六年级教案的编写应当注重活动设计,使学生在参与活动中主动探究和发现,提高学习的主动性和积极性。在下面,小编为大家整理了一些实用的六年级教案范文,希望能够给大家的教学工作带来一些新的思考和突破。
人教版六年级数学第二单元教案(优质16篇)篇一
教材第11页。
教学目标。
1.经历小组合作调查,交流储蓄知识,解决和利率有关的实际问题的过程。
2.知道本金、利率、利息的含义,能正确解答有关利息的实际问题。
3.体会储蓄对国家和个人的重要意义,积累关于储蓄的常识和经验。
重点难点。
重点:理解利率与分数、百分数的含义。
难点:解决有关“利率”的实际问题。
教具学具。
课件。
教学过程。
一、创设情境,激趣引导。
生1:一般情况下,爸爸妈妈应该把钱存入银行。
生2:爸爸妈妈不会把一大笔现金放在家里,这样太不安全了,他们会存入银行。
生3:把钱存入银行不仅安全,还可以获得利息呢。
……。
师:人们常常把暂时不用的钱存入银行或信用社储蓄起来。这样不仅可以支援国家建设,也使个人用钱更加安全和有计划,还可以增加一些收入。钱存入银行后增加的部分就是利息,今天我们就重点研究与“利息”相关的问题。
二、探究体验,经理过程。
师:先来大胆地猜一猜,你觉得利息的多少与什么因素有关呢?
生1:不可能说钱存入银行的时间长短不同,而所得的利息一样,所以利息的多少应该与钱存入银行的时间有关。
师:对,利息的多少与存入的时间长短有关,存入的这段时间也就是我们平时所说的存期。
生2:不可能说存入银行的钱不管多少所得的利息都一样,所以利息的多少应该与存入银行的钱的多少有关,存入的钱越多,相同时间内的利息应该越多。
师:说的很有道理,我们把存入银行的钱叫做本金。存期相同的情况下,本金越多,利息就越多。
生4:我们小组的同学进行过调查,在银行内很显眼的位置公布着不同存期的利率,利息的多少一定与利率有关。
学生可能会说:
o我知道了储蓄的种类有整存整取、零存整取和活期。
o我知道了整存整取的利率又分为三个月的、半年的、一年的、二年的、三年的、五年的,存期不同利率也不一样。
o我知道了活期的利率最低,但是随时用钱随时取,比较方便。
……。
师:你们知道利息究竟怎么计算吗?
生:利息的计算公式是利息=本金×利率×时间。
师:根据国家经济的发展变化,银行存款的利率有时会有所调整。下面是20xx年7月中国人民银行公布的存款利率。(课件出示:教材第11页利率表)。
学生观察利率表。
师:能运用你所掌握的利率的相关知识帮王奶奶解决问题吗?试一试。(课件出示:教材第11页例4)。
学生尝试独立解答问题;教师巡视了解情况,指导个别有困难的学生。
师:谁愿意说说你的想法和算法?
生1:首先我们要明确的是,到期后王奶奶可以取回的钱除了本金还有利息,本金我们已经知道是5000元,所以最关键的就是算出利息。根据利息的计算公式“利息=本金×利率×时间”,我们从上面的利率表中对应找到存期两年的利率是3.75%,这样就可以算出利息5000×3.75%×2=375(元);再加本金,到期后可以取回的钱就是5000+375=5375(元)。
生2:我们也可以把本金5000元看作单位“1”,这样每年的利息就是5000元的3.75%,存入2年,所得利息就是5000元的(3.75%×2);这样到期时可以取回的钱就可以列成算式5000×(1+3.75%×2)=5375(元)。
只要学生解答正确,讲解合理就要及时给予肯定和鼓励。
三、课末总结,梳理提升。
教学反思。
1.本节课我始终“以学生为本”,强调让学生通过自己的活动归纳出利息的计算方法,增加了学生对知识的理解和深化。以往计算利息时,学生经常把时间漏乘,这是学生容易忽视的地方。通过简短的争论,练习时学生很少把时间漏乘,从简短的争论中,引导学生发现方法,要比教师反复强调效果好得多。
2.储蓄与人们的生活联系密切,本节课是在百分数的知识和学生已有生活经验的基础上进行教学的。注重数学知识与生活实践的联系。我们知道学习数学的目的是为了应用,教师在设计练习时,要有意识地引导学生把所学知识运用到生活实践中去,体现数学服务于生活的教育理念。
课堂作业新设计。
a类。
(考查知识点:利率;能力要求:能灵活运用所学知识解决生活中的具体问题)。
b类。
存期年利率。
一年4.14%。
二年4.77%。
(考查知识点:利率;能力要求:能灵活运用所学知识解决生活中的实际问题)。
参考答案。
课堂作业新设计。
a类:
3000×3.81%×5+3000=3571.5(元)。
b类:
存一年再存一年:10000×4.14%×1=414(元)。
(10000+414)×4.14%×1+414≈845.14(元)。
直接存入两年:10000×4.77%×2=954(元)。
954845.14直接存入两年比较合适。
教材习题。
第11页“做一做”
8000×4.75%×5=1900(元)8000+1900=9900(元)。
人教版六年级数学第二单元教案(优质16篇)篇二
让学生综合运用折扣知识解决生活中的“促销”问题,使学生对不同的促销方式有更深入地认识,经历综合应用知识的过程,具有一定的难度。
从学生角度分析为什么难。
解题过程中对学生掌握百分数应用题的数量关系,解决问题的熟练度有较高的要求。“商场促销”虽对学生来说都不陌生,但学生购买促销商品的经验还不足,对各促销方式的实质理解具有一定的难度。
人教版六年级数学第二单元教案(优质16篇)篇三
利率(教材第11页有关利率的内容)。
【教学目标】。
1.通过教学使学生知道储蓄的意义;明确本金、利息和利率的含义;掌握计算利息的方法,会进行简单计算。
2.对学生进行勤俭节约,积极参加储蓄以及支援国家、灾区、贫困地区建设的思想品德教育。
【重点难点】。
1.掌握利息的计算方法。
2.正确地计算利息,解决利息计算的实际问题。
