能会易于混淆。因此,在教学中,要充分利用直观的教学方法,让学生在观察、比较等操作活动中,体会体积与容积概念的真正内涵。
教学目标。
1、使学生通过动手实验和对具体实例的观察,理解体积与容积的意义。
2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思维。
3、使学生进一步体会空间与图形学习和实际生活的联系,提高数学学习的兴趣和学好数学的自信心。
教学重点和难点。
体积单位间的进率五年级数学教案(实用15篇)篇二
教学内容:面积单位间的进率一节内容属于人教版三年级数学上册第五单元第三部分内容。课本第70、71页内容。
学情分析:三年级共41名学生,学生基础较弱,上课动手、动脑不太积极,家庭作业有部分同学不按时完成,课堂教学若不创新,会陷入困局。
设计的教学环节:
1、下面这个大正方形的面积是多少?
边长为1分米,即10厘米。
思路一:边长为1分米的正方形的面积就是1平方分米。
边长是10厘米的正方形面积就是10×10=100平方厘米。
因此1平方分米=100平方厘米。
思路二:边长1分米的正方形的面积就是1平方分米。
1平方分米=100平方厘米。
2、想一想,1平方米等于多少平方分米?
思路一:边长为1米的正方形的面积就是1平方米。
边长为10分米的正方形的面积就是10×10=100平方分米。
因而1平方米=100平方分米。
思路二:边长为1米的正方形的面积就是1平方米。
先让三名同学在教室画一个1平方米的正方形,在细分每一个边长为10份,将大正方形画成许多个1平方分米的小正方形,全班同学参与活动:将手中制成的1平方分米的正方形摆放在画好的大正方形中,发现摆放了100个1平方分米的正方形。
因而1平方米=100平方分米。
教学反思:
1米=10分米、1分米=10厘米、1米=10分米=100厘米。
2、从教学实施过程中看出,两个探究活动思路二学生容易理解和记忆,因为思路二学生真正参与活动之中,体现了主体地位,亲自体验有助于思维能力的提升。我在帮助学生梳理知识点的过程中,注重学生的活动过程,让学生理解1平方分米=100平方厘米时,回想制作的`1平方分米的卡片中含有100个1平方厘米的小方格。理解1平方米=100平方分米时,想一想全班同学都参与将制作的1平方分米的正方形放于1平方米的大正方形中,即1平方米的大正方形中含有100个1平方分米的小正方形。
1平方米=100平方分米=10000平方厘米。
另外,1平方米=100平方分米、1平方分米=100平方厘米,让学生每人读一次,全体同学每个人都读,其余同学仔细听,让学生树立清晰的印象,而后自动口述1平方米=100平方分米、1平方分米=100平方厘米。
让学生跟随老师图示1平方米1平方分米1平方厘米。
100100。
再针对具体题目进行面积单位间的换算。此种教学设计提高了学生学习数学的兴趣,开发了学生的智力,教学效益提高许多。学生在做题过程中也会主动克服困难,训练学力。
文档为doc格式。
体积单位间的进率五年级数学教案(实用15篇)篇三
《体积单位间的进率》教学后的最大收获是:我认识到教会方法比知识重要。本节课内容比较简单,学生接受也较快。我采取了提出问题,学生在合作交流中得出解决问题的方法。为了更加形象直观地清楚推理,也为了兼顾学困生的学习,我采用了放映幻灯片让学生从抽象的想象到直观的观察彻底明白推理,并鼓励学生讲出思考过程。
