六年级教案需要考虑学生的不同层次和个体差异,以保证每个学生都能够得到适合的教学。以下是一些精选的六年级教案范文,大家一起来学习和借鉴吧。
六年级数学负数教案(热门14篇)篇一
1、在具体情境中认识负数,感受负数的实际意义;会正确读写正、负数;初步感知正、负数可以表示两种相反的关系;知道负数都小于零,正数都大于零。
2、体验生活与数学的联系,会用正负数的知识解释生活现象。
一、创设情境,激趣引入。
(多媒体出示沈阳大雪时的一幅照片)。
师:这是沈阳大雪时的一幅照片。猜猜看,这时的气温可能是多少度?(指名口答)。
(评:以温度引入负数,符合学生的认知特点。“猜温度”既能服务于本节课的教学重点,又有利于激发学生的学习热情。)。
二、借助经验,自主探究。
1、认识温度计。
评:温度计上有两种计量单位:一种是摄氏度,一种是华氏度。我国统一使用摄氏度。
师:[多媒体出示标有沈阳温度读数(零下20℃)的温度计]谁能读出图中沈阳的温度?说一说你是怎样看出来的?(指名口答)。
2、教学例1。
谈话:同学们,咱们幅员辽阔,南方和北方在气温上有很大差异。当沈阳还是千里冰封的世界时,南京和海口的气温又是多少呢?咱们一一下。(多媒体出示三幅温度计图:沈阳零下20℃;南京0℃;海口零上20℃)。
师:从这几幅图中,你能看出南京和海口的气温吗?你能说说怎样看出来的吗?你还能得到哪些重要的数学信息?(小组讨论、指名汇报交流。)。
师:沈阳和海口的气温一样吗?为什么?
你能用自己喜欢的方式表示这两个不同的温度吗?(学生记录后,展示、交流。)。
师:数学语言需要交流,交流就要符号统一。(展示并板书-20℃、+20℃)这是科学家规定的记录方法。
讲解:“-”是负号,“+”是正号,要写得小一点。-20℃读作负二十摄氏度;+20℃读作正二十摄氏度。+20℃也可以简单记作20℃。
(2)练一练。
(多媒体出示标有吐鲁番盆地某一天最低气温和最高气温的温度计图:零下9℃、零上27℃)。
师:你能用刚才的方法把它们记录下来吗?[指名反馈,教师揭示。
(板书):-9℃、27℃]。
3、教学例2。
(1)出示例2。
师:吐鲁番盆地的早晚温差非常大。人们常这样来形容:“早穿棉袄午穿纱、围着火炉吃西瓜”。这与它的地理特征有很大关系。(出示例2:珠穆朗玛峰比海平面高8844米;吐鲁番盆地比海平面低155米。)。
(2)教师讲解“海拔”的含义。
(3)你能用以上的方法表示出这两个海拔高度吗?(学生独立完成后,指名口答。板书:8844米、-155米)。
(4)练一练。
(多媒体出示:读一读下面的海拔高度,说一说分别是高于海平面还是低于海平面?
黑海海拔高度是-28米。
马里亚纳海沟最深处的海拔是-11034米。
(评:两道例题两个层次,例1通过让学生观察、讨论、交流等数学活动,初步感知负数,并掌握负数的表示方法;例2教师则完全放手,让学生根据例1中温度的表示方法,类推出海拔的表示方法。教学方法一详一略,一扶一放。)。
三、抽象概括,沟通联系。
1、揭示概念。
师:像-20、-9、-155这样的数都是负数。你还能说出几个负数吗?能说得完吗?
像+20、27、8844这样的数都是正数。你还能说出几个正数吗?能说得完吗?
揭示课题(板书)。
2、介绍负数产生的历史。
(多媒体出示教科书第九页“你知道吗?”)。
3、认识0与正、负数的关系。
师:你认为0是正数还是负数呢?理由是什么?(小组讨论、指名汇报结果)。
0与负数比、0与正数比,大小有什么关系?(指名回答)。
四、巩固练习,应用拓展。
1、选择合适的温度连一连。(多媒体出示教科书练习一第四题)。
2、你知道这些温度吗?读一读。(教科书练习一第五题)。
3、你能在温度计上表示出这些温度吗?(多媒体出示地图,闪烁温度:石家庄﹣5℃、长春﹣10℃、杭州5℃、桂林10℃)。
(让学生在练习纸上完成后,比一比这几个城市温度的高低。)。
4、小明的一则。
7月18日晴。
今天天气很热,大约有10℃。好多爱美的女士为了避暑都打上了遮阳伞。
我跟着爸爸来到他上班的冷食加工厂,一进加工车间,感到凉飕飕的,估计温度大概有-15℃。爸爸打开冷柜,马上有一股寒气袭来,我猜冰柜里的温度大约有8~9℃吧。
回来的路上,碰到了同学,我们就聊开了。洪军说:前几天,他们全家到泰山旅游,爬上了海拔﹣1545米的山顶;晓玲说:他们全家去了连云港,听说连云港海的最低处是海拔34米呢!