【教学准备】。
多媒体课件。
【新课讲授】。
1.介绍存款的种类、形式。
存款分为活期、整存整取和零存整取等方式。
2.阅读教材第11页的内容,自学讨论例4,理解本金、利息、税后利息和利率的含义。(例如:王奶奶月8月1日把5000元钱存入银行,整存整取两年,到8月1日,王奶奶不仅可以取回存入的5000元,还可以得到银行多付给的150元,共5150元。)(注:这里不考虑利息税)。
本金:存入银行的钱叫做本金。王奶奶存入的5000元就是本金。
利息:取款时银行多支付的钱叫做利息。
利率:利息和本金的比值叫做利率。
(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。
(2)阅读教材第11页表格,了解同一时期各银行的利率是一定的。
3.学会填写存款凭条。
把存款凭条画在黑板上,请学生尝试填写。然后评讲。(要填写的项目:户名、存期、存入金额、存种、密码、地址等,最后填上日期。)
4.利息的计算。
(1)出示利息的计算公式:
利息=本金×利率×时间。
(2)计算方法:
若按照207月的银行利率,如果王奶奶的5000元钱整存整取,两年到期的利息是多少?学生计算后交流,教师板书:5000×3.75%×2=375(元)。
加上王奶奶存入的本金5000元,到期时她能得到本金和利息,一共5375元。
【课堂作业】。
本题是有关“打折”和“纳税”的问题,是百分数的具体应用,在练习时应让学生说说自己每一步计算的意义,并进行集体订正。
【课堂小结】。
【课后作业】。
1.完成练习册中本课时的练习。
2.教材第14页第9题。
教学反思:
人教版六年级数学第二单元教案(优质16篇)篇四
1。理解利率,能利用百分数知识,解决与储蓄有关的实际问题。
2。结合储蓄等活动,学会合理理财,培养分析问题、解决问题的能力。
教学重点难点。
理解概念,能利用百分数知识,解决与储蓄有关的实际问题。
教学过程。
一、复习引入。
1。复习利率有关知识:税收的种类,应纳税额,税率。
2。在日常生活中,我们会积攒一些零用钱,我们积攒的暂时不用的零用钱,会怎么处理呢?学生回答,由学生的回答引出“储蓄”。
3。谁存过钱?怎么存的?将钱存入银行有什么好处呢?讨论利息的情况。
4。这节课我们就来研究相关储蓄方面的知识,探讨利率有关的知识。
二、新课探究。
1。自读教材11页例4上面的部分内容:
学习要求:理清以下问题。
(1)存款有哪几种方式?
(2)什么是本金?
(3)什么是利息?
(4)什么是利率?
(5)怎样计算利息?
学生自学教材,学习后汇报。教师结合学生汇报,考查学生对利息的理解,对利息公式的理解。
检测:
(1)结合20xx年10月利率表,说说各种存款方式的年利率是多少?
(2)整存整取一年的年利率是1。50%,表示什么意思?
2。学以致用,教学例4:
(1)出示例4。
(2)读题思考:两年后可以取回多少钱,取回哪些钱?包括几部分?
(3)利息的多少和什么有关系?(引导学生知道是与本金、利率、时间有关)。
(4)归纳整理汇报:实际取回的钱数=本金+利息;利息=本金×利率×时间;
学生独立完成,教师注意巡视学生计算过程,避免丢落项和计算不准确。
三、巩固练习。
1。完成教材第11页“做一做”
(2)学生运用公式独立解答后集体订正。
2。教材第14页“练习二”第9题。
先让学生观察存款凭证,从中能获取哪些信息?本金、利率、时间各是多少?再根据利息的计算方法进行解答。
3。教材第15页“练习二”第12题。
(1)妈妈需要慎重选择吗?怎么办?
(2)第一种方式的时间,利率是多少?第二种呢?
(3)分别计算后比较并做出决定。学生独立解答。讲一讲自己的解题思路。
小结:在实际生活中,我们常常需要这样做出选择,选择时需要用心地算一算,算的过程不要怕麻烦,按照时间和方法一步一步地去想,就能很好地解决问题。
四、课堂小结。
同学们,这节课有什么收获?
学生汇报,引导学生懂得储蓄是利国利民的事情;在银行存款的方式很多种,如活期、整存争取、零存整取等;存入银行的钱叫做本金;取款时银行多支付的钱叫做利息;利息与本金的比值叫做利率。我们还知道了计算利息的方法是:利息=本金×利率×存期;计算时遇到步骤比较的计算时,要一步一步认真计算,有耐心,保证计算结果正确。
板书设计。
利率。
利息=本金×利率×存期(时间)。
例45000×(1+3。75%×2)。
=5000×1。075。
=5375(元)。
答:到期时王奶奶可以取回5375元。
将本文的word文档下载到电脑,方便收藏和打印。
人教版六年级数学第二单元教案(优质16篇)篇五
8.为民旅社有床位840张,比扩建前增加了20%,扩建前比扩建后少多少张床位?
(2)菜场运来6000千克青菜,运来的大白菜比青菜多15%,运来大白菜多少千克?
(3)菜场运来6000千克青菜,比运来的大白菜多20%,比运来的大白菜多多少千。
将本文的word文档下载到电脑,方便收藏和打印。
人教版六年级数学第二单元教案(优质16篇)篇六
1。复习利率有关知识:税收的种类,应纳税额,税率。
2。在日常生活中,我们会积攒一些零用钱,我们积攒的暂时不用的零用钱,会怎么处理呢?学生回答,由学生的回答引出“储蓄”。
3。谁存过钱?怎么存的?将钱存入银行有什么好处呢?讨论利息的情况。
4。这节课我们就来研究相关储蓄方面的知识,探讨利率有关的知识。
二、新课探究。
1。自读教材11页例4上面的部分内容:
学习要求:理清以下问题。
(1)存款有哪几种方式?
(2)什么是本金?
(3)什么是利息?
(4)什么是利率?
(5)怎样计算利息?
学生自学教材,学习后汇报。教师结合学生汇报,考查学生对利息的理解,对利息公式的理解。
检测:
(1)结合20xx年10月利率表,说说各种存款方式的年利率是多少?