学生结合导学案进行了课前认真预习,为了预防部分学生对学过知识的遗忘,我在导学案中的第一步复习与生成设计了与本节相关的基础知识。在课堂订正答案时发现学生都已掌握。接下来在教学中适当地引导新旧知识的有机结合并通过学生的思考、研究去探索发现新知。这也有力地说明了设计导学案应该做到为新课知识作铺垫的合理性。还通过猜想发挥学生的主动性,提高学习趣味性,吸引了学生的求知欲。课堂的检测训练紧密结合新知。
感悟反思。
1、学生讲解算理生硬、不自然,有待于进一步课后强化训练。
2、单位的统一,让学生自觉养成习惯。
3、平方、立方加强区别,不要让学生形成一种刚学了体积单位间的'进率,受惯性思维的影响,急于求成出现错误。
体积单位间的进率五年级数学教案(实用15篇)篇四
学生是学习的主人,这是每个教师都认同的一个理念,但是怎样将这样一个理念转变为具体的教学行为呢?不妨从目标让学生提出做起。
体积单位间的进率是在学生已经学习了长度单位、面积单位间的进率的基础上进行教学的。学生有了前两个知识的学习经验,在面对体积单位时是有能力提出学习目标的。教师要给学生自己提出学习目标的机会,这样不但有助于培养学生的问题意识,而且能够激发学生的学习兴趣。同解决自己提出的问题和别人(教师)让我解决的问题相比,学生自然倾向于前者。
2、方法让学生探究。
我们经常抱怨学生在做单位之间的化聚练习时出错,埋怨学生不细心。冷静的思考一下,学生做错题的原因真的都是不细心吗?有多少学生在死记硬背单位之间的进率,又有多少学生记混单位之间的`进率而闹出笑话。造成学生会死记硬背单位之间的进率的其中一个很重要的原因是教师忽略了授给学生渔,而只授给学生鱼,学生收获的鱼多了,改用的时候就分不清该取哪条鱼了。
体积单位间的进率五年级数学教案(实用15篇)篇五
这节课主要是教学相邻体积单位间的进率,让学生学会根据进率进行相邻体积单位的换算并与学过的长度单位,面积单位进行对比。
在教学相邻体积单位间的进率主要是通过计算和观察得出的。本节课导入环节从学生已有的知识经验出发展开教学,我安排了关于长度单位和面积单位间进率的复习,以唤起学生关于单位间进率的学习经验。在单位间进率换算的教学环节则完全放手让学生自主进行推算。适当的引导学生把学习过的知识、方法有机结合起来,并且通过学生的思考、研究去探索发现新知识。学生对猜测的结果进行验证,兴趣很浓厚,大部分学生能通过自己或合作探究出进率是1000的。通过猜一猜,发挥学生主动性,提高学习趣味性、吸引他们求知欲的活动。让学生通过计算,自主探索得出“1立方分米=1000立方厘米”的结论;同时,及时引导学生回顾得出这一结论的方法与过程,用类比、迁移的方法,放手让学生根据探索中得到的经验自主进行推算立方米与立方分米的进率,不仅掌握了数学知识,而且潜移默化地受到了数学思想方法的熏陶。接着,我安排了相应的练习。在练一练处理中突出学生的独立思考和概括能力的培养,体积单位名数的改写虽然是新知,但是学生已有面积单位名数的改写作基础,独立解答这类新知并不困难,因此这一层的教学放手让学生独立思考,在尝试了几题的基础上概括出解题的一般方法。
体积单位间的进率五年级数学教案(实用15篇)篇六
1、知道体积、容积的意义,以及它们之间的联系与区别。
2、知道常用的体积单位及其所占空间的大小。
3、会进行体积单位和体积单位,体积单位和容积单位之间的改写。
4、知道物体中所含有的体积单位就是它的体积。
教学重点:理解体积的含义,认识常用的体积单位。
师:今天,老师给同学们带来了一个小故事,故事里蕴藏着我们这节课要研究的数学知识,请仔细听。
师:淘气为难了,拿苹果还是拿鸭梨呢?这节课我们帮淘气想个办法,让他分辨出大小。
(一)认识体积。
1、说一说。
生:……。
师:谁能联系身边的物体,也像这样说说看。
生:纸箱所占空间大小叫纸箱的体积。
师:你能概括一下,究竟什么是物体的体积吗?