……。
这则中有些数据不符合实际情况,你能找出来吗?你知道怎么改吗?
[评:以的形式展示数学内容,既贴近生活、新颖有趣,又有利于联系实际、培养数感。]。
五、全课。
师:这节课我们一起认识了负数。你有哪些收获,分享,好吗?
六、拓展延伸。
让学生课外注意观察身边的事物,搜集一些可以用负数表示的数量。
总评:
课程标准提出:
人人学有价值的数学,人人都能获得必需的数学。本节课体现了如下特点:
简约。
紧紧围绕教学目标来确定教学主线。让学生在具体情境中认识负数,感受负数的实际意义;在引导学生创造的基础上,教学正、负数的表示方法;让学生联系生活感知正数和负数意义相反、相互依存的关系;……使人感到简洁、明快。
贴切。
数学知识源于生活经验。老师注意寻找贴近学生生活的数学素材,设计符合学生年龄特点的数学活动。使得学生乐学、深思,真正成为课堂的主人。
课始。
老师让学生猜测沈阳大雪时的温度;接着自然地将温度计引出,并让学生自主交流温度计的有关知识;……既可以消除学生对教学内容的陌生感,同时也能激发学生的求知欲,使得学生积极参与数学活动。使人感到真切、自然。
充实。
数学重在思考。认识负数时,借助温度计和海拔,引导学生通过看一看、猜一猜、说一说、议一议等数学活动,从不同的角度感受负数、理解负数,并用所学知识解决生活中的实际问题。从而让学生经历了“感知——探索——建构——应用”的认知过程,有利于增强认识,落实目标。使人感到实在、高效。
和谐。
关注学生学习过程。老师注意给学生广阔的思维空间,鼓励学生尽情地表达自己的意见与想法。例如:“你了解温度计吗?把你了解的情况和大家交流一下,好吗?”、“你能说说是怎样看出来的吗?”、“你能用自己喜欢的方式表示吗?”、“你有哪些收获,分享,好吗?”……有利于学生自主参与知识的形成过程,从而形成平等、自由、和谐的学习氛围。使人感到轻松、流畅。
六年级数学负数教案(热门14篇)篇二
教学内容:
负数的初步认识,教科书第2~4页例1、例2。
教学目标:
1、知识目标。
使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2、能力目标。
使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3、感目标。
使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:
初步认识正数和负数以及读法和写法。
教学难点:
理解0既不是正数,也不是负数。
教具准备:
多媒体课件、温度计、练习纸、卡片等。
教学过程:
一、承前启后。
1、出示主题图。教材第2页主题图。
二、学习引领。
1、教学例1。
(1)教师板书关键数据:0℃。
(2)教师讲解0℃的意思:0℃表示淡水开始结冰的温度。
比0℃低的温度叫零下温度,通常在数字前加-(负号):如-2℃表示零下2摄氏度,读作:负三摄氏度。
比0℃高的温度叫零上温度,在数字前加+(正号),一般情况下可省略不写:如+2℃表示零上2摄氏度,读作:正三摄氏度,也可以写成2℃,读作:三摄氏度。
(2)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。
2、学生讨论合作,交流反馈。
(1)请同学们把图上其它各地的温度都写出来,并读一读。
(2)教师展示学生不同的表示方法。
(2)小结:通过刚才的学习,我们用+和-就能准确地表示零上温度和零下温度。
3、教学例2。
(1)教师出示存折明细示意图。(教材第2页的主题图)教师:同学们能说说支出(-)或(+)这一栏的数各表示什么意义吗?组织学生分组讨论、交流,然后指名汇报。
六年级数学负数教案(热门14篇)篇三
教学内容认识负数(教科书p1~3的例1和例2,完成练习一的第1~6题。)9月4日教学总目标1、通过观察、分析讨论等活动,让学生在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法;能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量,解决相关问题。2、通过分析、猜想等活动,感受负数的意义,培养学生的观察、分析能力和逻辑思维能力,提高解决实际问题的能力。3、通过学习使学生联系实际体验数学与日常生活密切相关,激发学生对数学的兴趣,提高学习积极性,并能主动与他人合作交流并获得积极的情感体验。教学重点难点教学重点:使学生在现实情景中理解正负数及零的意义。难点:能用正负数描述生活中的现象,解决相关问题。课前准备课件;一张挂图、温度计。教学过程步骤子目标教师的活动学生的活动反思情景引入联系生活引入课题,利用已有知识尝试读数,初步体会正负数。1、电脑播放天气预报片断。2、提出:老师收集了某天三个城市的最低温度资料,并用温度计显示。你知道分别是多少温度吗?观看,了解。学生观察图片上温度计。