(2)整存整取一年的年利率是1。50%,表示什么意思?
2。学以致用,教学例4:
(1)出示例4。
(2)读题思考:两年后可以取回多少钱,取回哪些钱?包括几部分?
(3)利息的多少和什么有关系?(引导学生知道是与本金、利率、时间有关)。
(4)归纳整理汇报:实际取回的钱数=本金+利息;利息=本金×利率×时间;
学生独立完成,教师注意巡视学生计算过程,避免丢落项和计算不准确。
三、巩固练习。
1。完成教材第11页“做一做”
(2)学生运用公式独立解答后集体订正。
2。教材第14页“练习二”第9题。
先让学生观察存款凭证,从中能获取哪些信息?本金、利率、时间各是多少?再根据利息的计算方法进行解答。
3。教材第15页“练习二”第12题。
(1)妈妈需要慎重选择吗?怎么办?
(2)第一种方式的时间,利率是多少?第二种呢?
(3)分别计算后比较并做出决定。学生独立解答。讲一讲自己的解题思路。
小结:在实际生活中,我们常常需要这样做出选择,选择时需要用心地算一算,算的过程不要怕麻烦,按照时间和方法一步一步地去想,就能很好地解决问题。
四、课堂小结。
同学们,这节课有什么收获?
学生汇报,引导学生懂得储蓄是利国利民的事情;在银行存款的方式很多种,如活期、整存争取、零存整取等;存入银行的钱叫做本金;取款时银行多支付的钱叫做利息;利息与本金的比值叫做利率。我们还知道了计算利息的方法是:利息=本金×利率×存期;计算时遇到步骤比较的计算时,要一步一步认真计算,有耐心,保证计算结果正确。
人教版六年级数学第二单元教案(优质16篇)篇七
生1:一般情况下,爸爸妈妈应该把钱存入银行。
生2:爸爸妈妈不会把一大笔现金放在家里,这样太不安全了,他们会存入银行。
生3:把钱存入银行不仅安全,还可以获得利息呢。
……。
师:人们常常把暂时不用的钱存入银行或信用社储蓄起来。这样不仅可以支援国家建设,也使个人用钱更加安全和有计划,还可以增加一些收入。钱存入银行后增加的部分就是利息,今天我们就重点研究与“利息”相关的问题。
二、探究体验,经理过程。
师:先来大胆地猜一猜,你觉得利息的多少与什么因素有关呢?
生1:不可能说钱存入银行的时间长短不同,而所得的利息一样,所以利息的多少应该与钱存入银行的时间有关。
师:对,利息的多少与存入的时间长短有关,存入的这段时间也就是我们平时所说的存期。
生2:不可能说存入银行的钱不管多少所得的利息都一样,所以利息的多少应该与存入银行的钱的多少有关,存入的钱越多,相同时间内的利息应该越多。
师:说的很有道理,我们把存入银行的钱叫做本金。存期相同的情况下,本金越多,利息就越多。
生4:我们小组的同学进行过调查,在银行内很显眼的位置公布着不同存期的利率,利息的多少一定与利率有关。
学生可能会说:
o我知道了储蓄的种类有整存整取、零存整取和活期。
o我知道了整存整取的利率又分为三个月的、半年的、一年的、二年的、三年的、五年的,存期不同利率也不一样。
o我知道了活期的利率最低,但是随时用钱随时取,比较方便。
……。
师:你们知道利息究竟怎么计算吗?
生:利息的计算公式是利息=本金×利率×时间。
师:根据国家经济的发展变化,银行存款的利率有时会有所调整。下面是20xx年7月中国人民银行公布的存款利率。(课件出示:教材第11页利率表)。
学生观察利率表。
师:能运用你所掌握的利率的相关知识帮王奶奶解决问题吗?试一试。(课件出示:教材第11页例4)。
学生尝试独立解答问题;教师巡视了解情况,指导个别有困难的学生。
师:谁愿意说说你的想法和算法?
生1:首先我们要明确的是,到期后王奶奶可以取回的钱除了本金还有利息,本金我们已经知道是5000元,所以最关键的就是算出利息。根据利息的计算公式“利息=本金×利率×时间”,我们从上面的利率表中对应找到存期两年的利率是3.75%,这样就可以算出利息5000×3.75%×2=375(元);再加本金,到期后可以取回的钱就是5000+375=5375(元)。
生2:我们也可以把本金5000元看作单位“1”,这样每年的利息就是5000元的3.75%,存入2年,所得利息就是5000元的(3.75%×2);这样到期时可以取回的钱就可以列成算式5000×(1+3.75%×2)=5375(元)。
只要学生解答正确,讲解合理就要及时给予肯定和鼓励。
三、课末总结,梳理提升。
利率。
人教版六年级数学第二单元教案(优质16篇)篇八
教学目标:
1、在具体情境中,通过“画一画”的活动,初步认识正比例图象。
2、会在方格纸上描出成正比例的量所对应的点,并能在图中根据一个变量的值估计它所对应的变量的值。
3、利用正比例关系,解决生活中的一些简单问题。
教学重点:
会在方格纸上描出成正比例的量所对应的点,并认识到成正比例关系的两个量的图象特点。
教学难点:
利用正比例关系,解决生活中的一些简单问题。
教学准备:
多媒体课件。
教学过程:
一、复习。
生:要满足两个条件。
1、两种量是相关联的量,一种量随着另一种量的增加而增加、减少而减少;。
2、两种量相对应的比值不变。
师:请同学们在思考一下:y=5x,y和x成正比例吗?为什么?