生:物体所占空间的大小,叫体积。
(教师小结并板书:物体所占空间的大小,叫做物体的体积。)。
2、比一比。
生1:我的苹果体积大,他的橘子体积小。
生2:我的铅笔盒体积小,他的铅笔盒体积大。
(有的学生说红薯体积大,有的学生说土豆体积大,还有的没有发表意见。)。
(学生独立思考,然后同桌交流。)。
师:谁愿意先说?
生1:掂一掂哪个重,那个的体积就大。
生2:放进盛有一样多水的杯子里,谁水面上升的高谁的体积就大。
生3:把土豆和红薯放到同样大的杯子里,再各倒入200毫升的水,谁的水面高谁的体积就大。
师:把无法用观察的方法比出体积大小的物体放入水中做实验,可以知道它们的体积大小。下面,咱们就分四人小组,利用桌面上的工具,进行实验。
生1:我们实验的步骤是把土豆、红薯放到同样大的两个烧杯里,然后每个杯子里都倒入200毫升的水,结果放红薯的烧杯水面上升到370毫升,放土豆的上升到360毫升,我们组认为红薯的体积大。
生2:我们组先把两个烧杯各放入150毫升的水,再把土豆红薯分别放到烧杯里,观察水面升高情况,得出也是红薯体积大。
生3:我们组用一个烧杯做的实验,首先在烧杯里放200毫升的水,把土豆放进去,看到水面停在360毫升刻度上,拿出土豆再放红薯,水面停在370毫升。说明红薯体积只比土豆大一点点。
师:电脑博士也做了这个实验,看看它和你们想的一样吗?实验的结果怎样?你有什么发现?(课件展示实验过程。)。
生:……。
(二)认识容积。
1、认识容器。
(教师出示500毫升可乐瓶,200毫升茶叶盒,50毫升墨水瓶,学生上台操作。)。
师:排的对吗?可乐瓶能用来做什么?
生:盛可乐、盛水、盛色拉油……。
师:茶叶盒呢?
生:装茶叶。
师:像这类可以用来盛放东西的物体,我们称之为容器。(板书:容器)。
2、感知容积。
生:……。
师:你能从生活中举例,也像这样说一说吗?
生1:塑料桶装满水,水的体积就是桶的容积。
生2:茶杯里盛满水,水的体积就是这个茶杯的容积。
师:谁能总结一下,什么是容器的容积?
生1:杯子里水的体积就是杯子的容积。
生2:容器里所盛物体的体积就是他的容积。
(教师小结并板书:容器所能容纳物体的体积,叫做容器的容积。)。
生:不同意,因为水没装满。
生:可乐瓶容积大,墨水瓶容积小。
师:你还能找出生活中的两个容器,并说出哪个容器容积大,哪个容器容积小吗?
生:教室里的纯净水桶容积大,我喝水的瓶子容积小。
3、比较容积相近的容器的大小。
(出示标有1号、2、号标签的两个瓶子:一个是果粒橙瓶子,一个是康师傅绿茶瓶子,商标都已撕去。)。
师:它们谁的容积大?谁的容积小?你能设计一个实验来解决这个问题吗?下面咱们分小组解决这个问题。
生1:如果有商标就好了,上面有容积,一看就知道,可是现在没有商标,我们组把l号瓶里装满水,再把水慢慢倒进2号瓶,倒满后1号瓶还有剩余,说明1号瓶容积大。
生2:瓶口太小倒水不方便,我认为把两个瓶子都装满水,倒进同样大的两个烧杯里,看水面的高度就可知道他们的容积大小。
师:你认为哪一组设计的方法最简便,最容易操作?那就请你们上台来演示。
(学生实验。)。
师:刚才,我们一起研究了物体的体积和容积,还掌握了比较它们大小的方法。下面我们来轻松一下,做个闯关游戏。
第一关:课件出示教材第42页插图。
生:……。
师:他们的说法你同意吗?