认识负数原本是初中学习的内容,现在提前让学生学习,原本有点担心学生学习难度太大,探究新知通过观察、分析讨论等活动,让学生在现实情境中了解负数产生的背景,初步理解正负数及零的意义,掌握正负数表达方法。继续让学生联系现实情境中能用正负数描述现实生活中的现象,如海拔高度这些具有相反意义的量,尝试解决相关问题。通过讨论分析,理解正负数及零的意义,进一步掌握正负数表达方法;培养学生的观察、分析能力和逻辑思维能力。1、教学例1:用正负数和0表示气温。(1)尝试说一说温度。出示图片,提出:你能看出上海的温度是多少吗?你是怎么看出来的?老师介绍温度计的看法。南京呢?和上海比,南京的气温怎样?出示图片:北京和上海比,北京的气温怎么样?同时出示上海、南京、北京三地的气温图片。提出:上海和北京的气温一样吗?不一样在哪里?在数学上怎样区分零上4摄氏度和零下4摄氏度的呢?(2)教学正负数的读写方法。说明零上和零下温度规定。教学正数和负数的读写法:“+4”读作正四,在写的时候,只要在4前面加一个“+”——正号,“+4”也可以写成4。“-4”读作负四,书写时,只要先写“-”——负号,再写4。(教师板书)提问:现在这三个城市的最低气温又可以怎么说?2、即时练习:(1)书本p2的“试一试”。(2)小小气象记录员一边听天气预报,一边记录气温。(课件演示:赤道零上40摄氏度,北极零下26摄氏度,南极零下40摄氏度。)3、感知生活中的正数和负数。(1)认识海拔高度的表示方法。出示书例2,介绍海拔高度的含义:海拔高度指与海平面比较,所得到的相对高度。(2)提问:新疆吐鲁番是我国海拔高度最低的地区,从图上你能看出它的海拔高度是多少吗?你从图中还能看出什么?(3)你能用今天所学的知识来表示这两个地区的海拔高度吗?明确:用正负数还可以区分海平面以上的高度和海平面以下的高度。(4)练一练:指导完成“练习一”第1,2题a用正数或者负数表示下面各地的海拔高度。(出示海拔高度图)中国最大的咸水湖——青海湖的海拔高度高于海平面3193千米。世界最低最咸的湖——死海低于海平面400米。世界海拔高度最低的国家——马尔代夫比海平面高1米。b说说下面的海拔高度是高于海平面还是低于海平面?里海是世界上最大的湖,水面的海拔高度是-28米。太平洋的马里亚纳海沟是世界上最深的海沟,最深处海拔-11034米4、描述正数和负数的意义。(1)出示:+3,-3,40,-12,-400,-155,+8848提出:你能将这些数分分类吗?按什么分?分成几类?师:从温度计上观察,0摄氏度以上的数都是正数,0摄氏度以下的数都是负数。海平面以上的数都是正数,海平面以下的数都是负数。师:0是正数和负数的分界线,0既不是正数也不是负数。正数大于0,负数小于0。(2)即时练习。书p3的“练一练”。说说温度计上显示的温度,并说说是怎么看出来的。进一步了解方法。说温度和观察温度计时的方法,明确是零上和零下区别。简单交流已有认识。明确:规定零上4摄氏度记作+4摄氏度或4摄氏度,规定零下4摄氏度记作-4摄氏度。认识正数和负数的读写法。尝试读写其余温度。填一填,集体评定。听一听,填一填,集体交流评定。看图认识海平面,认识海拔高度的含义。尝试表示,集体评定。写一写,集体评定。说一说,集体评定。观察,小组讨论。明确:象+3,40,+8848这样的数都是正数,像-3,-12,-400,-155这样的数都是负数。认识到0的特殊性。独立完成,集体评定。
六年级数学负数教案(热门14篇)篇四
一(个)、十、百、千、万……都叫做计数单位.其中“一”是计数的基本单位.10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十.这种计数方法叫做十进制计数法。
从高位一级一级读,读出级名(亿、万),每级末尾0都不读.其他数位一个或连续几个0都只读一个“零”。
从高位一级一级写,哪一位一个单位也没有就写0.
求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1.这种求近似数的方法就叫做四舍五入法.
位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推.
整数部分整数读,小数点读点,小数部分顺序读.
小数点写在个位右下角.
小数末尾添0去0大小不变.化简
小数点位置移动引起大小变化:
右移扩大左缩小,1十2百3千倍.
整数部分大就大;整数相同看十分位大就大;以此类推.
1、分数的意义:
把单位“ 1”平均分成若干份,表示这样的一份或者几份的数,叫做分数.在分数里,表示把单位“ 1”平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位.
2、百分数的意义:
表示一个数是另一个数的百分之几的数,叫做百分数.也叫百分率或百分比.百分数通常不写成分数的形式,而用特定的“%”来表示.百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称.