生:成正比例,因为y和x是两种相关联的量,随着x的变化,y也在不断变化,y和x的比值始终等于5.所以y和x成正比例。
师:看来对于成正比例的量之间的关系,同学们已经掌握,下面我们再思考一个问题:y和x成正比例,y是x的5倍,它们之间的关系能通过图画的到吗?这就是我们这节课要学习的内容。(教师板书课题:画一画)。
(设计意图:复习上节课正比例的有关知识,导入本课。)。
二、动手画图,理解含义。
填表,说一说表中两个量的关系。
一个数012345678910。
这个数的5倍。
(1)学生填表。
(2)学生汇报。
(3)谁能说一说这两个量的关系。
这两个量在不断变化,并且一个数增大,它地5倍也不断增大,但他们的比值不变。所以这两个变量成正比例关系。
(设计意图:通过本环节,带领学生看懂图,明确图上横轴、纵轴分别表示什么,明确各点所表示的含义。为下一步在表格上描点,扫清障碍。)。
三、试一试。
1、在下图中描点,表示第20页两个表格中的数量关系。
2、思考:连接各点,你发现了什么?
生:所有的点在都在同一条直线上。
(设计意图:学生会很形象的看到所有点都在同一条直线上,进一步体会当两个变量成正比例关系时,所绘成的图是一条直线。)。
四、练一练。
1、圆的半径和面积成正比例关系吗?为什么?
师:因为圆的面积和半径的比值不是一个常数。
(设计意图:从反方进一步证明成不成正比例的两个量,形成的图像不是一条直线。通过对比方式,再次验证结论。)。
2、乘船的人数与所付船费为:(数据见书上)。
(1)将书上的图补充完整。
(2)说说哪个量没有变?
(3)乘船人数与船费有什么关系?
(4)连接各点,你发现了什么?
3、回答下列问题。
(1)圆的周长与直径成正比例吗?为什么?
(2)根据右图,先估计圆的周长,再实际计算。
(3)直径为5厘米的圆的周长估计值为(),实际计算值为()。
(4)直径为15厘米的圆的周长估计值为(),实际计算值为()。
4、把下表填写完整。试着在第一题的图上描点,并连接各点,你发现了什么?(表格见书上)。
(设计意图:通过以上练习,巩固所学。)。
人教版六年级数学第二单元教案(优质16篇)篇九
教学目标:
2.培养学生的逻辑思维能力。
3.感知生活中的数学知识。
重点难点1.通过具体问题认识反比例的量。
2.掌握成反比例的量的变化规律及其特征。
教学难点:
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学过程:
一、课前预习。
预习24---26页内容。
1、什么是成反比例的量?你是怎么理解的?
2、情境一中的两个表中量变化关系相同吗?
3、三个情境中的两个量哪些是成反比例的量?为什么?
二、展示与交流。
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。
情境(一)。
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
情境(二)。
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每。
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。
同桌交流,用自己的语言表达。
写出关系式:速度×时间=路程(一定)。
观察思考并用自己的语言描述变化关系乘积(路程)一定。
情境(三)。
写出关系式:每杯果汁量×杯数=果汗总量(一定)。
5、以上两个情境中有什么共同点?
反比例意义。
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
活动四:想一想。
二、反馈与检测。
1、判断下面每题是否成反比例。
(1)出油率一定,香油的质量与芝麻的质量。
(2)三角形的面积一定,它的底与高。
(3)一个数和它的倒数。
(4)一捆100米电线,用去长度与剩下长度。
(5)圆柱体的体积一定,底面积和高。
(6)小林做10道数学题,已做的题和没有做的题。
(7)长方形的长一定,面积和宽。
(8)平行四边形面积一定,底和高。
2、教材“练一练”p33第1题。
3、教材“练一练”p33第2题。
4、找一找生活中成反比例的例子,并与同伴交流。
人教版六年级数学第二单元教案(优质16篇)篇十
教材第11页。
1.经历小组合作调查,交流储蓄知识,解决和利率有关的实际问题的过程。
2.知道本金、利率、利息的含义,能正确解答有关利息的实际问题。
3.体会储蓄对国家和个人的重要意义,积累关于储蓄的常识和经验。
重点:理解利率与分数、百分数的含义。
难点:解决有关“利率”的实际问题。
课件。
一、创设情境,激趣引导
生1:一般情况下,爸爸妈妈应该把钱存入银行。
生2:爸爸妈妈不会把一大笔现金放在家里,这样太不安全了,他们会存入银行。
生3:把钱存入银行不仅安全,还可以获得利息呢。
……
师:人们常常把暂时不用的钱存入银行或信用社储蓄起来。这样不仅可以支援国家建设,也使个人用钱更加安全和有计划,还可以增加一些收入。钱存入银行后增加的部分就是利息,今天我们就重点研究与“利息”相关的问题。
二、探究体验,经理过程
师:先来大胆地猜一猜,你觉得利息的多少与什么因素有关呢?
生1:不可能说钱存入银行的时间长短不同,而所得的利息一样,所以利息的多少应该与钱存入银行的时间有关。
师:对,利息的多少与存入的时间长短有关,存入的这段时间也就是我们平时所说的存期。
生2:不可能说存入银行的钱不管多少所得的利息都一样,所以利息的多少应该与存入银行的钱的多少有关,存入的钱越多,相同时间内的利息应该越多。
师:说的很有道理,我们把存入银行的钱叫做本金。存期相同的情况下,本金越多,利息就越多。
生4:我们小组的同学进行过调查,在银行内很显眼的位置公布着不同存期的利率,利息的多少一定与利率有关。
学生可能会说:
o我知道了储蓄的种类有整存整取、零存整取和活期。
o我知道了整存整取的利率又分为三个月的、半年的、一年的、二年的、三年的、五年的,存期不同利率也不一样。
o我知道了活期的利率最低,但是随时用钱随时取,比较方便。
……
师:你们知道利息究竟怎么计算吗?
生:利息的计算公式是利息=本金×利率×时间。
师:根据国家经济的发展变化,银行存款的利率有时会有所调整。下面是20xx年7月中国人民银行公布的存款利率。(课件出示:教材第11页利率表)
学生观察利率表。
师:能运用你所掌握的利率的相关知识帮王奶奶解决问题吗?试一试。(课件出示:教材第11页例4)
学生尝试独立解答问题;教师巡视了解情况,指导个别有困难的学生。
师:谁愿意说说你的想法和算法?