说说你的想法。
生:……。
第二关:,课件出示教材第42页练一练第1题。
师:你能想出结果吗?如有困难可用实验方法亲自捏捏看。有结果了吗?
生:我认为一样大,因为一块橡皮泥不管捏成什么样,还是它自己。
第三关:课件出示教材第42页练一练第2题。
师:谁愿意先说?
生:……。
生:有可能,小明的杯子小可以多倒几杯,小红杯子大就要少倒几杯。
师:说得很有道理。
体积单位间的进率五年级数学教案(实用15篇)篇七
掌握单位换算的方法。
边长为1分米的正方形,上面划分成边长为1厘米的小正方形。
让学生回忆之前已学过哪些长度单位,它们之间的进率是多少,还学过哪些面积单位。
引入新课:
教师板书题目,并把刚才学生们说的长度单位、面积单位归纳板书。
1、学习教材第70页例6.
出示边长是1分米的正方形,让学生列式求出它的面积。
翻过来看背面,现在把面积是1平方分米的正方形的边长平均分成10份,1份是多少?
教师说明:这个正方形的边长可以看作是10厘米,前面我们学了1分米是10厘米,按边长是10厘米再计算一下这个正方形的面积。
10×10=100(平方厘米)。
让学生观察两次求正方形面积的计算过程,分小组讨论,你能发现什么吗?
教师板书:1平方分米=100平方厘米。
引导学生去想,根据前面学习的经验,你能推出1平方米等于多少平方分米吗?
教师板书:1平方米=100平方分米。
区别相邻的长度单位间的进率和相邻的面积单位间的进率,并启发学生找出它们之间的规律。(当相邻两个长度单位间的进率是10时,相应的面积单位之间的进率就是100)。
8平方米=()平方厘米。让学生讨论并回答结果,然后说一说自己是怎么想的。
5平方米=()平方分米。让学生独立完成,然后陈述自己的思考过程。
300平方厘米=()平方分米。让学生比较这道题与前两道题有什么不同。(前两道题是从大单位换算成小单位,这道题是将小单位换算成大单位)请同学们讨论这道题该何如去做。
1、填一填、
7平方米=()平方分米3平方分米=()平方厘米。
700平方分米()平方米10平方米=()平方分米。
4800平方厘米=()平方分米。
2、在下面的括号里填上合适的单位。
课桌长是5()黑板的面积是3()。
1、一个长方形的周长是160厘米,它的长是50厘米,宽是多少分米?
体积单位间的进率五年级数学教案(实用15篇)篇八
2.体积单位的转化方法。在学生总结基础上,将例3,例4后归纳的方法汇集成一个,并板书出来:
3.作业:课本p40练习八:1,2。
课堂教学设计说明。
体积单位间的进率教学,借助于电脑动画图像(或活动投影图),使学生对体积单位进率是1000的概念,明晰地建立在长、宽、高的三维空间基础上,这样使学生能牢固地掌握长度、面积和体积单位的区别。
体积单位中高级单位与低级单位之间的化和聚,方法与长度单位之间,面积单位之间的化和聚相同,学生很容易理解,主要的问题是要准确掌握单位间的进率,同时还要注意审题习惯的培养,所以新课中注意学生对计算过程和算理的表述。
带*的例题和练习,可视班级情况选用。新课教学分三大部分。
第一部分教学体积单位间的进率,分为两个层次。通过动画图,帮助学生认识体积单位间的进率是1000;长度,面积,体积单位的对比。
第二部分教学体积单位之间的相互转化。分为三个层次。体积的高级单位转化为低级单位;低级单位转化为高级单位;复名数与单名数的互化。第三层为选学内容。第三部分使学生掌握实际应用题中的单位换算。
板书设计。
体积单位间的进率五年级数学教案(实用15篇)篇九
2.相邻的两个面积单位之间的进率是多少?我们是怎样得到1平方分米=100平方厘米这个结论的?学生回答后,教师通过课件演示,帮助学生回忆推导过程。
