教学工作计划是教师根据课程的学习目标和要求,结合学生的实际情况,制定的一份详细规划和安排。现在就让我们一起来学习一些编写教学工作计划的技巧和方法吧。
不等式的性质教案设计(汇总12篇)篇一
2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。
3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。
联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。
多媒体课件长方形白纸、圆片,彩色笔等。
一、创设情境,激趣导入。
生1:四、五、六年级分的地一样多。
生2:……。
师:到底校长分的公平不公平,我们来做个实验吧?
二、动手操作,探究新知。
1、小组合作,实验探究。
师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。
2、汇报结果。
师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。
生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大。
生5:……。
3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)。
(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)。
师:三个年级分的地一样多,那么你们觉得、这三个分数的大小怎么样?
生:相等。
师:同学们请看这组分数有什么特点?(板书=)。
生:分数的分子分母发生了变化分数的大小不变。
生:分子分母同时乘2,……。
师:谁能用一句换来描述一下这个规律?
生:给分数的分子分母同时乘相同的数。(师随着板书)。
师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?
生:分数的分子分母同时除以相同的数。
师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书分数的基本性质)。
师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?
生:0除外。
师:为什么0要除外?
生:因为分数的分母不能为0.
师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?
生:同时相同0除外。
师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?
生:商不变的性质。
师:为什么?
生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。
师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。
三、应用新知,练习巩固。
(一)练一练。
(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。
(二)判断(抢答)。
1、分数的分子、分母都乘过或除以相同的数分数的大小不变。()。
2、把的分子缩小5倍,分母也缩小5倍分数的大小不变。()。
3、给分数的分子加上4,要是分数的大小,分母也要加上4。()。
(四)测一测。
1、把和都化成分母是10而大小不变的分数。
2、把和都化成分子是4而大小不变的分数。
3、的分子增加2,要是分数大小不变,分母应增加几?
四、总结。
1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?
2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)。
五、作业。
练习册2、4题。
不等式的性质教案设计(汇总12篇)篇二
有一些同学知道,还有一些同学不知道。不过没有关系,等我们学习了今天的内容之后,我相信在座的每一位同学都能够回答。你们有信心吗?恩,好,那我们就开始上课了!
(二)自主探究,发现规律。
1、出示例1的四幅图。
我们先来看一道题目。分别用分数表示每个图里的涂色部分。
(1)谁来说第一个?
全部答完后问:这里的1/3谁来说说它表示什么含义呢?3/9呢?
(2)师:这里有个1/2,你能说一个和1/2相等的分数吗?
2/4、4/8、8/16......还有吧,是不是还可以说出好多好多啊?
先别急,先来看看有哪些实验要求。
咱们这个实验的目的上一什么?验证什么?
咱们实验的方法有哪些呢?
实验有什么要求?操作有序什么意思呢?要听从小组长的安排。
1、实验目的:验证猜想。
2、方法:折一折、分一分、画一画、算一算......
3、要求:小组合作,明确分工,操作有序。
我们要来比一比,哪个小组做的实验既快又好。一会儿,我们把他的作品展示一下。好,开始!
学生操作,老师巡视指导。
集体交流结果。
咱们刚才通过做实验,发现这些分数的大小怎样?也就是分数的大小不变。这些分数的大小相等,可是它们的分子、分母变了吧!怎么回事呢?这里面有什么规律呢?你发现了什么?能不能告诉老师。
把你的发现先和同桌交流交流。
生1:我发现由到,分子被扩大了2倍,分母也被扩大了2倍,所以它们是相等的。
师:还有谁想说说你的.发现?
生2:我发现由到,分子被扩大了3倍,分母也被扩大了3倍,所以它们的大小相等。
师:换一组数据来说说自己的发现?
生:由到,分子、分母都被缩小了3倍,它们的大小不变。
师:为什么要0除外?
生:一个分数的分子和分母同时乘或除以一个相同的数(0除外),它们的大小不变。
我们一齐读一遍。
师:这个分数的基本性质跟咱们以前学的什么知识有点相似啊?
除法中商不变的性质你还记得吗?
同学们想想看,这两个性质之间有什么关系呢?