生1:首先我们要明确的是,到期后王奶奶可以取回的钱除了本金还有利息,本金我们已经知道是5000元,所以最关键的就是算出利息。根据利息的计算公式“利息=本金×利率×时间”,我们从上面的利率表中对应找到存期两年的利率是3.75%,这样就可以算出利息5000×3.75%×2=375(元);再加本金,到期后可以取回的钱就是5000+375=5375(元)。
生2:我们也可以把本金5000元看作单位“1”,这样每年的利息就是5000元的3.75%,存入2年,所得利息就是5000元的(3.75%×2);这样到期时可以取回的钱就可以列成算式5000×(1+3.75%×2)=5375(元)。
只要学生解答正确,讲解合理就要及时给予肯定和鼓励。
三、课末总结,梳理提升
1.本节课我始终“以学生为本”,强调让学生通过自己的活动归纳出利息的计算方法,增加了学生对知识的理解和深化。以往计算利息时,学生经常把时间漏乘,这是学生容易忽视的地方。通过简短的争论,练习时学生很少把时间漏乘,从简短的争论中,引导学生发现方法,要比教师反复强调效果好得多。
2.储蓄与人们的生活联系密切,本节课是在百分数的知识和学生已有生活经验的基础上进行教学的。注重数学知识与生活实践的联系。我们知道学习数学的目的是为了应用,教师在设计练习时,要有意识地引导学生把所学知识运用到生活实践中去,体现数学服务于生活的教育理念。
课堂作业新设计
a类
(考查知识点:利率;能力要求:能灵活运用所学知识解决生活中的具体问题)
b类
存期年利率
一年4.14%
二年4.77%
(考查知识点:利率;能力要求:能灵活运用所学知识解决生活中的实际问题)
参考答案
课堂作业新设计
a类:
3000×3.81%×5+3000=3571.5(元)
b类:
存一年再存一年:10000×4.14%×1=414(元)
(10000+414)×4.14%×1+414≈845.14(元)
直接存入两年:10000×4.77%×2=954(元)
954845.14直接存入两年比较合适。
教材习题
第11页“做一做”
8000×4.75%×5=1900(元) 8000+1900=9900(元)
人教版六年级数学第二单元教案(优质16篇)篇十一
知识与技能:
1、正确认读11个要求会认的生字,掌握10个要求会写的生字。
2、正确、流利、有感情地朗读课文,背诵课文第四、六、八自然段。
3、了解碧螺春的传说和采摘、制作过程,了解有关茶文化的信息。
过程与方法:
1、读懂课文内容,知道课文是从哪几方面介绍碧螺春的。
2、把握文章的表达顺序,体会表达的有序性。体会描写的细致与准确,积累相关的词句。
情感态度价值观:
1、凭借具体的语言材料,了解茶乡人的生活和生产情况,感受茶乡人生活的美好及劳动人民的勤劳和心灵手巧。
读懂课文内容,知道课文是从哪几方面介绍碧螺春的。感受碧螺春特有的色、香、味、形,体会劳动人民的勤劳和心灵手巧。
二课时
第一课时
一、谈话导入
同学们,你们身边的人有哪些人喜欢喝茶?都喝什么茶?你知道哪些关于“茶”的知识?
今天我们来认识我们江苏太湖的名茶“碧螺春”。
二、范读课文(听录音)
听课文录音,提出学习要求:为什么茶叶的名字要用上“春”呢?课文主要写了什么内容?(全班交流)
三、自读课文(自学要求)
1、读准字音,认清生字字形,读顺每句话。在小组进行纠错。
2、画出不懂的词语,联系上下文或借助工具书了解它们的意思,仍然不懂的请做上记号。
四、检查自学效果
1、指名读课文,帮助纠正字音和读得不通顺的地方引导学生把课文读正确。
2、了解词语的掌握情况,对学生不懂的词语教师作适当讲解。
第二课时
一、复习导入
2、你从碧螺春的传说中了解了什么?(香)怪不得古代诗人写下了这样的诗句:“入出无处不飞翠,碧螺春香百里醉。”
二、精读感悟
1、出示图画、走进茶乡
(1)“看了之后,你有什么感受吗?
(2)学生汇报
(3)给这幅图加上一个名字,并且说说你的理由。
小结:湖山的茶园风景美,采茶的姑娘神态美、动作美,这一切构成了一幅美丽动人的江南春光图。
2、角色扮演、体验茶艺
(1)自由读,哪里给你的印象最深?为什么?
(2)根据交流出示:“忽而揉,忽而搓,忽而捺,忽而抓,嫩叶如同一条青龙一下翻飞,煞是好看。”(出示多媒体课件)
(3)学生演示
(4)从这些动作中,你感受到了什么?(技艺高超)
(5)为什么称它“工艺茶”?
3、实物演示、观察品茶
(1)现场沏茶引导观察
(2)汇报:你们看到了什么?
如果说看制作碧螺春茶有一种新奇的感觉的话,那么――品尝碧螺春茶就更有一种陶醉的感受了。
(3)体会这句话在文中的作用。(这是一个承上启下的过渡句。)
(4)读读,说说自己的感受。
(5)交流:色:碧绿清澈
香:清香扑鼻
味:甜津津的
形:清螺入水,姿态动人
(6)有感情地诵读这一段,体会品尝碧螺春茶的温馨和惬意。
小结:怪不得有位外国诗人在品茶之余,还写下了这样的诗句:――“在清香的碧螺春茶汤里,我看到了江南明媚的春光。”碧螺春真不愧是“天下第一茶”啊!
三、总结课文
这篇课文主要向我们描写了什么?表达了作者怎样的感情?
四、拓展练习
五、板书
碧螺春
清晨采茶图(喜爱)
入夜焙茶图(敬佩)
月夜品茶图(陶醉)
人教版六年级数学第二单元教案(优质16篇)篇十二
1.经历小组合作调查,交流储蓄知识,解决和利率有关的实际问题的过程。
2.知道本金、利率、利息的含义,能正确解答有关利息的实际问题。
3.体会储蓄对国家和个人的重要意义,积累关于储蓄的常识和经验。
重点:理解利率与分数、百分数的含义。
难点:解决有关“利率”的实际问题。
课件。
一、创设情境,激趣引导。
生1:一般情况下,爸爸妈妈应该把钱存入银行。
生2:爸爸妈妈不会把一大笔现金放在家里,这样太不安全了,他们会存入银行。
生3:把钱存入银行不仅安全,还可以获得利息呢。
……。
师:人们常常把暂时不用的钱存入银行或信用社储蓄起来。这样不仅可以支援国家建设,也使个人用钱更加安全和有计划,还可以增加一些收入。钱存入银行后增加的部分就是利息,今天我们就重点研究与“利息”相关的问题。
二、探究体验,经理过程。
师:先来大胆地猜一猜,你觉得利息的多少与什么因素有关呢?