3.相邻的两个体积单位之间的进率又是多少呢?这节课我们就一起来研究这个问题。教师板书课题。
二、自主探索,获取新知。
1.学生独立思考:1立方分米=()立方厘米。
2.小组交流。
4.得出结论:1立方分米=1000立方厘米。
5.类推:1立方米=(1000)立方分米。
6.巩固练习(略)。
三、实际应用。
1.出示教材中的例题。
2.学生独立解答。
3.组织学生交流。
四、总结全课。
我们学习了长度单位、面积单位、体积单位,他们相邻的两个单位间的进率分别是多少呢?学生看书,填表。
反思:
1.目标让学生提出。
学生是学习的主人,这是每个教师都认同的一个理念,但是怎样将这样一个理念转变为具体的教学行为呢?不妨从目标让学生提出做起。
体积单位间的进率是在学生已经学习了长度单位、面积单位间的进率的基础上进行教学的。学生有了前两个知识的学习经验,在面对体积单位时是有能力提出学习目标的。教师要给学生自己提出学习目标的机会,这样不但有助于培养学生的问题意识,而且能够激发学生的学习兴趣。同解决自己提出的问题和别人(教师)让我解决的问题相比,学生自然倾向于前者。
2.方法让学生探究。
我们经常抱怨学生在做单位之间的化聚练习时出错,埋怨学生不细心。冷静的思考一下,学生做错题的原因真的都是不细心吗?有多少学生在死记硬背单位之间的进率,又有多少学生记混单位之间的进率而闹出笑话。造成学生会死记硬背单位之间的进率的其中一个很重要的原因是教师忽略了授给学生渔,而只授给学生鱼,学生收获的鱼多了,改用的时候就分不清该取哪条鱼了。
1.借助一条线段是学生明确要表示长短要用长度单位,复习常用的长度单位及其他们之间的进率。
3.继续演示课件,由面过渡到体,问学生常用的体积单位有哪些?教师板书常用的体积单位后问学生:接下来,你们认为我们该研究点什么内容?以此来培养学生的问题意识和学习主人翁的意识。
5.在学生小组交流的基础上教师组织学生进行全班汇报。此环节教师要放慢教学节奏,结合学生的汇报及时适时地点拨指导,注意对学生的评价,尤其注意对学生学习方法、解决问题策略的评价。教师在学生汇报的基础上通过课件的演示使学生清楚地看到:相邻的两个体积单位之间的进率之所以是1000,而不是100,是因为正方体的长宽高都是10厘米(分米),在1010的基础上,又乘了一个10。学生头脑中一旦有了由一条1分米(10厘米)的线段到一个边长1分米(10厘米)的正方形,再到一个棱长1分米(10厘米)的正方体的清晰、完整的过程,学生收获的就不仅仅是知识。
6.演示课件后让学生闭上眼想一想刚才的过程,教师为学生提供一个内化的时间。
7.引导学生运用类比推理的方法,得出:1立方米=1000立方分米。
9.引导学生探究不相邻两个体积单位之间的进率是多少?之后进行专项练习。
10、综合练习,可以融入长度单位、面积单位、体积单位,培养学生认真审题的习惯。
将本文的word文档下载到电脑,方便收藏和打印。
体积单位间的进率五年级数学教案(实用15篇)篇十
一、填空。
1.2.5立方分米=()立方厘米。
2.7090立方厘米=()立方分米。
3.6000立方厘米=()升。
4.300立方厘米=()毫升。
5.420毫升=()立方厘米=()立方分米。
6.7立方米9立方分米=()立方分米。
二、判断。
1.用同样大小的小正方体拼成一个大正方体,最少用4个这样的小正方体。()。
2.长、宽、高都相等的长方体是正方体。()。
3.把一个长方体切成两块后,表面积和体积都不变。()。
4.1立方米比1平方米大。()。
5.把1块正方体橡皮泥捏成长方体,它的体积没有变。()。
体积单位间的进率五年级数学教案(实用15篇)篇十一