3、百分数表示两个数量之间的倍比关系,它的后面不能写计量单位.
4、成数:
几成就是十分之几.
六年级数学负数教案(热门14篇)篇五
教学目标1、使学生在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实的情境中应用负数,进一步理解负数的意义。
2、体验数学与日常生活密切相关,、激发学生对数学的兴趣。
教学重点:用正数和负数表示日常生活中具有相反意义的数量。
教学难点:体会两种具有相反意义的数量。
教学过程设计。
一、复习导入。
1、读一读,分一分。
2、练习一6。
二、教学新课。
(一)教学例3。
1、情境引入。
老师收集了新光服装店今年上半年每月的盈亏情况,如下表。
月份一二三四五六。
2、教学用正数与负数表示盈亏情况的具体意义。
通常情况下,盈利用正数表示,亏损用负数表示。
(1)表中哪几个月盈利?哪几个月亏损?
(2)从表中你还能知道些什么?
在小组里互相说一说,再汇报。
3、试一试。
(1)根据题中数据独立完成。注意正确读写正、负数的指导。
(2)完成后介绍一下服装店七至十二月份盈亏情况。
(二)教学例4。
1、出示情境图。
从平面图上你能知道些什么?
2、教学用正数和负数区别表示相反方向运动的路程。
(1)小华从学校出发,沿东西方向的大街走了2100米,可能会到什么地方?
小华如果向东走2100米,到达邮局;
小华如果向西走2100米,到达公园。
(2)如果把向东走2100米记作+2100米,那么向西走2100米可以记作什么?
(3)可以把向西走2100米记作+2100米吗?那么向东走2100米记作什么?
3、表示南北方向运动的路程。
如果从学校出发,沿南北方向的大街走1240米可以走到哪里?根据行走的方向和路程,
分别写出一个正数和一个负数。
在小组里说说你的想法,分组汇报。
4、试一试:
分步出示数轴:
(1)画出直线后,标出表示0的地方;
(2)向右等距离标出1、2等点,向左等距离地标出-1、-2等点;
(3)学生填出空格中的数;
(4)从0开始,分别向右、向左按顺序读一读各数;
(5)-2接近2,还是接近0?
说一说你是怎样想的?
(6)正数和负数在数轴上的排列方向是怎样的?
5、练一练。
1、练一练第1题。
正数和负数分别表示什么?
你能说一说小明家各项收入和支出的情况吗?
学生回答及说出想法。
2、练一练第2题。
学生独立完成第2题,再说说自己是怎么想的?
四、巩固练习。
1、练习一第7题。
独立完成填空,再说说想法。
你还能举出生活中用到正数、负数的例子吗?
2、练习一第8题。
从存折这一页的记录中你获得了哪些信息?
你能说说存折中红线框处的数各表示什么吗?
学生独立完成填空,完成后汇报,集体讲评。
3、练习一第10题。
在这张表中的正数表示什么?负数表示什么?
再说说每站的上下车人数。
这里的0表示什么?
4、阅读:你知道吗?
五、全课总结。
通过本节课的学习,你获得了哪些知识?
六、布置作业。
练习一第9题。
六年级数学负数教案(热门14篇)篇六
义务教育课程标准实验教科书二年级下册第20页辨认方向。
1.知识目标:结合具体的情境给定一个方向,能辨认其余的七个方向,名能用这些词语描述物体所在的位置。
2.技能目标:借助辨认方向,进一步发展空间观念。
3.情感目标:在具体的情境中体验数学与生活的密切联系。
1.重点:结合给定的一个方向辨认其余三个方向。
2.难点:用所学的方向词描绘物体所在的位置。
提问法、讨论法、练习法。
课件、小卡片。
一、复习。
二、新授。
1、引入。
师:在生活中,除了听说过东、南、西、北这四个方向之外,还听说过哪些方向词?(板书:东南、东北、西南、西北。)现在我们就来认识这些方向。
2、认识东南、东北、西南、西北四个方向。
课件出示主题图让学生观察:你看到什么,并说出它们的方向。
让学生将自己置身于学校这个位置,用已经学过的方向知识,说一说体育馆、商店、医院、邮局分别在学校的什么方向。教师先让学生4人一组说一说,再由教师指名让学生自己说一说。
教师让学生观察剩下的4个建筑物所在的方向与以前所认识的方向有什么特别之处。
发现剩下的4个方向分别在学校的斜方向的位置上。也就是在两个方向的中间。如:图书馆在北面和西面的中间。
说一说:少年宫、电影院、动物园所在的方向。
师:这样描述方向真是太麻烦了,请大家分别给这4个方向取名字。
问:你们是如何得出这些名称的?
教师让学生多说一说这4个建筑物分别在学校的什么方向,最后教师总结。
3.试一试。
(1)利用方向板说一说教室里8个方向分别有什么?