生1:不可能说钱存入银行的时间长短不同,而所得的利息一样,所以利息的多少应该与钱存入银行的时间有关。
师:对,利息的多少与存入的时间长短有关,存入的这段时间也就是我们平时所说的存期。
生2:不可能说存入银行的钱不管多少所得的利息都一样,所以利息的多少应该与存入银行的钱的多少有关,存入的钱越多,相同时间内的利息应该越多。
师:说的很有道理,我们把存入银行的钱叫做本金。存期相同的情况下,本金越多,利息就越多。
生4:我们小组的同学进行过调查,在银行内很显眼的位置公布着不同存期的利率,利息的多少一定与利率有关。
学生可能会说:
o我知道了储蓄的种类有整存整取、零存整取和活期。
o我知道了整存整取的利率又分为三个月的、半年的、一年的、二年的、三年的、五年的,存期不同利率也不一样。
o我知道了活期的利率最低,但是随时用钱随时取,比较方便。
……。
师:你们知道利息究竟怎么计算吗?
生:利息的计算公式是利息=本金×利率×时间。
师:根据国家经济的发展变化,银行存款的利率有时会有所调整。下面是20xx年7月中国人民银行公布的存款利率。(课件出示:教材第11页利率表)。
学生观察利率表。
师:能运用你所掌握的利率的相关知识帮王奶奶解决问题吗?试一试。(课件出示:教材第11页例4)。
学生尝试独立解答问题;教师巡视了解情况,指导个别有困难的学生。
师:谁愿意说说你的想法和算法?
生1:首先我们要明确的是,到期后王奶奶可以取回的钱除了本金还有利息,本金我们已经知道是5000元,所以最关键的就是算出利息。根据利息的计算公式“利息=本金×利率×时间”,我们从上面的利率表中对应找到存期两年的利率是3.75%,这样就可以算出利息5000×3.75%×2=375(元);再加本金,到期后可以取回的钱就是5000+375=5375(元)。
生2:我们也可以把本金5000元看作单位“1”,这样每年的利息就是5000元的3.75%,存入2年,所得利息就是5000元的.(3.75%×2);这样到期时可以取回的钱就可以列成算式5000×(1+3.75%×2)=5375(元)。
只要学生解答正确,讲解合理就要及时给予肯定和鼓励。
三、课末总结,梳理提升。
利率。
1.本节课我始终“以学生为本”,强调让学生通过自己的活动归纳出利息的计算方法,增加了学生对知识的理解和深化。以往计算利息时,学生经常把时间漏乘,这是学生容易忽视的地方。通过简短的争论,练习时学生很少把时间漏乘,从简短的争论中,引导学生发现方法,要比教师反复强调效果好得多。
2.储蓄与人们的生活联系密切,本节课是在百分数的知识和学生已有生活经验的基础上进行教学的。注重数学知识与生活实践的联系。我们知道学习数学的目的是为了应用,教师在设计练习时,要有意识地引导学生把所学知识运用到生活实践中去,体现数学服务于生活的教育理念。
课堂作业新设计。
a类。
(考查知识点:利率;能力要求:能灵活运用所学知识解决生活中的具体问题)。
b类。
存期年利率。
一年4.14%。
二年4.77%。
(考查知识点:利率;能力要求:能灵活运用所学知识解决生活中的实际问题)。
参考答案。
课堂作业新设计。
a类:
3000×3.81%×5+3000=3571.5(元)。
b类:
存一年再存一年:10000×4.14%×1=414(元)。
(10000+414)×4.14%×1+414≈845.14(元)。
直接存入两年:10000×4.77%×2=954(元)。
954845.14直接存入两年比较合适。
教材习题。
第11页“做一做”
8000×4.75%×5=1900(元)8000+1900=9900(元)。
人教版六年级数学第二单元教案(优质16篇)篇十三
1、巩固对储蓄存款的认识,了解教育储蓄、国债利率。
2、在自主活动中进一步熟悉掌握存款利息计算方法。
3、培养学生认识到存款利国利民。
掌握有关存款形式、利息的计算方法。
运用有关知识解决实际问题。
一、明确问题。
李阿姨要存2万元,供儿子六年后上大学,怎样存款收益最大?
三种理财方式:普通储蓄存款、教育储蓄、购买国债。
二、交流汇报有关利率、教育储蓄、国债相关小知识。
1、学生汇报自己收集到的相关知识。
2、教师释疑。
a、收集到的'利率为什么与教材上的不同?