2、棱长是1米的正方体,它的底面积是(),体积是()。
棱长是1分米的正方体,它的底面积是(),体积是()。
棱长是1厘米的正方体,它的底面积是(),体积是()。
3、单位大小的感知。
举例:1立方厘米的物体;1立方分米的物体;。
1立方米的物体。
一个花圃的`面积约是10();一瓶药水重60();。
一个仓库的体积是125();一间教室的面积约是48();。
一堆沙的体积是1.98();一瓶墨水体积是约60();。
微波炉的体积约是45()。
体积单位间的进率五年级数学教案(实用15篇)篇十二
今天上午,我在五(1)班教室上了一节校内公开课,内容是人教版数学第十册第三单元的《体积单位间的进率》,许多数学老师进行了观摩,课后也及时给予了评价。通过教学和评课这两个环节,我的感受颇深。
《体积单位间的进率》是在学生认识了体积单位,学习了长方体、正方体体积计算后进行教学的。在教学中先让学生猜想相邻体积单位间的进率,再通过验证探索发现常用的相邻两个体积单位间的进率是1000。教学中通过两个同样大小的正方体,一个棱长为1分米,另一个棱长为10厘米,让学生分别计算它们的体积。根据体积单位的'定义:棱长1分米的正方体,体积是1立方分米;棱长10厘米的正方体,体积是1000立方厘米。由此发现:1立方分米=1000立方厘米。对于另一组相邻体积单位立方米和立方分米的进率,放手让学生根据前面探索中得到的经验自主进行推算。接着让学生根据进率进行相邻体积单位的换算,并运用于解决实际生活问题。结合大家的意见,我这节课比较突出的优点有:
(一)课堂上注重渗透数学思想。我先让学生猜想,再进行探究验证,最后得出“常用的相邻两个体积单位间的进率是1000”的结论,然后再运用次结论进行单位换算。这种教学设计就是在想学生渗透数学思想,并且使教学环节看起来层次清晰,环环相扣。
(二)注重放手让学生自主探究、自我发现。无论是前面的探究活动,还是后面的换算练习,以及最后的开放式应用题,我都能让学生通过小组交流自己观察,自己验证,自己发现,自己表达,真正让学生成为课堂的主角。
(三)教学设计有新意,课堂总结有特色。因为本节课内容相对简单,主要就是一个推理过程和一个运用过程,如果不设计一点创意性的玩意儿,学生很容易疲倦。所以,我懂了点脑筋,课前复习时安排了学生分类的活动,中途练习时让学生背向黑板进行问答,最后的课堂总结,我结合本节课的内容为学生表演了一段快板,让学生兴奋了几次,以致这节课不那么枯燥。
当然,“看花容易绣花难”,实际教学中还存在许多不足,需要改进的地方有:
(一)教师口语过多,无效问题多,占据了不少教学时间。邓丽萍老师对我的课观察显示,我喜欢重复问全班学生“对不对?”、“同意吗?”,这是我平时上课的教学习惯所致,说明教学语言还不够严谨,不够精炼,有待改进。
(二)给予学生进行小组学习的时间不够长,而且没有有效地反馈。课堂上确实有很多次让学生讨论的机会,但是时间稍短,感觉有些走过场。应该多给点时间学生们充分的讨论、探究。
(三)板书结论口语化,不严谨。学生课堂上反馈“大单位化小单位要乘以进率,小单位化大单位要除以进率”,虽然在口头上我提到了大单位就是高级单位,小单位就是低级单位,可是板书时仍写成学生的反馈,我以为尊重了学生,实际上忽略了作为数学教师的严谨、科学性。
将本文的word文档下载到电脑,方便收藏和打印。
体积单位间的进率五年级数学教案(实用15篇)篇十三
物体所占空间的大小叫做物体的体积。
体积单位:立方米(m)立方分米(dm)立方厘米(cm)。
五、思维拓展。
请同学们摆一个体积是24立方厘米的长方体,摆后说一说长、宽、高各是几厘米?