根据分数与除法的关系,被除数相当于分数的分子,除数相当于分数的分母,在除法当中有商不变的性质,那在分数中也有它的基本性质。
师:好,那现在你知道阿凡提为什么会笑吗?他又说了哪些话呢?
师:2/6到3/9分子分母怎样变化的?分子和分母同时乘了1.5,呢也就是说这里相同的数不仅可以指整数,还可以指小数。
(三)巩固练习,强化记忆。
好,那下面咱们就用今天学的知识来做几道题,好不好?
1、把书翻到61页,练一练第一题,请你涂一涂填一填。我看谁的动作最快。
集体交流。
2、下面我们来填空补缺想理由。(出示练一练第二题)。
他们这样填是根据什么?
3、出示练习十一第二题。
独立完成,集体订正。
(四)课堂作业,运用知识。
练习十一第三题。
(五)课堂小结,认识自己。
今天这节课,你学到了什么?
不等式的性质教案设计(汇总12篇)篇三
分数的基本性质:分数的分子和分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
概念:分数的分子和分母同时扩大或缩小相同的倍数(这儿讲的倍数除0外),分数的大小不变。
分数是指整体的一部分,或更一般地,任何数量相等的部分;是一个整数a和一个正整数b的不等于整数的'比。
约分:把一个分数的分子、分母同时除以公因数,分数的值不变。约分的依据:分数的基本性质。
利用约分可以化简分数,当直接约分有困难时,可以将分子分母分解质因数后约分。
通分:根据分数的基本性质,把几个异分母分数化成与原来分数相等的同分母的分数的过程。
不等式的性质教案设计(汇总12篇)篇四
教学重点:理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一,探索并掌握等比数列的通项公式。
教学难点:遇到具体问题时,抽象出数列的模型和数列的等比关系,并能用有关知识解决相应问题。
教学过程:
1.等差数列的通项公式。
2.等差数列的前n项和公式。
引入:1“一尺之棰,日取其半,万世不竭。”
2细胞分裂模型。
3计算机病毒的传播。
由学生通过类比,归纳,猜想,发现等比数列的特点。
进而让学生通过用递推公式描述等比数列。
让学生回忆用不完全归纳法得到等差数列的通项公式的过程然后类比等比数列的通项公式。
注意:1公比q是任意一个常数,不仅可以是正数也可以是负数。
2当首项等于0时,数列都是0。当公比为0时,数列也都是0。
所以首项和公比都不可以是0。
3当公比q=1时,数列是怎么样的,当公比q大于1,公比q小于1时数列是怎么样的?
4以及等比数列和指数函数的关系。
5是后一项比前一项。
列:1,2,(略)。
小结:等比数列的通项公式。
1.教材p59练习1,2,3,题。
2.作业:p60习题1,4。
第二课时5.2.4等比数列(二)。
提问:等差数列的通项公式。
等比数列的通项公式。
1.讨论:如果是等差列的三项满足。
由学生给出如果是等比数列满足。
2练习:如果等比数列=4,=16,=?(学生口答)。
如果等比数列=4,=16,=?(学生口答)。
3等比中项:如果等比数列。那么,
则叫做等比数列的等比中项(教师给出)。
4思考:是否成立呢?成立吗?
成立吗?
又学生找到其间的规律,并对比记忆如果等差列,
5思考:如果是两个等比数列,那么是等比数列吗?
如果是为什么?是等比数列吗?引导学生证明。
6思考:在等比数列里,如果成立吗?
如果是为什么?由学生给出证明过程。
列3:一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项。
解(略)。
列4:略:
练习:1在等比数列,已知那么。
2p61a组8。
不等式的性质教案设计(汇总12篇)篇五
2.培养学生观察、分析、思考和抽象、概括的能力.。
3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.。
教学过程。
一、谈话.。
我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、
整数的互化方法.今天我们继续学习分数的有关知识.。
二、导入新课.。
(一)教学例1.。
出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.。
1.分别出示每一个圆,让学生说出表示阴影部分的分数.。
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2.观察比较阴影部分的大小:
(1)从4幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)。
(2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)。
3.分析、推导出表示阴影部分的分数的大小也相等:
(1)4幅图中阴影部分的大小相等.那么,表示这4幅图的4个分数的大小怎么样呢?
(这4个分数的大小也相等)。
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).。
4.观察、分析相等的分数之间有什么关系?