b、不同银行存款利率不一样。
c、国家利率调整的原因。
d、教育储蓄存款存期的计算。
三、设计方案。
根据利息=本金x利率x存期计算每种方案最后利息。
1、学生分组讨论交流,设计不同方案。
2、教师巡回指导,选择代表性方案演板。
方案一:一年期存6次利息:3880。95元。
方案二:二年期存3次利息:4845。9元。
方案三:三年期存2次利息:5425。13元。
方案四:先存五年期一次,再存一年期一次利息:5492。5元。
教育储蓄:五年按六年计算利息:5700元。
购买国债:六年利息:6384元。
四、讨论:选择方案,比较利弊。
根据各种实际情况,灵活选择。
五、当堂检测。
六、活动总结。
七、谈谈本节课的收获与困惑。
人教版六年级数学第二单元教案(优质16篇)篇十四
这一册教材包括下面一些内容:负数、百分数(二)、圆柱与圆锥、比例、数学广角、整理和复习等。
在数与代数方面,这一册教材安排了负数、百分数(二)和比例三个单元。结合生活实例使学生初步认识负数,了解负数在实际生活中的应用。百分数在实际生活中应用广泛,学会解决有关百分数的简单实际问题是加强问题解决教学的重要方面之一。比例的教学,使学生理解比例、正比例和反比例的概念,会解比例和用比例知识解决问题。
在空间与图形方面,这一册教材安排了圆柱与圆锥的教学,在已有知识和经验的基础上,使学生通过对圆柱、圆锥特征和有关知识的探索与学习,掌握有关圆柱表面积,圆柱、圆锥体积计算的基本方法,促进空间观念的进一步发展。
在用数学解决问题方面,教材一方面结合百分数(二)、圆柱与圆锥、比例等知识的学习,教学用所学的知识解决生活中的简单问题;培养学生发现问题、解决问题、分析问题和解决问题的能力。
在数学思想方法方面,教材除了结合负数、百分数(二)、圆柱与圆锥、比例、整理和复习等知识,让学生体会、理解和掌握归纳法、类比法、符号思想、分类思想、演绎推理思想、转化思想、数形结合思想、函数思想等思想方法外,还安排了“数学广角”的教学内容,引导学生通过观察、实验、推理等活动,理解和掌握模型思想、归纳法、演绎推理思想,体会运用数学思想、数学思想方法解决问题的有效性、优越性,发展学生的四能。
整理和复习单元是在完成小学数学的全部教学内容之后,引导学生对所学内容进行一次系统的、全面的回顾与整理,这是小学数学教学的一个重要环节。通过整理和复习,使原来分散学习的知识得以梳理,由数学的知识点串成知识线,由知识线构成知识网,从而帮助学生完善头脑中的数学认知结构,为初中的数学学习打下良好的基础;同时进一步提高学生综合运用所学知识分析问题和解决问题的能力。
大部分学生能掌握本册应掌握的基本知识,学习较主动,但有个别学生依赖性较强,思维能力和分析能力都较差,听课时较易分神,学习成绩较不理想。应用类,如应用题,还有个别学生对题目难以理解,解题困难。学生学习习惯大多较好,课堂听课认真,作业基本上都能按时完成。只有少数潜能生学习上仍有惰性,完成作业处于应付状态。本学期尽量多设计分层次作业,让潜能生得到提高,优生得到发展。
1、熟练地掌握百分数应用题的数量关系,并能解决问题。
2、通过归纳整理,是学生熟练地掌握解决百分数问题的方法。
3、培养学生良好的学习习惯。
教学重点和难点
认真审题,用百分数解决实际问题。
用百分数解决实际问题。
前面我们已经学习了折扣、成数、税率、利率等百分数在生活中的具体应用,今天我们一起来学习它们更多的应用,学习新知识之前,我们来回忆下之前的内容。
学生交流,汇报,教师随机板书,绘制表格。
课件出示例5。
1、学生读题,明确已知条件及问题,尝试说说自己的解题思路。
2、利用提问,引导学生思考回答,归纳出解题思路。
提问启发:“满100元减50元”是什么意思?
引导回答:就是在总价中取整百元部分,每个100元减去50元。不满100元的零头部分不优惠。
归纳整理解题思路:
(1)在a商场买,直接用总价乘以50%就能算出实际花费。
(2)在b商场买,先看总价中有几个100,230里有两个100,然后从总价里减去2个50元。
3、学生独立列出算式,并计算出结果。再交流汇报,教师板书:
a商场:230×50%=115(元)
b商场:230-2×50
=130(元)
115130,
答:在a商场买应付115元,在b商场,买应付130元;选择a商场更省钱。
4、总结思考:在什么时候这两个商场价格差不多呢?
1、完成教材第12页“做一做”。学生独立完成,教师讲解。
2、完成练习二第12题,再集体交流订正。
3、完成练习二第13题。“折上折”是什么意思?怎么计算呢?
4、完成练习二第14题。
5、完成练习二第15题。提示:增长为“-0.068%”表示什么意思?
通过这节课,你有什么收获,你将如何运用到生活中呢?
百分数:整理与复习
人教版六年级数学第二单元教案(优质16篇)篇十五
人教版数学六年级下册教材第16页的内容。
1、结合具体情境,经历综合运用所学知识解决理财问题的过程。
2、学会理财,能对自己设计的理财方案作出合理的解释。
3、感受理财的重要性,培养科学、合理理财的观念。
学会理财,能对自己设计的理财方案作出合理的解释。
学生:调查银行最新利率,理财方式以及国家调整利率的原因。
教师:多媒体课件、国家调整利率的视频资料。
一、开门见山,引入课题:
同学们,在前面的学习中,我们利息的相关知识,知道了生活中离不开百分数。今天,我们继续来研究生活中的百分数。(板书课题)
二、创设情境,探索新知:
1、最近,美术康老师遇到了一个问题,请大家来帮助解决:
2、要想解决这个问题,我们需要调查哪些信息呢?
(生:利率、存储方式)
3、谁来说一说,你课前调查的银行最新利率是多少?
师:有没有和他调查的不一样的?
让学生明确:国有六大行的利率都是相同的,地方银行的利率是
在此基础上上下浮动的。
4、同学们所了解的利率与教材第11页的利率表进行对比,完全相同吗?交流一下,你了解到的国家调整利率的原因。(师播放相关视频)
学生进行小组交流,组织学生汇报:
a、影响利率的因素非常多,比如通货膨胀、对外贸易、国内经济发展的状况等。在通货膨胀严重时,国家一般会实行相应的紧缩性货币政策,就是减少货币的发行提高利率, 这样老百姓会更愿意将资金存入银行;如果对外贸易失衡的话会造成自主货币的贬值或升值,这会影响货币的购买力,通过汇率的改变,相应的会影响利率的走势。
b、从需求的角度看,降息有利于减少投资成本,有利于降低储蓄意愿,扩大消费需求,从而有助于扩大内需,从供给角度看,降息有利于减轻企业的财务负担,防止其利润的进一步恶化 。
c、不同的利率水平代表不同的政策需求,当要求稳健的政策环境时,央行就会适时提高存贷款基准利率,减少货币的需求与供给,降低投资和消费需求,抑制需求过热;当要求积极的政策环境时,央行可适时降低存贷款基准利率,以促进消费和投资。
5、利率的问题我们解决了,接下来我们就要选择理财方式了。你们都调查到了哪些理财方式?(生汇报)
师:选择股票好吗?