(2)让学生坐在自己的座位上,教师给出班级面朝的方向,小组内说一说自己的东南、东北、西南、西北分别是哪位同学。
(3)使用方向板时,教师应让学生注意方向板中的方向应与现实中面朝的方向相符。
三.练一练。
教师出示地图,问:这是哪个国家的地图,地图的形状像什么?在地图上看到了什么?(教师可适时对学生进行爱国主义教育。学生在观察地图时,教师让学生注意面朝北的方向标。)。
教师说出一个方向,让学生在图中将其指出。
问:你还可以提出哪些数学问题?
四.实践活动。
到操场上看一看,说说校园内各个方向分别有些什么?
观察后,到班级交流观察的结果。
五.你知道吗?
读书中的一段话后,说一说自己对指南针的了解,再让学生回家去找资料,查找有关指南针的知识,增强学生收集信息的能力。
六.小结。
这节课,同学们都学习了哪些数学知识呢?
六年级数学负数教案(热门14篇)篇七
教科书第55页例2,课堂活动第2题,练习十五第4~7题。
1.进一步掌握按比例分配解决问题的方法,能合理、灵活地解决3个数连比的按比例分配的问题。
2.经历解决三个数连比的按比例分配解决问题的过程,总结出按比例分配问题的解决方法,提高解决问题的能力。
3.通过小组交流合作,共同寻找解决问题的方法,使学生的个性得到了张扬,获得了积极的情感体验。
4.在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。
5.在按比例分配的过程中,感受分配方案的简洁美、理性美。
6.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。
重点:把两个数比的问题的解题方法推广到三个数连比的问题。
难点:理解三个数连比的问题的解题方法。
学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。
导入新课
1.填空。(多媒体出示题目)
(1)小明家养了35只鸡,公鸡和母鸡只数比是3∶4,公鸡( )只,母鸡( )只。
(2)丹顶鹤是国家一级保护动物。我国与其他国家拥有丹顶鹤只数的比是1∶3,20xx年全世界大约有20xx只丹顶鹤,我国有( )只。其他国家有( )只。
学生回答反馈,说说怎样思考,集体评价。
2.引入谈话:怎样解决按比例分配的问题?
在实际生活中还有哪些问题可以用按比例分配的'方法解决?生举例。(组织学生分组讨论.
反馈.
交流后,老师及时做出评价)
在建筑业中很多地方也用到按比例分配的方法来解决实际问题,今天我们继续研究这方面的问题。
独立思考再交流方法和结果,集体评价。
举例,分组讨论、反馈、交流。
1.课件出示例2:从题中你获取了什么信息?(学生交流获取的信息)
2.教师组织学生讨论:这道题与前面所做的题有什么区别?怎样解答?
生1:前面所做的题都是两个量的比,这道题是三个量的比。
生2:可以仿照上节所学的按比例分配方法去解。
3.学生尝试解答,教师巡视。
4.展示学生解法,说出解题思路。
方法1:220÷(2+3+6)=20(吨)
需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20×3=60(吨)需要石子的吨数:20×6=120(吨)
答:需要水泥40吨,需要沙子60吨,需要石子120吨。
方法2:总份数:2+3+6=11
需要水泥的吨数:220x2/11=40(吨)
需要沙子的吨数:220x3/11=60(吨)
需要石子的吨数:220×6/11=120(吨)
方法3:根据已有知识,用方程解。先求出每份是多少吨,再分别求出沙子、石子、水泥应需的吨数。
解:设每份是x吨.
2x+3x+6x=220
11x=220
x=20
需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20× 3=60(吨),需要石子的吨数:20×6=120(吨)
5.议一议:怎样解决按比例分配的问题?
学生先独立思考,再在小组内交流,最后师生共同总结出解决按比例分配问题的一般方法:要先求出总份数,求出每一份的量,再求出各部分的量;或者求出总份数后再看各部分量占总数量的几分之几,最后求各部分量;或者设每1份的量为未知数,列方程来解答。
学生交流获取的信息。
讨论交流异同。
尝试解答,再展示交流解题思路。
独立思考,再小组交流、小结解决按比例分配问题的一般方法。
在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。
在按比例分配的过程中,感受分配方案的简洁美、理性美。
1.课堂活动第2题。
根据给出的这三种蛋的连比,组织学生讨论后尝试独立解题,交流解题方法。
教师组织学生讨论:这道题与前面所做的题有什么区别?
引导学生得出,这个问题中虽然没有给出沙子、石子、水泥的连比,但已给出了一个配料方法,根据给出的数值,可以求出这三种料的连比。
学生讨论后尝试独立解题。完成后交流解决问题的方法。
再次组织学生讨论,交流得出:先求出现场测量的三种配料的比3:2:5,然后与要求的配料的比比较,得出:这堆混凝土不符合要求。
学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。
学生讨论找到方法。
独立解题,再交流解题方法。
讨论交流得出结论。
经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。
想一想,今天学习的知识与昨天有什么不同?又有什么相同?