长方体体积=长宽高。
提问:长方体的长、宽、高不同,体积相同这是为什么?
板书设计:
长方体和正方体的体积。
物体所占空间的大小叫做物体的体积。
体积单位:立方米立方分米立方厘米。
教学反思:
在教学长方体的特征时,我始终采取让学生多动手观察,多体验,自己找出并掌握长方体的特征,这样学生变被动为主动,学生的积极性都得到了提高。
体积单位间的进率五年级数学教案(实用15篇)篇十四
《容积和容积单位》教学反思五年级数学容积和容级单位教学反思容积和容积单位的教学是在体积和体积单位之后,学生对体积有了一定的认识,体积单位已掌握,明白其大小关系,以及它们之间的进率,能用其解决问题。容积的概念较抽象,理解是重点,鉴于此,让孩子带着问题去预习,上课直奔主题“通过预习,你知道什么是容积了吗?”孩子都能找到答案,但都是在照本宣科。所以老师要求“通过别的例子说明什么是容积”,学生举得例子都很好,这说明一是他们的预习奏效了,二是生活经验对他们很重要。然后找到学生所举物体的共同点“容纳别的物体”,继而抽象出容积的概念,为了加深理解我们还讨论了“所能容纳”的意思。
用实验1升或1毫升究竟是多少,就不是只靠看书和老师讲解就能感受的到的,有句话说得好“我听过了,我就忘记了;我看过了,我就记住了;我做过了,我就理解了”强调的就是动手操作的重要性。在数学学习中,我们好多时候需要动手操作来理解知识。
本节课的另一个任务就是计算长方体或正方体的容积,其实一部分同学通过对容积意义的理解和一定的生活经验是知道容积的计算方法的,另一部分同学是可以通过细心阅读课本发现的,不仅如此,还可以读到体积和容积的联系与区别。
总之,这节课是在学生预习的基础上,通过操作、观察、演示等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以抽象、概括,进行简单的判断和推理。有意识地创设了各种情境,为各类学生提供表现自我的机会,使学生产生了数学学习的成功感。
容积和容积单位”是在学生已经掌握了长方体和正方体体积的计算方法的基础上教学的。本课的教学充分体现了操作演示,充分感知,从生活实际入手,教师在教学中,为学生提供实物进行直观操作演示,让学生充分感知容积的意义,建立1升、1毫升液体的量是多少的表象,理解容积单位之间的进率,使学生对本课学习的内容具有理性的认识。新授中,教师根据知识迁移的规律,让学生运用有关体积和体积单位的知识学习容积和容积单位,有利于学生理解知识之间的内在联系,形成比较完整的认知结构。通过比较、测量、计算,让学生自己去发现体积与容积、体积单位与容积单位的区别,使学生明确体积与容积,体积单位与容积单位是既有联系,又有区别的。练习的设计,进一步巩固和发展了本课的教学,为学生在生活中解决实际问题打下了良好的基础。
体积单位间的进率五年级数学教案(实用15篇)篇十五
2.认识常用的体积单位:立方米、立方分米、立方厘米.。
3.能正确区分长度单位、面积单位和体积单位的不同.。
使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的体积观念.。
教学步骤。
一、铺垫孕伏.。
1.1米、1分米、1厘米,这是什么计量单位?
2.1平方米、1平方分米、1平方厘米,这是什么计量单位?