(1)观察转化成,的分子、分母发生了什么变化?
(的分子、分母都乘上了2或的分子、分母都扩大了2倍.)。
(2)观察。
(二)教学例2.。
出示例2:比较的大小.。
1.出示图:我们在三条同样的数轴上分别表示这三个分数.。
2.观察数轴上三个点的位置,比较三个分数的大小:
从数轴上可以看出:
3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.。
(1)这三个分数从形式上看不同,但是它们实质上又都相等.。
(教师板书:)。
(2)你们分析一下,、各用什么样的方法就都可以转化成了呢?
1.观察前面两道例题,你们从中发现了什么变化规律?
“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)。
2.为什么要“零除外”?
3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”
教师板书字母公式:
1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?
(和除法中商不变的性质相类似.)。
(1)商不变的性质是什么?
(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)。
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.。
我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解。
决一些有关分数的问题.。
3.教学例3.。
例3把和化成分母是12而大小不变的分数.。
板书:
教师提问:
(1)?为什么?依据什么道理?
(,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以,)。
(2)这个“6”是怎么想出来的?
(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)。
(3)?为什么?依据的什么道理?
(,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以,
不等式的性质教案设计(汇总12篇)篇六
1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题。
2.培养学生观察、分析、思考和抽象、概括的能力。
3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育。
一、谈话。
我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、整数的互化方法.今天我们继续学习分数的有关知识。
二、导入新课。
(一)教学例1。
出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小。
1.分别出示每一个圆,让学生说出表示阴影部分的分数。
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2.观察比较阴影部分的大小:
(1)从4幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)。
(2)阴影部分的大小相等,可以用等号连接起来。(把图上阴影部分画上等号)。
3.分析、推导出表示阴影部分的分数的大小也相等:
(1)4幅图中阴影部分的大小相等.那么,表示这4幅图的4个分数的大小怎么样呢?
(这4个分数的大小也相等)。
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。
4.观察、分析相等的分数之间有什么关系?
(1)观察转化成,的分子、分母发生了什么变化?
(的分子、分母都乘上了2或的分子、分母都扩大了2倍。)。
(2)观察。
(二)教学例2。
出示例2:比较的大小.。
1.出示图:我们在三条同样的数轴上分别表示这三个分数.。
2.观察数轴上三个点的位置,比较三个分数的大小:
从数轴上可以看出:
3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律。
(1)这三个分数从形式上看不同,但是它们实质上又都相等。
(2)你们分析一下,、各用什么样的方法就都可以转化成了呢?
1.观察前面两道例题,你们从中发现了什么变化规律?
“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)。
2.为什么要“零除外”?
3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”
教师板书字母公式:
1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?
(和除法中商不变的性质相类似。)。
(1)商不变的性质是什么?
(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)。
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算。
我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解决一些有关分数的问题。
五、课堂练习。
1.把下面各分数化成分母是60,而大小不变的分数。
2.把下面的分数化成分子是1,而大小不变的分数。
3.在()里填上适当的数。
4.的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?
5.请同学们想出与相等的分数。
规律:这个分数的值是,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个。
六、课堂总结。
七、课后作业。
1.指出下面每组中的两个分数是相等的还是不相等的。
2.在下面的括号里填上适当的数。
不等式的性质教案设计(汇总12篇)篇七
(1)复习巩固已学的铁、铜的物理及化学性质;学习铁、铜的新的化学性质;学会用图示方法自主构建铁的不同价态相互转化的关系。
(2)采用实验探究的方法,掌握fe3+、fe2+的性质及相互转化条件,体验自主实验探究过程,培养学生分析问题和解决问题的能力。
(3)认识化学与人类生产、生活的密切关系。体会铁、铜及其化合物的使用对人类生产、生活及人类身体健康的重要作用。
二、教学重点与难点。
教学难点:fe3+与fe2+的相互转化。
三、设计思路。
主要采用师生共同讨论、归纳知识与学生实验探究相结合的教学模式,通过回顾前面学习的知识来比较铜与铁性质上的异同,找出铁、铜反应后产物的不同与氧化剂强弱的规律,并通过实验探究fe2+、fe3+的性质以及fe2+、fe3+的相互转化关系,从而帮助学生构建“铁三角”关系。
四、教学过程。
不等式的性质教案设计(汇总12篇)篇八
(3)能够利用基本不等式求简单的最值。
2、过程与方法目标。
(1)经历由几何图形抽象出基本不等式的过程;。
(2)体验数形结合思想。
3、情感、态度和价值观目标。
(1)感悟数学的发展过程,学会用数学的眼光观察、分析事物;。
(2)体会多角度探索、解决问题。
不等式的性质教案设计(汇总12篇)篇九
填空:
教师追问:第三题()里可以填多少个数?第4题呢?