谈收获。
练习十五第4―7题。
独立完成。
六年级数学负数教案(热门14篇)篇八
这部分内容是在学生理解并掌握分数乘法的意义以及分数乘法的计算方法基础上进行教学的。它是分数应用题中最基本的,不仅分数除法应用题以它为基础,很多复合的分数应用题也是在它的基础上扩展的。因此,使学生掌握这咎应用题的解答方法对他们今后进一步学习较复杂的分数应用题具有重要的意义。例1只涉一个数量,要求一个数量的几分之几是多少。要求的是已知数量的一部分,属于部分与整体的问题。在这里用线段图帮助学生题意,明确求我国人均耕地面积,就是求2500的是多少。从而掌握求一个数的几分之几是多少的实际问题的解答方法。
学生对单位1已经有了一定的理解和认识。已经掌握分数乘法的意义以及分数乘法的计算方法。本课让学生分清把谁看作单位1。借助线段图分析题意,学生在画线段图时会遇到一定的困难,教师要适时指导。
1、经历对实际问题的探究的过程,掌握求一个数的几分之几的问题的解答方法。并能正确地解答。
2、培养学生的分析能力与表达能力。
掌握求一个数的几分之几的问题的数量关系,并能正确地解答。
正确地确定单位1
教学过程备注
分析题意,理解数量关系。
教师引导学生理解我国人均耕地面积仅占世界人均耕地面积的是什么意思?(是把占世界人均耕地面积五光平均分成5份,我国人均耕地面积占其中的2份。)
教师然后让学生试着画一画线段图,分析题意。
全班与教师一起画线段图,借助于线段图理解题意,要求我国人均耕地面积就是求2500的是多少。
列式为:2500=
学生独立完成。
集体订正。
巩固练习。
1、教师出示做一做。
这是一道关于两个量之间的,一个量是另一个量的几分之几的问题。在解答时,教师也先让学生画线段图分析。
然后再独立解答。
2、完成练习四中的部分练习。
课堂小结。
板书:
六年级数学负数教案(热门14篇)篇九
1.使学生进一步理解比例的意义,懂得比例各部分名称。
2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。
3.能运用比例的基本性质判断两个比能否组成比例。
比例的基本质性。
发现并概括出比例的基本质性。
多媒体课件。
一、旧知铺垫。
1.什么叫做比例?
2.应用比例的意义,判断下面的比能否组成比例。
和
和5:2。
1/2:1/3和6:4。
和1:4。
二、探索新知。
1.比例各部分名称。
(1)教师说明组成比例的四个数的名称。
板书。
组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:=60:40。
内项:6o。
外项:40。
(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。
如::=60:40。
外内内外。
项项项项。
2.比例的基本性质。
你能发现比例的外项和内项有什么关系吗?
(1)学生独立探索其中的规律。
(2)与同学交流你的发现。
(3)汇报你的发现,全班交流。(师作适当的补充)。
在比例里,两个内项的积等于两个外项的积。
板书。
两个外项的积是。
两个内项的积是。
外项的积等于内项的积。
(4)举例说明,检验发现。
1
两个外项的积是。
两个内项的积是。
外项的积等于内项的积。
如果把比例改成分数形式呢?
如:=60/40。
3.。
等号两边的分子和分母分别交叉相乘,所得的积相等。
(5)学生归纳。
在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。
4.填一填。
(1)1/2:1/5=1/4:1/10。
()()=()()。
六年级数学负数教案(热门14篇)篇十
教学目的:
1、使学生理解倒数的意义。掌握求一个数的倒数的方法。
2、渗透事物都是普遍联系观点的启蒙教育。
教学重点:理解倒数的意义和怎样求倒数。
教学难点:求倒数方法的叙述。
教学过程:
开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。
自学书本p19。并思考以下问题:
1、什么叫倒数?
2、怎么求一个数的倒数?
3、是不是任何数都有倒数?小数有吗?带分数有吗?
1、什么叫倒数?
2、看下面四道题,你能说一些什么有关“倒数”的话。
3、存在倒数有那些条件
(1)两个数。
(2)这两个数的乘积是1。
4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?
5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。
6、总结求一个数的倒数的方法。
0.2的倒数是多少?