6、我们选取理财方式时,要慎重选择。银行给康老师推荐了以下几种理财方式,请同学们先想一想,猜一猜,哪种收益高?再和你的小组内同学交流一下。
学生进行小组合作;教师巡视了解情況 。
学生汇报,师板书理财方式。
7、大家选择一种你认为收益最高的方式计算出来,写在练习本上,可以用计算器。做完的同学小组交流。
8、今后我们可以怎样选择理财方式?
师:国债是定期发放的,所以大家选择理财方式时除了看利率、时间,还要根据实际情况而定。并且要遵循以下几个原则(课件出示)。
三、拓展延伸:
四、课后实践:
生活中无处不存在百分率,生活中蕴含着 无穷的数学知识,希望同学们关心我们的生活,热爱我们的数学,积极用数学知识解决生活中的同题。
再过六年你们就要上大学了,请同学们自己去各大银行了解利率情况,给自己的压岁钱设计一个合理的方案,供自己六年后上大学用,并算出到期后的本息。
五、板书设计
生活与百分数
利息=本金×利率×存期
普通储蓄
国债 一年五年
五年一年
三年三年
理财产品
人教版六年级数学第二单元教案(优质16篇)篇十六
教学目标:
1.加深对表内除法、有余数除法的认识,进一步理解两者之间的关系。
2.巩固混合运算的运算顺序,提高混合运算的计算能力。
3.经历整理过程,构建表内除法、有余数除法间的知识体系,培养思维能力。
4.在解决问题中感受除法和混合运算的价值,提升学习数学的兴趣。
目标解析:
在问题中经历表内除法、有余数除法的整理过程,更有利于学生理解除法的意义,巩固计算的方法;在对比中明辨混合运算的顺序,更有利于学生理解小括号的作用,提高计算能力。
教学重点:
1.熟练掌握用乘法口诀求商的方法,巩固有余数除法试商的过程,进一步体会余数为什么要小于除数。
2.巩固同级、不同级及带小括号的四则运算的运算顺序,深化对运算及其之间关系的理解,提高计算的能力。
教学难点:通过问题引导,学生自主整理除法相关知识,逐步学会整理的方法。
教学准备:课件。
教学过程:
一、活动导入,揭示课题。
(一)游戏活动:
教师选12个小朋友上台。
1.分组。
让其他同学给他们分分组,要求每组人数同样多,且每组不止1人。
(可以每组2人,分成6个组;可以每组3人,分4个组;可以每组4人,分3个组,可以每组6人,分2个组。)。
2.抢答。
分好组后,开始抢答游戏。
(课件依次演示:)。
(二)揭示课题:
今天我们就一起复习除法的有关知识。
(板书课题)。
设计意图:通过活动形式,既引导学生复习已学的知识,即除法的意义和乘法口诀,从而揭示课题,又调动学生参与复习的积极性,提高复习的效率。
二、回顾梳理,构建联系。
(一)复习表内除法和有余数除法。
1.课件出示:
(1)16枝铅笔,装在4个盒子里,平均每盒装多少只?
(2)16枝铅笔,每8枝装一盒,需要几个盒子?
(3)16枝铅笔,装在7个盒子里,平均每盒装几枝?还剩几枝?
2.学生分析后列式并计算。
3.学生汇报。
(1)三道题如何列式,为什么用除法列式?
(2)计算时用什么乘法口诀?
(3)第三题余数是多少?余数与除数有什么关系?
4.学生自主提问。你还能提出什么除法问题?并解答。
例如:每3枝装一盒,至少需要几个盒子?
5.说一说:表内除法与有余数除法的异同。
6.练一练:
(1)出示习题:如果每枝铅笔8角,小英带了6元钱,她最多能买几枝?还剩多少钱?(列式并用竖式计算)。
(2)汇报交流,并说说用竖式计算的注意事项。
(3)比较:60÷8=6(枝)……12(角)60÷8=7(枝)……4(角)。
让学生通过对比,明白第一种错误的原因,为什么不能剩余12角,(因为12角里面还有1个8角,还能买一枝铅笔。)从而进一步理解为什么余数一定要小于除数。
设计意图:通过创设问题情境,将表内除法和有余数的除法串在一起,让学生在解决问题中,经历知识的整理过程,更好地理解除法及有余数除法的意义和计算方法,进一步提高计算的能力。
(二)复习混合运算。
(1)说一说:先请学生说说这些混合运算的顺序。
(2)分一分:让学生将这些算式按运算顺序进行分类。
(3)根据分类结果分别计算。并让学生自己尝试举出类似的例子。
2.练一练:
(1)课件出示:18-6÷3(18-6)÷318÷6×318-6×3。
(2)学生计算。
(3)汇报交流计算方法:先看运算顺序,然后计算。
设计意图:混合运算的重点是先看运算顺序,因此在复习前出示三类不同的混合运算让学生说运算顺序再分类,既突出运算顺序的重要性,又给学生复习混合运算指明了方向,在此基础上,通过有针对性的练习进一步提高混合运算的计算能力。
三、巩固练习,深化理解。
(一)基础练习。
1.完成练习二十二第1题。
结合直观图巩固对除法及有余数除法意义的理解,沟通两者间的关系。
2.完成练习二十二第2题。
巩固除法竖式计算的方法,强化试商的技能。
3.完成练习二十二第3题。
以说出“先算什么,再计算”的方式,突出对混合运算的运算顺序的巩固,同时培养认真审题的能力。
(二)实践应用。
1.40个图形如下排列:……第34个图形是(),40个图形中有()个。
设计意图:本环节复习题的选择突出了不同层次,由简单巩固到实际应用,不仅培养学生思维的严谨性,还充分注重培养学生思维的灵活性。
四、畅谈收获,总结提升。
谈话:通过本节课的复习,你掌握了哪些知识?学会了哪些方法?还有哪些疑问?