为什么3、4题()里可以填无数个数?
()里填任何数都行吗?哪个数不行?(板书:零除外)。
这里为什么必须“零除外”?
(板书课题:分数基本性质)。
4.深入理解分数基本性质.。
教师提问:分数的基本性质里哪几个词比较重要?
为什么“都”和“相同”很重要?
为什么“分数大小不变”也很重要?
为什么“零除外”也很重要?
三、课堂练习.。
1.用直线把相等的分数连接起来.。
2.把下列分数按要求分类.。
和相等的分数:
和相等的分数:
3.判断下列各题的对错,并说明理由.。
4.填空并说出理由.。
5.集体练习.。
四、照应课前谈话.。
问:现在谁知道哥哥、姐姐、弟弟三个人,谁吃的西瓜多呢?
板书:
五、课堂小结.。
这节课你有什么收获?
六、布置作业.。
1.指出下面每组中的两个分数是相等的还是不相等的.。
2.在下面的括号里填上适当的数.。
将本文的word文档下载到电脑,方便收藏和打印。
不等式的性质教案设计(汇总12篇)篇十
课前复习提问时,给学生的复习思考时间太短,开始问了几个学生不等式的三个基本性质,有的答不出来,有的答对一点但不完整。在很多学生没有作好充分准备时问到这个问题有点慌乱,我觉得更好的办法是先让学生看一下书复习一下不等式的三个基本性质,然后合起书再叫同学来说效果会更好。
例2学生对实际问题中的字母取值范围考虑不全,在讲解这个问题时带有点填压式,告诉学生字母的取值要大于或等于0,讲过之后可能学生印象还是不深。我觉得应先举一些实际生活中常见的例子,比如在数人的个数时字母应取什么值等,多列举一些例子让学生感性上认识,从而引导学生思考例2的字母的.取值范围。
例3学生根据三边关系往往只列出一个不等式,在教学时我先采取了提问的方式,给出了三个问题,引出三个不等式,然后让学生移项变形,又得出三个不等式,对总结三角形任意两边之差小于第三边做了辅垫。教学效果较好。
学生在回答问题的过程中,为了更快的得到自己预期的答案,往往打断学生的回答,剥夺了学生的主动权;比如学生在总结不等式性质3时,总怕他们出错所以老师急于公布结论。有时在学生思考问题时做一些补充打断学生的思路,这样对学生思考问题又带来一定影响;课堂小结中学生的体会与收获谈的不是很好。
不等式的性质教案设计(汇总12篇)篇十一
《不等式的基本性质》它是北师大版八年级下册第二章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:
本节内容不等式的基本性质,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。
根据《新课程标准》的要求,教材的内容兼顾我班学生的特点,我制定了如下教学目标:
知识与技能:
1.感受生活中存在的不等关系,了解不等式的意义。
过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。
情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。
教学重难点:
不等式的性质教案设计(汇总12篇)篇十二
二、重点、难点分析。
1.不等式的解与方程的解的意义的异同点。
(1)用不等式表示。
(2)用数轴表示。
如不等式的解集,可以用数轴上表示4的点的左边部分表示,因为包含,所以在表示4的点上画实心圈.
一、素质教育目标。
(一)知识教学点。
1.使学生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集.。
2.知道不等式的“解集”与方程“解”的不同点.。
(二)能力训练点。
(三)德育渗透点。
通过讲解不等式的“解集”与方程“解”的关系,向学生渗透对立统一的辩证观点.。
(四)美育渗透点。
通过本节课的学习,让学生了解不等式的解集可利用图形来表达,渗透数形结合的数学美.。
二、学法引导。
1.教学方法:类比法、引导发现法、实践法.。
三、重点・难点・疑点及解决办法。
(一)重点。