请学生说一说这节课学习了哪些内容。
练习五3—8。
六年级数学负数教案(热门14篇)篇十一
掌握条形和折线统计图表示统计数据的方法。
11、掌握条形和折线统计图表示统计数据的方法,加深对条形和折线统计图所表示的数据的理解,能利用折线统计图对数据进行分析。
2.联系实际进行统计,经历统计过程,体会统计在实际中的应用和作用,培养统计的意识,提高实践能力。
导学法、尝试法。
利用条形和折线统计图。
教师预设。
学生活动。
(1)复习条形和折线统计图的有关知识。
(2)说说条形统计图和折线统计图的区别。
1、请学生测量全班的身高,并把数据记录下来。
2、学生完成书中表格。
3、师生核对。小结。
4、完成书中复式条形统计图。
提问:你认为完成一项统计要经过哪些过程,
说明:一项完整的统计,先要收集数据并进行分类整理,再选择适当的统计图或。
5.做p63练习四实践活动第(3)小题。
让学生看第3题,说一说第3题的题意和从统计表里知道了什么。
学生独立完成,小组合作研究,派代表发言。
2.统计表表示出相关的数据,然后对数据作出比较,分析、推理和判断。
1.做补充练习。
让学生了解题意。要求两名学生相互合作,按要求从复印的身高记录上收集自己。
和同伴的身高数据。要求在课本上制成复式折线统计图。让学生与自己的同伴讨论从。
图中能得出哪些结论。组织学生在班内交流自己得出的结论。提问;你认为复式折线。
2.统计家庭电话费支出情况。
让学生拿出事先收集的家庭电话费支出情况,要求学生看一看每月的`支出的金额。你能与自己的同桌同学合作,制作出你们两家的电话费支出的复式折线统计图吗?学生完成复式折线统计图。现在请大家仔细观察自己制作的复式折线统计图,看看你们家的电话费支出情况怎样,比比两家去年下半年的电话费支出有什么不同。
这节课我们练习了什么内容?你进一步明确了哪些问题?
自制练习纸(每生一张:内容是身高、体重统计图)。
六年级数学负数教案(热门14篇)篇十二
掌握解决此类问题的方法。
理解题中的数量关系。
1、把下面各数化成百分数。
0.631.0870.044。
2、说说下面每个百分数的具体含义,是怎么求出来的?(哪两个数相比,把谁看作单位1)。
(1)某种学生的出油率是36%。
(2)实际用电量占计划用电量的80%。
(3)李家今年荔枝产量是去年的120%。
1、根据数学信息提出问题:出示例2的情境图,让学生根据图中提供的条件提出用百分数解决的问题。
(1)计划造林是实际造林的百分之几?
(2)实际造林是计划造林的`百分之几?
(3)实际造林比计划造林增加百分之几?
(4)计划早林比实际造林少百分之几?
2、让学生先解决前两个问提。解决这类问题要先弄清楚哪两个数相比,哪个数是单位1,哪一个数与单位1相比。
3、学生自主解决实际早林比计划增加了百分之几的问题。
(1)分析数量关系,让学生自己尝试着用线段图表示出来。
(2)让学生说说是怎样理解实际造林比原计划增加百分之几的?(求实际造林比原计划增加百分之几,就是求实际造林比原计划增加的公顷数与原计划造林的公顷数相比的百分率,原计划造林的公顷数是单位1。)。
(3)明确解决问题的方法:让学生根据分析确定解决问题的方法,并列式计算出结果。
方法一:(14-12)12=2120.167=16.7%。
方法二:14121.167=116.7%116.7%-100%=16.7%。
(4)小结解题方法:像这样的百分数问题有什么特点?解决它时要注意什么?(这是求一个数比另一个数增加百分之几的问题,它的解题思路和直接求一个数是另个数的百分之几的问题的分析思路基本相同,都要分清哪两个量在比较,谁是单位1,但是这里比较的两个量中有一个条件没有直接告诉我们,必须先求出。
(5)改变问题:问题如果是计划造林比实际造林少百分之几?,该怎么解决呢?
学生列出算式:(14-12)14。
(再次强调两个问题中谁和谁比,谁是单位1。使学生体会到,用百分数解决问题和用分数解决问题一样要注意找准单位1。)。
1、独立完成课本第90页做一做的题目。
2、练习二十二第1、2题。
六年级数学负数教案(热门14篇)篇十三
教科书第2页的例3、例4,做一做中的习题和练习一的第6~11题。
使学生掌握用整十数乘的口算方法。
理解用整十数乘的算理。
用十位上的乘后,在得数的末尾填一个0。
例3、例4的教学挂图。
一、复习。
口算下面各题:
1352732304。
1541621405。
指名让学生说一说135、2304、1404的口算过程。
二、新课。
1.教学例3。
教师出示例3的乒乓球挂图,如下:
用纸盖住最右边的一袋,提问:
这里有几袋乒乓球?每袋几个?要求一共有多少个乒乓球,怎样列式计算?学生回答后,教师板书:59=45。
接着露出盖住的那袋乒乓球,提问:
刚才有9袋乒乓球,一共有45个。再增加1袋,是几袋?一共有多少个乒乓球?怎样列式计算?指名学生回答,教师板书:510=50。
谁能说一说510=50是怎么想的?(因为9个5是45,45+5=50,也就是10个5就是50。)多指几名学生说说。
2.做做一做的第1题。
让学生独立口算,指名回答口算结果和口算过程,教师板书出算式和得数。然后提问:
这些题的得数和被乘数有什么关系?使学生通过观察得出:一个数乘以10,可以在这个数的后面直接添一个0。
3.做做一做的第2题。
让学生把得数写在书上。集体订正。
4.教学例4。
教师出示例4的.皮球图。如下:
提问:
这里有20盒皮球,每盒有6个。求一共有多少个皮球,怎样列式计算?学生回答后,教师板书:620。
620怎样口算呢?