二、探究新知.。
我们了长度和长度单位,面积和面积单位.今天我们要一个新概念:体积和体积单位.(板书课题:体积和体积单位)。
(一)实验观察,建立体积概念.。
1.教师演示实验:
第一步:出示有杯水的玻璃杯,在水面处做一个红色记号.。
第二步:在水杯中放入一块石头,在水面处做一个黄色记号.。
第三步:拿出石块后,再放入一大些的石块,在水面处做绿色记号.。
汇报归纳:水杯中放入石块后,石块占据了空间,把水向上挤,水面向上升.。
石块大占据空间大,水面上升得高;
石块小占据空间小,水面上升得低.。
2.学生分组实验.。
实验方法:
第一步:拿出装满细沙的杯子,把细沙倒在一边.。
第二步:把一木块放入杯子里,再把倒出的沙装回杯子里.。
第三步:把杯中细沙倒出,把一大些的木块放入杯子里,再把倒出的沙装回杯子里.。
观察思考:出现了什么结果?这说明了什么?
汇报归纳:放入大木块,外边剩的沙多;放人小木块外边剩的沙少.。
这说明木块也占据了杯子的空间.木块大占据空间大,木块小占据空间小.。
3.总结两次实验结果.。
教师提问:以上的两个实验说明了什么?
学生归纳:物体都占据空间,物体大占据空间大,物体小占据空间小.。
教师明确:把物体所占空间的大小叫做物体的体积.(板书)。
4.比较物体体积的大小.。
实物比较:字典和大词典桌子和椅子水桶和茶叶桶课本和练习本。
(教师出示一组体积接近的物体)提问:这两个物体谁的体积大?
(二)认识体积单位.。
教师指出:在实际生活和生产中,有时只凭感觉是无法判断出谁大谁小的,这就要我们。
精确地计量物体的体积.计量体积就要用体积单位,常用的体积单位有立。
方厘米、立方分米、立方米(板书)。
1.认识1立方厘米(出示一块1立方厘米的体积模型)。
这就是体积为1立方厘米的正方体.。
分组观察,然后汇报:你知道了什么?
看一看:1立方厘米的体积比较小,是正方体.。
量一量:1立方厘米的正方体的棱长是1厘米.。
说一说:棱长1厘米的正方体体积是1立方厘米(板书)。
想一想:体积是1立方厘米的物体比较小.。
议一议:哪些物体计量体积时使用立方厘米比较恰当?
2.认识1立方分米.(出示一块1立方分米的体积模型)。
这就是体积为1立方分米的正方体.。
分组观察,然后汇报:你知道了什么?
看一看:1立方分米的体积大一些,是一个正方体.。
量一量:1立方分米的正方体的棱长是1分米.。
说一说:棱长1分米的正方体,体积是1立方分米.(板书)。
想一想:体积是1立方分米的物体比1立方厘米的物体大.。
议一议:哪些物体计量体积时使用立方分米比较恰当?
3.认识1立方米.。
思考:什么样的物体的体积是1立方米?
(板书:棱长1米的正方体,体积是1立方米)。
议一议:哪些物体计量体积时使用立方米比较恰当?
4..比较:这三个体积单位的共同点是什么?不同点是什么?
长度单位、面积单位和体积单位又有什么不同点呢?
长度单位:线段。
面积单位:正方形。
体积单位:正方体。
(三)计量物体的体积.。
怎样用这些体积单位计量物体的体积呢?
计量物体的体积就是一个物体里含有多少个体积单位,它的体积就是多少。
(四)反馈练习.。
1.看图说出物体的体积.。
2.用12个1立方厘米的正方体木块摆成不同形状的长方体.它们的体积各是多少?
(都是12立方厘米.不论物体是什么形状,含有几个体积单位,它的体积就是多少)。
三、全课小结.。
这节课你学了哪些知识?
四、随堂练习.。
1.填空.。
一块橡皮的体积约是8()。
一台录音机的体积约是20()。
运货集装箱的体积约是40()。
2.连线:学校主席台的体积24立方厘米。
书包的体积24立方米。
碳素墨水盒的体积24立方分米。
3.说说身边的物体的体积大约是多少?
五、课后作业.。
下面的图形都是用棱长1厘米的小正方体拼成的,说出它们的体积各是多少立方厘米?
六、.。
物体所占空间的大小叫做物体的体积.。