先让学生说一说自己的想法,然后教师引导学生推想620的口算过程:
从图中我们可以看出每2盒是一摞,20盒是几棵?让学生数一数回答。
求20盒皮球的个数,也就是求几橡皮球的个数?
要求10摞皮球的个数,可以先求几橡皮球的个数?
一摞皮球有多少个?怎样想的?
几乘以几?学生回答后,教师在620的右下方用红粉笔板书:62=12。
一摞是12个,10摞是几个12?是多少?
几乘以几?学生回答后,教师在62=12的下面用红粉笔板书:1210=120。
算出10摞皮球的个数,就是20盒皮球的个数,也就是620等于多少?学生回答后,教师在620后面板书:=120。
最后,教师概括出620的口算过程:620可以先求62=12,再用1210,等于120。
5.做例4下面的做一做的第1题。
让学生先做,做完后,指名说一说各题的得数和口算过程。然后提问;
这几道题和例4的被乘数都是几位数?乘数都是什么数?
一位数乘以整十数在口算时,分了几步?
最后,让学生用这个规律把这道题再口算一遍。
6.做例4下面做一做的第2题。
三、练习。
做练习一的第6~11题。
1.第6、7题,让学生独立做,做完后,指名说得数,每道题抽几个小题让学生说一说口算过程。
2.第8题先让学生填出左边一题方框中的得数,再让学生填出右边一题方框中的得数,然后集体订正。
3.第9题,让学生先自己做,做完后说一说各是怎样列式计算的,为什么用乘法计算。
4.第10题,让学生自己读题,在练习本上解答。订正时,说一说为什么用乘法计算。
5.第11题,先让学生独立做,做完后,教师把学生的不同算法板书出来:205=100520=100。提问:
这两个算式表示的意思一样吗?为什么?(不一样,205是一排一排地算的,一排有20格,5排有205格;520是一行一行地算的,一行有5格,20行有520格。)。
205是怎样口算的?520是怎样口算的?通过分析使学生体会到:无论是205还是520都是把2和5相乘得10,再在后面添写一个0,得100。
六年级数学负数教案(热门14篇)篇十四
《认识正负数》这一课的教学重点是理解正负数的意义,教学难点是用正负数表示生活中的数量。因此,本节课我力图通过大量丰富的生活素材让学生来认识正负数,体会正负数的意义,并且会用正负数来表示一些生活中的问题。
以教材的信息窗作为切入点,通过猜地名――自主观察――集体交流,让学生感受到正负数产生的必要性。然后让学生试着用自己的`方法表示出零上13和零下3,让他们初步体会到正负数是具有相反意义的两种量,为后面的教学做好准备。在学生认识了正数、负数以及知道了正、负数的读法后,我又通过出示数据让学生读,让学生知道正、负数既可以是整数,也可以是小数或分数。
在组织教学记录温度这一环节的教学时,通过出示当天中央台的天气预报,让学生在熟悉的现实情境中开始数学学习。老师播报,让学生来记录,激发了学生的学习兴趣,学生主动学习的积极性很高。通过比较温度最高的城市和最低的城市,学生明白了在负号后面的数越大,这个数就越小。通过组织学生探索:“如果我今天从威海到上海,要加衣服还是减衣服?从北京到哈尔滨怎么样?为什么?”学生进一步加深了用正负数表示的温度高低的认识。这样组织,不但让学生主动积极地学会了记录温度,还让学生在充分经历探索运用正负数表示温度的过程中,积累了发现问题、解决问题的活动经验。
在组织学生理解正负数的意义这一教学环节时在讲授新课时注意“生活”这个前提,从生活中提取教学素材,通过让学生用正负数记录生活中用正、负数表示的例子,让学生不仅掌握了正、负数的记法、读法,还体会到了正负数是表示在一个情境中成对出现的两个具有相反意义的量。学生只有在理解了这两个概念的基础上,才能将它正确地运用到生活中,解释生活中用正、负数来表示的现象。同时也让学生体会到数学与生活是息息相关的,让学生感知数学就在身边,很多数学知识都是来源于生活实际。
本节课我还有很多不足的地方:
(1)如果能在学生总结出0既不是正数也不是负数,它比正数小,比负数大,它是正负数的分界线后,能初步渗透数轴的知识就更好了。
(2)课堂练习层次性不够强。